Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem4N Structured version   Visualization version   GIF version

Theorem osumcllem4N 39942
Description: Lemma for osumclN 39950. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem4N (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)

Proof of Theorem osumcllem4N
StepHypRef Expression
1 n0i 4346 . . 3 (𝑟 ∈ (𝑋𝑌) → ¬ (𝑋𝑌) = ∅)
2 incom 4217 . . . . . . 7 (𝑋𝑌) = (𝑌𝑋)
3 sslin 4251 . . . . . . . 8 (𝑋 ⊆ ( 𝑌) → (𝑌𝑋) ⊆ (𝑌 ∩ ( 𝑌)))
433ad2ant3 1134 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑌𝑋) ⊆ (𝑌 ∩ ( 𝑌)))
52, 4eqsstrid 4044 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) ⊆ (𝑌 ∩ ( 𝑌)))
6 osumcllem.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
7 osumcllem.o . . . . . . . 8 = (⊥𝑃𝐾)
86, 7pnonsingN 39916 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (𝑌 ∩ ( 𝑌)) = ∅)
983adant3 1131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑌 ∩ ( 𝑌)) = ∅)
105, 9sseqtrd 4036 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) ⊆ ∅)
11 ss0b 4407 . . . . 5 ((𝑋𝑌) ⊆ ∅ ↔ (𝑋𝑌) = ∅)
1210, 11sylib 218 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) = ∅)
1312adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑋𝑌) = ∅)
141, 13nsyl3 138 . 2 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → ¬ 𝑟 ∈ (𝑋𝑌))
15 simprr 773 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑌)
16 eleq1w 2822 . . . . . 6 (𝑞 = 𝑟 → (𝑞𝑌𝑟𝑌))
1715, 16syl5ibcom 245 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟𝑟𝑌))
18 simprl 771 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑟𝑋)
1917, 18jctild 525 . . . 4 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟 → (𝑟𝑋𝑟𝑌)))
20 elin 3979 . . . 4 (𝑟 ∈ (𝑋𝑌) ↔ (𝑟𝑋𝑟𝑌))
2119, 20imbitrrdi 252 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟𝑟 ∈ (𝑋𝑌)))
2221necon3bd 2952 . 2 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (¬ 𝑟 ∈ (𝑋𝑌) → 𝑞𝑟))
2314, 22mpd 15 1 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cin 3962  wss 3963  c0 4339  {csn 4631  cfv 6563  (class class class)co 7431  lecple 17305  joincjn 18369  Atomscatm 39245  HLchlt 39332  +𝑃cpadd 39778  𝑃cpolN 39885  PSubClcpscN 39917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-pmap 39487  df-polarityN 39886
This theorem is referenced by:  osumcllem6N  39944
  Copyright terms: Public domain W3C validator