| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsuppeq0 | Structured version Visualization version GIF version | ||
| Description: The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fnsuppeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4376 | . . 3 ⊢ ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 supp 𝑍) = ∅) | |
| 2 | un0 4369 | . . . . . . . 8 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 3 | uncom 4133 | . . . . . . . 8 ⊢ (𝐴 ∪ ∅) = (∅ ∪ 𝐴) | |
| 4 | 2, 3 | eqtr3i 2760 | . . . . . . 7 ⊢ 𝐴 = (∅ ∪ 𝐴) |
| 5 | 4 | fneq2i 6636 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn (∅ ∪ 𝐴)) |
| 6 | 5 | biimpi 216 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn (∅ ∪ 𝐴)) |
| 7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝐹 Fn (∅ ∪ 𝐴)) |
| 8 | fnex 7209 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊) → 𝐹 ∈ V) | |
| 9 | 8 | 3adant3 1132 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝐹 ∈ V) |
| 10 | simp3 1138 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ 𝑉) | |
| 11 | 0in 4372 | . . . . 5 ⊢ (∅ ∩ 𝐴) = ∅ | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (∅ ∩ 𝐴) = ∅) |
| 13 | fnsuppres 8190 | . . . 4 ⊢ ((𝐹 Fn (∅ ∪ 𝐴) ∧ (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) ∧ (∅ ∩ 𝐴) = ∅) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) | |
| 14 | 7, 9, 10, 12, 13 | syl121anc 1377 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) |
| 15 | 1, 14 | bitr3id 285 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) |
| 16 | fnresdm 6657 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 ↾ 𝐴) = 𝐹) |
| 18 | 17 | eqeq1d 2737 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝐴) = (𝐴 × {𝑍}) ↔ 𝐹 = (𝐴 × {𝑍}))) |
| 19 | 15, 18 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 × cxp 5652 ↾ cres 5656 Fn wfn 6526 (class class class)co 7405 supp csupp 8159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-supp 8160 |
| This theorem is referenced by: fczsupp0 8192 cantnf0 9689 mdegldg 26023 mdeg0 26027 suppovss 32658 fsuppind 42613 |
| Copyright terms: Public domain | W3C validator |