Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nnei | Structured version Visualization version GIF version |
Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.) |
Ref | Expression |
---|---|
0nnei | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnei 22306 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∅) | |
2 | ss0b 4337 | . . . . 5 ⊢ (𝑆 ⊆ ∅ ↔ 𝑆 = ∅) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 = ∅) |
4 | 3 | ex 414 | . . 3 ⊢ (𝐽 ∈ Top → (∅ ∈ ((nei‘𝐽)‘𝑆) → 𝑆 = ∅)) |
5 | 4 | necon3ad 2954 | . 2 ⊢ (𝐽 ∈ Top → (𝑆 ≠ ∅ → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))) |
6 | 5 | imp 408 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ⊆ wss 3892 ∅c0 4262 ‘cfv 6458 Topctop 22087 neicnei 22293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-top 22088 df-nei 22294 |
This theorem is referenced by: neifil 23076 |
Copyright terms: Public domain | W3C validator |