Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem4N Structured version   Visualization version   GIF version

Theorem osumcllem4N 40004
Description: Lemma for osumclN 40012. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem4N (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)

Proof of Theorem osumcllem4N
StepHypRef Expression
1 n0i 4290 . . 3 (𝑟 ∈ (𝑋𝑌) → ¬ (𝑋𝑌) = ∅)
2 incom 4159 . . . . . . 7 (𝑋𝑌) = (𝑌𝑋)
3 sslin 4193 . . . . . . . 8 (𝑋 ⊆ ( 𝑌) → (𝑌𝑋) ⊆ (𝑌 ∩ ( 𝑌)))
433ad2ant3 1135 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑌𝑋) ⊆ (𝑌 ∩ ( 𝑌)))
52, 4eqsstrid 3973 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) ⊆ (𝑌 ∩ ( 𝑌)))
6 osumcllem.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
7 osumcllem.o . . . . . . . 8 = (⊥𝑃𝐾)
86, 7pnonsingN 39978 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (𝑌 ∩ ( 𝑌)) = ∅)
983adant3 1132 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑌 ∩ ( 𝑌)) = ∅)
105, 9sseqtrd 3971 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) ⊆ ∅)
11 ss0b 4351 . . . . 5 ((𝑋𝑌) ⊆ ∅ ↔ (𝑋𝑌) = ∅)
1210, 11sylib 218 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) = ∅)
1312adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑋𝑌) = ∅)
141, 13nsyl3 138 . 2 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → ¬ 𝑟 ∈ (𝑋𝑌))
15 simprr 772 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑌)
16 eleq1w 2814 . . . . . 6 (𝑞 = 𝑟 → (𝑞𝑌𝑟𝑌))
1715, 16syl5ibcom 245 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟𝑟𝑌))
18 simprl 770 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑟𝑋)
1917, 18jctild 525 . . . 4 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟 → (𝑟𝑋𝑟𝑌)))
20 elin 3918 . . . 4 (𝑟 ∈ (𝑋𝑌) ↔ (𝑟𝑋𝑟𝑌))
2119, 20imbitrrdi 252 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟𝑟 ∈ (𝑋𝑌)))
2221necon3bd 2942 . 2 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (¬ 𝑟 ∈ (𝑋𝑌) → 𝑞𝑟))
2314, 22mpd 15 1 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cin 3901  wss 3902  c0 4283  {csn 4576  cfv 6481  (class class class)co 7346  lecple 17168  joincjn 18217  Atomscatm 39308  HLchlt 39395  +𝑃cpadd 39840  𝑃cpolN 39947  PSubClcpscN 39979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-pmap 39549  df-polarityN 39948
This theorem is referenced by:  osumcllem6N  40006
  Copyright terms: Public domain W3C validator