| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsuppeq0 | Structured version Visualization version GIF version | ||
| Description: The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| fnsuppeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 4350 | . . 3 ⊢ ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 supp 𝑍) = ∅) | |
| 2 | un0 4343 | . . . . . . . 8 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 3 | uncom 4107 | . . . . . . . 8 ⊢ (𝐴 ∪ ∅) = (∅ ∪ 𝐴) | |
| 4 | 2, 3 | eqtr3i 2758 | . . . . . . 7 ⊢ 𝐴 = (∅ ∪ 𝐴) |
| 5 | 4 | fneq2i 6586 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn (∅ ∪ 𝐴)) |
| 6 | 5 | biimpi 216 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn (∅ ∪ 𝐴)) |
| 7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝐹 Fn (∅ ∪ 𝐴)) |
| 8 | fnex 7159 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊) → 𝐹 ∈ V) | |
| 9 | 8 | 3adant3 1132 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝐹 ∈ V) |
| 10 | simp3 1138 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ 𝑉) | |
| 11 | 0in 4346 | . . . . 5 ⊢ (∅ ∩ 𝐴) = ∅ | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (∅ ∩ 𝐴) = ∅) |
| 13 | fnsuppres 8129 | . . . 4 ⊢ ((𝐹 Fn (∅ ∪ 𝐴) ∧ (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) ∧ (∅ ∩ 𝐴) = ∅) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) | |
| 14 | 7, 9, 10, 12, 13 | syl121anc 1377 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) |
| 15 | 1, 14 | bitr3id 285 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) |
| 16 | fnresdm 6607 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 ↾ 𝐴) = 𝐹) |
| 18 | 17 | eqeq1d 2735 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝐴) = (𝐴 × {𝑍}) ↔ 𝐹 = (𝐴 × {𝑍}))) |
| 19 | 15, 18 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 {csn 4577 × cxp 5619 ↾ cres 5623 Fn wfn 6483 (class class class)co 7354 supp csupp 8098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-supp 8099 |
| This theorem is referenced by: fczsupp0 8131 cantnf0 9574 mdegldg 26001 mdeg0 26005 suppovss 32668 fsuppind 42711 |
| Copyright terms: Public domain | W3C validator |