Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem4N Structured version   Visualization version   GIF version

Theorem osumcllem4N 37160
Description: Lemma for osumclN 37168. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem4N (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)

Proof of Theorem osumcllem4N
StepHypRef Expression
1 n0i 4280 . . 3 (𝑟 ∈ (𝑋𝑌) → ¬ (𝑋𝑌) = ∅)
2 incom 4161 . . . . . . 7 (𝑋𝑌) = (𝑌𝑋)
3 sslin 4194 . . . . . . . 8 (𝑋 ⊆ ( 𝑌) → (𝑌𝑋) ⊆ (𝑌 ∩ ( 𝑌)))
433ad2ant3 1132 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑌𝑋) ⊆ (𝑌 ∩ ( 𝑌)))
52, 4eqsstrid 3999 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) ⊆ (𝑌 ∩ ( 𝑌)))
6 osumcllem.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
7 osumcllem.o . . . . . . . 8 = (⊥𝑃𝐾)
86, 7pnonsingN 37134 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (𝑌 ∩ ( 𝑌)) = ∅)
983adant3 1129 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑌 ∩ ( 𝑌)) = ∅)
105, 9sseqtrd 3991 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) ⊆ ∅)
11 ss0b 4332 . . . . 5 ((𝑋𝑌) ⊆ ∅ ↔ (𝑋𝑌) = ∅)
1210, 11sylib 221 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) = ∅)
1312adantr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑋𝑌) = ∅)
141, 13nsyl3 140 . 2 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → ¬ 𝑟 ∈ (𝑋𝑌))
15 simprr 772 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑌)
16 eleq1w 2898 . . . . . 6 (𝑞 = 𝑟 → (𝑞𝑌𝑟𝑌))
1715, 16syl5ibcom 248 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟𝑟𝑌))
18 simprl 770 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑟𝑋)
1917, 18jctild 529 . . . 4 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟 → (𝑟𝑋𝑟𝑌)))
20 elin 3934 . . . 4 (𝑟 ∈ (𝑋𝑌) ↔ (𝑟𝑋𝑟𝑌))
2119, 20syl6ibr 255 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟𝑟 ∈ (𝑋𝑌)))
2221necon3bd 3027 . 2 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (¬ 𝑟 ∈ (𝑋𝑌) → 𝑞𝑟))
2314, 22mpd 15 1 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3013  cin 3917  wss 3918  c0 4274  {csn 4548  cfv 6338  (class class class)co 7140  lecple 16563  joincjn 17545  Atomscatm 36464  HLchlt 36551  +𝑃cpadd 36996  𝑃cpolN 37103  PSubClcpscN 37135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-riotaBAD 36154
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-iin 4905  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-undef 7924  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-p1 17641  df-lat 17647  df-clat 17709  df-oposet 36377  df-ol 36379  df-oml 36380  df-covers 36467  df-ats 36468  df-atl 36499  df-cvlat 36523  df-hlat 36552  df-pmap 36705  df-polarityN 37104
This theorem is referenced by:  osumcllem6N  37162
  Copyright terms: Public domain W3C validator