| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nominmo | Structured version Visualization version GIF version | ||
| Description: A class of surreals has at most one minimum. (Contributed by Scott Fenton, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| nominmo | ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦 <s 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltso 27640 | . . 3 ⊢ <s Or No | |
| 2 | soss 5581 | . . 3 ⊢ (𝑆 ⊆ No → ( <s Or No → <s Or 𝑆)) | |
| 3 | 1, 2 | mpi 20 | . 2 ⊢ (𝑆 ⊆ No → <s Or 𝑆) |
| 4 | somo 5600 | . 2 ⊢ ( <s Or 𝑆 → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦 <s 𝑥) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦 <s 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wral 3051 ∃*wrmo 3358 ⊆ wss 3926 class class class wbr 5119 Or wor 5560 No csur 27603 <s cslt 27604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 |
| This theorem is referenced by: noinfno 27682 noinfbday 27684 noinfbnd1 27693 noinfbnd2 27695 |
| Copyright terms: Public domain | W3C validator |