MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nnei Structured version   Visualization version   GIF version

Theorem 0nnei 23022
Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
Assertion
Ref Expression
0nnei ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem 0nnei
StepHypRef Expression
1 ssnei 23020 . . . . 5 ((𝐽 ∈ Top ∧ ∅ ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∅)
2 ss0b 4346 . . . . 5 (𝑆 ⊆ ∅ ↔ 𝑆 = ∅)
31, 2sylib 218 . . . 4 ((𝐽 ∈ Top ∧ ∅ ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 = ∅)
43ex 412 . . 3 (𝐽 ∈ Top → (∅ ∈ ((nei‘𝐽)‘𝑆) → 𝑆 = ∅))
54necon3ad 2941 . 2 (𝐽 ∈ Top → (𝑆 ≠ ∅ → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆)))
65imp 406 1 ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wss 3897  c0 4278  cfv 6476  Topctop 22803  neicnei 23007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-top 22804  df-nei 23008
This theorem is referenced by:  neifil  23790
  Copyright terms: Public domain W3C validator