MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsuppeq0 Structured version   Visualization version   GIF version

Theorem fnsuppeq0 8122
Description: The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 28-May-2019.)
Assertion
Ref Expression
fnsuppeq0 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍})))

Proof of Theorem fnsuppeq0
StepHypRef Expression
1 ss0b 4351 . . 3 ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 supp 𝑍) = ∅)
2 un0 4344 . . . . . . . 8 (𝐴 ∪ ∅) = 𝐴
3 uncom 4108 . . . . . . . 8 (𝐴 ∪ ∅) = (∅ ∪ 𝐴)
42, 3eqtr3i 2756 . . . . . . 7 𝐴 = (∅ ∪ 𝐴)
54fneq2i 6579 . . . . . 6 (𝐹 Fn 𝐴𝐹 Fn (∅ ∪ 𝐴))
65biimpi 216 . . . . 5 (𝐹 Fn 𝐴𝐹 Fn (∅ ∪ 𝐴))
763ad2ant1 1133 . . . 4 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → 𝐹 Fn (∅ ∪ 𝐴))
8 fnex 7151 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑊) → 𝐹 ∈ V)
983adant3 1132 . . . 4 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → 𝐹 ∈ V)
10 simp3 1138 . . . 4 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → 𝑍𝑉)
11 0in 4347 . . . . 5 (∅ ∩ 𝐴) = ∅
1211a1i 11 . . . 4 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → (∅ ∩ 𝐴) = ∅)
13 fnsuppres 8121 . . . 4 ((𝐹 Fn (∅ ∪ 𝐴) ∧ (𝐹 ∈ V ∧ 𝑍𝑉) ∧ (∅ ∩ 𝐴) = ∅) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹𝐴) = (𝐴 × {𝑍})))
147, 9, 10, 12, 13syl121anc 1377 . . 3 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹𝐴) = (𝐴 × {𝑍})))
151, 14bitr3id 285 . 2 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ (𝐹𝐴) = (𝐴 × {𝑍})))
16 fnresdm 6600 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
17163ad2ant1 1133 . . 3 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → (𝐹𝐴) = 𝐹)
1817eqeq1d 2733 . 2 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → ((𝐹𝐴) = (𝐴 × {𝑍}) ↔ 𝐹 = (𝐴 × {𝑍})))
1915, 18bitrd 279 1 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cun 3900  cin 3901  wss 3902  c0 4283  {csn 4576   × cxp 5614  cres 5618   Fn wfn 6476  (class class class)co 7346   supp csupp 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-supp 8091
This theorem is referenced by:  fczsupp0  8123  cantnf0  9565  mdegldg  25999  mdeg0  26003  suppovss  32660  fsuppind  42629
  Copyright terms: Public domain W3C validator