MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nominmo Structured version   Visualization version   GIF version

Theorem nominmo 27545
Description: A class of surreals has at most one minimum. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
nominmo (𝑆 No → ∃*𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥)
Distinct variable group:   𝑥,𝑆,𝑦

Proof of Theorem nominmo
StepHypRef Expression
1 sltso 27522 . . 3 <s Or No
2 soss 5608 . . 3 (𝑆 No → ( <s Or No → <s Or 𝑆))
31, 2mpi 20 . 2 (𝑆 No → <s Or 𝑆)
4 somo 5625 . 2 ( <s Or 𝑆 → ∃*𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥)
53, 4syl 17 1 (𝑆 No → ∃*𝑥𝑆𝑦𝑆 ¬ 𝑦 <s 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wral 3060  ∃*wrmo 3374  wss 3948   class class class wbr 5148   Or wor 5587   No csur 27486   <s cslt 27487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-1o 8472  df-2o 8473  df-no 27489  df-slt 27490
This theorem is referenced by:  noinfno  27564  noinfbday  27566  noinfbnd1  27575  noinfbnd2  27577
  Copyright terms: Public domain W3C validator