![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsuppeq0 | Structured version Visualization version GIF version |
Description: The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
fnsuppeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 4169 | . . 3 ⊢ ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 supp 𝑍) = ∅) | |
2 | un0 4163 | . . . . . . . 8 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
3 | uncom 3955 | . . . . . . . 8 ⊢ (𝐴 ∪ ∅) = (∅ ∪ 𝐴) | |
4 | 2, 3 | eqtr3i 2823 | . . . . . . 7 ⊢ 𝐴 = (∅ ∪ 𝐴) |
5 | 4 | fneq2i 6197 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn (∅ ∪ 𝐴)) |
6 | 5 | biimpi 208 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn (∅ ∪ 𝐴)) |
7 | 6 | 3ad2ant1 1164 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝐹 Fn (∅ ∪ 𝐴)) |
8 | fnex 6710 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊) → 𝐹 ∈ V) | |
9 | 8 | 3adant3 1163 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝐹 ∈ V) |
10 | simp3 1169 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ 𝑉) | |
11 | 0in 4165 | . . . . 5 ⊢ (∅ ∩ 𝐴) = ∅ | |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (∅ ∩ 𝐴) = ∅) |
13 | fnsuppres 7560 | . . . 4 ⊢ ((𝐹 Fn (∅ ∪ 𝐴) ∧ (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) ∧ (∅ ∩ 𝐴) = ∅) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) | |
14 | 7, 9, 10, 12, 13 | syl121anc 1495 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) |
15 | 1, 14 | syl5bbr 277 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) |
16 | fnresdm 6211 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
17 | 16 | 3ad2ant1 1164 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 ↾ 𝐴) = 𝐹) |
18 | 17 | eqeq1d 2801 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝐴) = (𝐴 × {𝑍}) ↔ 𝐹 = (𝐴 × {𝑍}))) |
19 | 15, 18 | bitrd 271 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∪ cun 3767 ∩ cin 3768 ⊆ wss 3769 ∅c0 4115 {csn 4368 × cxp 5310 ↾ cres 5314 Fn wfn 6096 (class class class)co 6878 supp csupp 7532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-supp 7533 |
This theorem is referenced by: fczsupp0 7562 cantnf0 8822 mdegldg 24167 mdeg0 24171 |
Copyright terms: Public domain | W3C validator |