Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nnei | Structured version Visualization version GIF version |
Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.) |
Ref | Expression |
---|---|
0nnei | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnei 22242 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∅) | |
2 | ss0b 4336 | . . . . 5 ⊢ (𝑆 ⊆ ∅ ↔ 𝑆 = ∅) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 = ∅) |
4 | 3 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → (∅ ∈ ((nei‘𝐽)‘𝑆) → 𝑆 = ∅)) |
5 | 4 | necon3ad 2957 | . 2 ⊢ (𝐽 ∈ Top → (𝑆 ≠ ∅ → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))) |
6 | 5 | imp 406 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ⊆ wss 3891 ∅c0 4261 ‘cfv 6430 Topctop 22023 neicnei 22229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-top 22024 df-nei 22230 |
This theorem is referenced by: neifil 23012 |
Copyright terms: Public domain | W3C validator |