| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > card0 | Structured version Visualization version GIF version | ||
| Description: The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.) |
| Ref | Expression |
|---|---|
| card0 | ⊢ (card‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6361 | . . 3 ⊢ ∅ ∈ On | |
| 2 | cardonle 9850 | . . 3 ⊢ (∅ ∈ On → (card‘∅) ⊆ ∅) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (card‘∅) ⊆ ∅ |
| 4 | ss0b 4348 | . 2 ⊢ ((card‘∅) ⊆ ∅ ↔ (card‘∅) = ∅) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ (card‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4280 Oncon0 6306 ‘cfv 6481 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-en 8870 df-card 9832 |
| This theorem is referenced by: cardidm 9852 cardnueq0 9857 alephcard 9961 ackbij2lem2 10130 cf0 10142 cardcf 10143 cardeq0 10443 |
| Copyright terms: Public domain | W3C validator |