![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nnei | Structured version Visualization version GIF version |
Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.) |
Ref | Expression |
---|---|
0nnei | β’ ((π½ β Top β§ π β β ) β Β¬ β β ((neiβπ½)βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnei 22958 | . . . . 5 β’ ((π½ β Top β§ β β ((neiβπ½)βπ)) β π β β ) | |
2 | ss0b 4390 | . . . . 5 β’ (π β β β π = β ) | |
3 | 1, 2 | sylib 217 | . . . 4 β’ ((π½ β Top β§ β β ((neiβπ½)βπ)) β π = β ) |
4 | 3 | ex 412 | . . 3 β’ (π½ β Top β (β β ((neiβπ½)βπ) β π = β )) |
5 | 4 | necon3ad 2945 | . 2 β’ (π½ β Top β (π β β β Β¬ β β ((neiβπ½)βπ))) |
6 | 5 | imp 406 | 1 β’ ((π½ β Top β§ π β β ) β Β¬ β β ((neiβπ½)βπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2932 β wss 3941 β c0 4315 βcfv 6534 Topctop 22739 neicnei 22945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-top 22740 df-nei 22946 |
This theorem is referenced by: neifil 23728 |
Copyright terms: Public domain | W3C validator |