Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem4N Structured version   Visualization version   GIF version

Theorem osumcllem4N 37973
Description: Lemma for osumclN 37981. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem4N (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)

Proof of Theorem osumcllem4N
StepHypRef Expression
1 n0i 4267 . . 3 (𝑟 ∈ (𝑋𝑌) → ¬ (𝑋𝑌) = ∅)
2 incom 4135 . . . . . . 7 (𝑋𝑌) = (𝑌𝑋)
3 sslin 4168 . . . . . . . 8 (𝑋 ⊆ ( 𝑌) → (𝑌𝑋) ⊆ (𝑌 ∩ ( 𝑌)))
433ad2ant3 1134 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑌𝑋) ⊆ (𝑌 ∩ ( 𝑌)))
52, 4eqsstrid 3969 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) ⊆ (𝑌 ∩ ( 𝑌)))
6 osumcllem.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
7 osumcllem.o . . . . . . . 8 = (⊥𝑃𝐾)
86, 7pnonsingN 37947 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (𝑌 ∩ ( 𝑌)) = ∅)
983adant3 1131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑌 ∩ ( 𝑌)) = ∅)
105, 9sseqtrd 3961 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) ⊆ ∅)
11 ss0b 4331 . . . . 5 ((𝑋𝑌) ⊆ ∅ ↔ (𝑋𝑌) = ∅)
1210, 11sylib 217 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) = ∅)
1312adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑋𝑌) = ∅)
141, 13nsyl3 138 . 2 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → ¬ 𝑟 ∈ (𝑋𝑌))
15 simprr 770 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑌)
16 eleq1w 2821 . . . . . 6 (𝑞 = 𝑟 → (𝑞𝑌𝑟𝑌))
1715, 16syl5ibcom 244 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟𝑟𝑌))
18 simprl 768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑟𝑋)
1917, 18jctild 526 . . . 4 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟 → (𝑟𝑋𝑟𝑌)))
20 elin 3903 . . . 4 (𝑟 ∈ (𝑋𝑌) ↔ (𝑟𝑋𝑟𝑌))
2119, 20syl6ibr 251 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟𝑟 ∈ (𝑋𝑌)))
2221necon3bd 2957 . 2 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (¬ 𝑟 ∈ (𝑋𝑌) → 𝑞𝑟))
2314, 22mpd 15 1 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cin 3886  wss 3887  c0 4256  {csn 4561  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  HLchlt 37364  +𝑃cpadd 37809  𝑃cpolN 37916  PSubClcpscN 37948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-pmap 37518  df-polarityN 37917
This theorem is referenced by:  osumcllem6N  37975
  Copyright terms: Public domain W3C validator