MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsuppeq0 Structured version   Visualization version   GIF version

Theorem fnsuppeq0 7858
Description: The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 28-May-2019.)
Assertion
Ref Expression
fnsuppeq0 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍})))

Proof of Theorem fnsuppeq0
StepHypRef Expression
1 ss0b 4351 . . 3 ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 supp 𝑍) = ∅)
2 un0 4344 . . . . . . . 8 (𝐴 ∪ ∅) = 𝐴
3 uncom 4129 . . . . . . . 8 (𝐴 ∪ ∅) = (∅ ∪ 𝐴)
42, 3eqtr3i 2846 . . . . . . 7 𝐴 = (∅ ∪ 𝐴)
54fneq2i 6451 . . . . . 6 (𝐹 Fn 𝐴𝐹 Fn (∅ ∪ 𝐴))
65biimpi 218 . . . . 5 (𝐹 Fn 𝐴𝐹 Fn (∅ ∪ 𝐴))
763ad2ant1 1129 . . . 4 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → 𝐹 Fn (∅ ∪ 𝐴))
8 fnex 6980 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑊) → 𝐹 ∈ V)
983adant3 1128 . . . 4 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → 𝐹 ∈ V)
10 simp3 1134 . . . 4 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → 𝑍𝑉)
11 0in 4347 . . . . 5 (∅ ∩ 𝐴) = ∅
1211a1i 11 . . . 4 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → (∅ ∩ 𝐴) = ∅)
13 fnsuppres 7857 . . . 4 ((𝐹 Fn (∅ ∪ 𝐴) ∧ (𝐹 ∈ V ∧ 𝑍𝑉) ∧ (∅ ∩ 𝐴) = ∅) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹𝐴) = (𝐴 × {𝑍})))
147, 9, 10, 12, 13syl121anc 1371 . . 3 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹𝐴) = (𝐴 × {𝑍})))
151, 14syl5bbr 287 . 2 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ (𝐹𝐴) = (𝐴 × {𝑍})))
16 fnresdm 6466 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
17163ad2ant1 1129 . . 3 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → (𝐹𝐴) = 𝐹)
1817eqeq1d 2823 . 2 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → ((𝐹𝐴) = (𝐴 × {𝑍}) ↔ 𝐹 = (𝐴 × {𝑍})))
1915, 18bitrd 281 1 ((𝐹 Fn 𝐴𝐴𝑊𝑍𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4567   × cxp 5553  cres 5557   Fn wfn 6350  (class class class)co 7156   supp csupp 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-supp 7831
This theorem is referenced by:  fczsupp0  7859  cantnf0  9138  mdegldg  24660  mdeg0  24664  suppovss  30426
  Copyright terms: Public domain W3C validator