![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsuppeq0 | Structured version Visualization version GIF version |
Description: The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
fnsuppeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 4424 | . . 3 ⊢ ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 supp 𝑍) = ∅) | |
2 | un0 4417 | . . . . . . . 8 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
3 | uncom 4181 | . . . . . . . 8 ⊢ (𝐴 ∪ ∅) = (∅ ∪ 𝐴) | |
4 | 2, 3 | eqtr3i 2770 | . . . . . . 7 ⊢ 𝐴 = (∅ ∪ 𝐴) |
5 | 4 | fneq2i 6677 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn (∅ ∪ 𝐴)) |
6 | 5 | biimpi 216 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn (∅ ∪ 𝐴)) |
7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝐹 Fn (∅ ∪ 𝐴)) |
8 | fnex 7254 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊) → 𝐹 ∈ V) | |
9 | 8 | 3adant3 1132 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝐹 ∈ V) |
10 | simp3 1138 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ 𝑉) | |
11 | 0in 4420 | . . . . 5 ⊢ (∅ ∩ 𝐴) = ∅ | |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (∅ ∩ 𝐴) = ∅) |
13 | fnsuppres 8232 | . . . 4 ⊢ ((𝐹 Fn (∅ ∪ 𝐴) ∧ (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) ∧ (∅ ∩ 𝐴) = ∅) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) | |
14 | 7, 9, 10, 12, 13 | syl121anc 1375 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) |
15 | 1, 14 | bitr3id 285 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) |
16 | fnresdm 6699 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 ↾ 𝐴) = 𝐹) |
18 | 17 | eqeq1d 2742 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝐴) = (𝐴 × {𝑍}) ↔ 𝐹 = (𝐴 × {𝑍}))) |
19 | 15, 18 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 × cxp 5698 ↾ cres 5702 Fn wfn 6568 (class class class)co 7448 supp csupp 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-supp 8202 |
This theorem is referenced by: fczsupp0 8234 cantnf0 9744 mdegldg 26125 mdeg0 26129 suppovss 32697 fsuppind 42545 |
Copyright terms: Public domain | W3C validator |