![]() |
Metamath
Proof Explorer Theorem List (p. 273 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ssltright 27201 | A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) | ||
Theorem | lltropt 27202 | The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024.) |
⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s ( R ‘𝐴)) | ||
Theorem | made0 27203 | The only surreal made on day ∅ is 0s. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ ( M ‘∅) = { 0s } | ||
Theorem | new0 27204 | The only surreal new on day ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ ( N ‘∅) = { 0s } | ||
Theorem | old1 27205 | The only surreal older than 1o is 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
⊢ ( O ‘1o) = { 0s } | ||
Theorem | madess 27206 | If 𝐴 is less than or equal to ordinal 𝐵, then the made set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵)) | ||
Theorem | oldssmade 27207 | The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) | ||
Theorem | leftssold 27208 | The left options are a subset of the old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( L ‘𝑋) ⊆ ( O ‘( bday ‘𝑋)) | ||
Theorem | rightssold 27209 | The right options are a subset of the old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( R ‘𝑋) ⊆ ( O ‘( bday ‘𝑋)) | ||
Theorem | leftssno 27210 | The left set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( L ‘𝐴) ⊆ No | ||
Theorem | rightssno 27211 | The right set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( R ‘𝐴) ⊆ No | ||
Theorem | madecut 27212 | Given a section that is a subset of an old set, the cut is a member of the made set. (Contributed by Scott Fenton, 7-Aug-2024.) |
⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴)) | ||
Theorem | madeun 27213 | The made set is the union of the old set and the new set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ( M ‘𝐴) = (( O ‘𝐴) ∪ ( N ‘𝐴)) | ||
Theorem | madeoldsuc 27214 | The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) | ||
Theorem | oldsuc 27215 | The value of the old set at a successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ (𝐴 ∈ On → ( O ‘suc 𝐴) = (( O ‘𝐴) ∪ ( N ‘𝐴))) | ||
Theorem | oldlim 27216 | The value of the old set at a limit ordinal. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → ( O ‘𝐴) = ∪ ( O “ 𝐴)) | ||
Theorem | madebdayim 27217 | If a surreal is a member of a made set, its birthday is less than or equal to the level. (Contributed by Scott Fenton, 10-Aug-2024.) |
⊢ (𝑋 ∈ ( M ‘𝐴) → ( bday ‘𝑋) ⊆ 𝐴) | ||
Theorem | oldbdayim 27218 | If 𝑋 is in the old set for 𝐴, then the birthday of 𝑋 is less than 𝐴. (Contributed by Scott Fenton, 10-Aug-2024.) |
⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) | ||
Theorem | oldirr 27219 | No surreal is a member of its birthday's old set. (Contributed by Scott Fenton, 10-Aug-2024.) |
⊢ ¬ 𝑋 ∈ ( O ‘( bday ‘𝑋)) | ||
Theorem | leftirr 27220 | No surreal is a member of its left set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ¬ 𝑋 ∈ ( L ‘𝑋) | ||
Theorem | rightirr 27221 | No surreal is a member of its right set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ ¬ 𝑋 ∈ ( R ‘𝑋) | ||
Theorem | left0s 27222 | The left set of 0s is empty. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ( L ‘ 0s ) = ∅ | ||
Theorem | right0s 27223 | The right set of 0s is empty. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ( R ‘ 0s ) = ∅ | ||
Theorem | left1s 27224 | The left set of 1s is the singleton of 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
⊢ ( L ‘ 1s ) = { 0s } | ||
Theorem | right1s 27225 | The right set of 1s is empty . (Contributed by Scott Fenton, 4-Feb-2025.) |
⊢ ( R ‘ 1s ) = ∅ | ||
Theorem | lrold 27226 | The union of the left and right options of a surreal make its old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday ‘𝐴)) | ||
Theorem | madebdaylemold 27227* | Lemma for madebday 27229. If the inductive hypothesis of madebday 27229 is satisfied, the converse of oldbdayim 27218 holds. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) | ||
Theorem | madebdaylemlrcut 27228* | Lemma for madebday 27229. If the inductive hypothesis of madebday 27229 is satisfied up to the birthday of 𝑋, then the conclusion of lrcut 27232 holds. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ((∀𝑏 ∈ ( bday ‘𝑋)∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | ||
Theorem | madebday 27229 | A surreal is part of the set made by ordinal 𝐴 iff its birthday is less than or equal to 𝐴. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ( bday ‘𝑋) ⊆ 𝐴)) | ||
Theorem | oldbday 27230 | A surreal is part of the set older than ordinal 𝐴 iff its birthday is less than 𝐴. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday ‘𝑋) ∈ 𝐴)) | ||
Theorem | newbday 27231 | A surreal is an element of a new set iff its birthday is equal to that ordinal. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday ‘𝑋) = 𝐴)) | ||
Theorem | lrcut 27232 | A surreal is equal to the cut of its left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | ||
Theorem | scutfo 27233 | The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.) |
⊢ |s : <<s –onto→ No | ||
Theorem | sltn0 27234 | If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.) |
⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) | ||
Theorem | lruneq 27235 | If two surreals share a birthday, then the union of their left and right sets are equal. (Contributed by Scott Fenton, 17-Sep-2024.) |
⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘𝑋) = ( bday ‘𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌))) | ||
Theorem | sltlpss 27236 | If two surreals share a birthday, then 𝑋 <s 𝑌 iff the left set of 𝑋 is a proper subset of the left set of 𝑌. (Contributed by Scott Fenton, 17-Sep-2024.) |
⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘𝑋) = ( bday ‘𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌))) | ||
Theorem | cofsslt 27237* | If every element of 𝐴 is bounded above by some element of 𝐵 and 𝐵 precedes 𝐶, then 𝐴 precedes 𝐶. Note - we will often use the term "cofinal" to denote that every element of 𝐴 is bounded above by some element of 𝐵. Similarly, we will use the term "coinitial" to denote that every element of 𝐴 is bounded below by some element of 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.) |
⊢ ((𝐴 ∈ 𝒫 No ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶) → 𝐴 <<s 𝐶) | ||
Theorem | coinitsslt 27238* | If 𝐵 is coinitial with 𝐶 and 𝐴 precedes 𝐶, then 𝐴 precedes 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.) |
⊢ ((𝐵 ∈ 𝒫 No ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑦 ≤s 𝑥 ∧ 𝐴 <<s 𝐶) → 𝐴 <<s 𝐵) | ||
Theorem | cofcut1 27239* | If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
Theorem | cofcut1d 27240* | If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.) |
⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) & ⊢ (𝜑 → 𝐶 <<s {(𝐴 |s 𝐵)}) & ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
Theorem | cofcut2 27241* | If 𝐴 and 𝐶 are mutually cofinal and 𝐵 and 𝐷 are mutually coinitial, then the cut of 𝐴 and 𝐵 is equal to the cut of 𝐶 and 𝐷. Theorem 2.7 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (∀𝑡 ∈ 𝐶 ∃𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀𝑟 ∈ 𝐷 ∃𝑠 ∈ 𝐵 𝑠 ≤s 𝑟)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
Theorem | cofcut2d 27242* | If 𝐴 and 𝐶 are mutually cofinal and 𝐵 and 𝐷 are mutually coinitial, then the cut of 𝐴 and 𝐵 is equal to the cut of 𝐶 and 𝐷. Theorem 2.7 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.) |
⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝒫 No ) & ⊢ (𝜑 → 𝐷 ∈ 𝒫 No ) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) & ⊢ (𝜑 → ∀𝑡 ∈ 𝐶 ∃𝑢 ∈ 𝐴 𝑡 ≤s 𝑢) & ⊢ (𝜑 → ∀𝑟 ∈ 𝐷 ∃𝑠 ∈ 𝐵 𝑠 ≤s 𝑟) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
Theorem | cofcutr 27243* | If 𝑋 is the cut of 𝐴 and 𝐵, then 𝐴 is cofinal with ( L ‘𝑋) and 𝐵 is coinitial with ( R ‘𝑋). Theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ ( L ‘𝑋)∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ ( R ‘𝑋)∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧)) | ||
Theorem | cofcutr1d 27244* | If 𝑋 is the cut of 𝐴 and 𝐵, then 𝐴 is cofinal with ( L ‘𝑋). First half of theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 23-Jan-2025.) |
⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ( L ‘𝑋)∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) | ||
Theorem | cofcutr2d 27245* | If 𝑋 is the cut of 𝐴 and 𝐵, then 𝐵 is coinitial with ( R ‘𝑋). Second half of theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 25-Sep-2024.) |
⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ ( R ‘𝑋)∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧) | ||
Theorem | cofcutrtime 27246* | If 𝑋 is the cut of 𝐴 and 𝐵 and all of 𝐴 and 𝐵 are older than 𝑋, then ( L ‘𝑋) is cofinal with 𝐴 and ( R ‘𝑋) is coinitial with 𝐵. Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of [Alling] p. 125. (Contributed by Scott Fenton, 27-Sep-2024.) |
⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋)) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)) | ||
Theorem | cofcutrtime1d 27247* | If 𝑋 is a timely cut of 𝐴 and 𝐵, then ( L ‘𝑋) is cofinal with 𝐴. (Contributed by Scott Fenton, 23-Jan-2025.) |
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋))) & ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦) | ||
Theorem | cofcutrtime2d 27248* | If 𝑋 is a timely cut of 𝐴 and 𝐵, then ( R ‘𝑋) is coinitial with 𝐵. (Contributed by Scott Fenton, 23-Jan-2025.) |
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋))) & ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧) | ||
Syntax | cnorec 27249 | Declare the syntax for surreal recursion of one variable. |
class norec (𝐹) | ||
Definition | df-norec 27250* | Define the recursion generator for surreal functions of one variable. This generator creates a recursive function of surreals from their value on their left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ norec (𝐹) = frecs({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐹) | ||
Theorem | lrrecval 27251* | The next step in the development of the surreals is to establish induction and recursion across left and right sets. To that end, we are going to develop a relationship 𝑅 that is founded, partial, and set-like across the surreals. This first theorem just establishes the value of 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ 𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))) | ||
Theorem | lrrecval2 27252* | Next, we establish an alternate expression for 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) | ||
Theorem | lrrecpo 27253* | Now, we establish that 𝑅 is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ 𝑅 Po No | ||
Theorem | lrrecse 27254* | Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ 𝑅 Se No | ||
Theorem | lrrecfr 27255* | Now we show that 𝑅 is founded over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ 𝑅 Fr No | ||
Theorem | lrrecpred 27256* | Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) | ||
Theorem | noinds 27257* | Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ No → 𝜒) | ||
Theorem | norecfn 27258 | Surreal recursion over one variable is a function over the surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝐹 = norec (𝐺) ⇒ ⊢ 𝐹 Fn No | ||
Theorem | norecov 27259 | Calculate the value of the surreal recursion operation. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝐹 = norec (𝐺) ⇒ ⊢ (𝐴 ∈ No → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))) | ||
Syntax | cnorec2 27260 | Declare the syntax for surreal recursion on two arguments. |
class norec2 (𝐹) | ||
Definition | df-norec2 27261* | Define surreal recursion on two variables. This function is key to the development of most of surreal numbers. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ norec2 (𝐹) = frecs({〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))}, ( No × No ), 𝐹) | ||
Theorem | noxpordpo 27262* | To get through most of the textbook defintions in surreal numbers we will need recursion on two variables. This set of theorems sets up the preconditions for double recursion. This theorem establishes the partial ordering. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ 𝑆 Po ( No × No ) | ||
Theorem | noxpordfr 27263* | Next we establish the foundedness of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ 𝑆 Fr ( No × No ) | ||
Theorem | noxpordse 27264* | Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ 𝑆 Se ( No × No ) | ||
Theorem | noxpordpred 27265* | Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), 〈𝐴, 𝐵〉) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) | ||
Theorem | no2indslem 27266* | Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.) |
⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) & ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) | ||
Theorem | no2inds 27267* | Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) & ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) | ||
Theorem | norec2fn 27268 | The double-recursion operator on surreals yields a function on pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ 𝐹 = norec2 (𝐺) ⇒ ⊢ 𝐹 Fn ( No × No ) | ||
Theorem | norec2ov 27269 | The value of the double-recursion surreal function. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ 𝐹 = norec2 (𝐺) ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝐹𝐵) = (〈𝐴, 𝐵〉𝐺(𝐹 ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})))) | ||
Theorem | no3inds 27270* | Triple induction over surreal numbers. (Contributed by Scott Fenton, 9-Oct-2024.) |
⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) & ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) & ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) & ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) & ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) & ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → 𝜆) | ||
Syntax | cadds 27271 | Declare the syntax for surreal addition. |
class +s | ||
Definition | df-adds 27272* | Define surreal addition. This is the first of the field operations on the surreals. Definition from [Conway] p. 5. Definition from [Gonshor] p. 13. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ +s = norec2 ((𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})))) | ||
Theorem | addsfn 27273 | Surreal addition is a function over pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ +s Fn ( No × No ) | ||
Theorem | addsval 27274* | The value of surreal addition. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)}))) | ||
Theorem | addsval2 27275* | The value of surreal addition with different choices for each bound variable. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)}))) | ||
Theorem | addsid1 27276 | Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ (𝐴 ∈ No → (𝐴 +s 0s ) = 𝐴) | ||
Theorem | addsid1d 27277 | Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s 0s ) = 𝐴) | ||
Theorem | addscom 27278 | Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) | ||
Theorem | addscomd 27279 | Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) | ||
Theorem | addsid2 27280 | Surreal addition to zero is identity. (Contributed by Scott Fenton, 3-Feb-2025.) |
⊢ (𝐴 ∈ No → ( 0s +s 𝐴) = 𝐴) | ||
Theorem | addsproplem1 27281* | Lemma for surreal addition properties. To prove closure on surreal addition we need to prove that addition is compatible with order at the same time. We do this by inducting over the maximum of two natural sums of the birthdays of surreals numbers. In the final step we will loop around and use tfr3 8345 to prove this of all surreals. This first lemma just instantiates the inductive hypothesis so we do not need to do it continuously throughout the proof. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (( bday ‘𝐴) +no ( bday ‘𝐶))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍)))) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))) | ||
Theorem | addsproplem2 27282* | Lemma for surreal addition properties. When proving closure for operations defined using norec and norec2, it is a strictly stronger statement to say that the cut defined is actually a cut than it is to say that the operation is closed. We will often prove this stronger statement. Here, we do so for the cut involved in surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) | ||
Theorem | addsproplem3 27283* | Lemma for surreal addition properties. Show the cut properties of surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) | ||
Theorem | addsproplem4 27284* | Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑌 is older than 𝑍. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) & ⊢ (𝜑 → ( bday ‘𝑌) ∈ ( bday ‘𝑍)) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
Theorem | addsproplem5 27285* | Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑍 is older than 𝑌. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) & ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
Theorem | addsproplem6 27286* | Lemma for surreal addition properties. Finally, we show the second half of the induction hypothesis when 𝑌 and 𝑍 are the same age. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) & ⊢ (𝜑 → ( bday ‘𝑌) = ( bday ‘𝑍)) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
Theorem | addsproplem7 27287* | Lemma for surreal addition properties. Putting together the three previous lemmas, we now show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
Theorem | addsprop 27288 | Inductively show that surreal addition is closed and compatible with less-than. This proof follows from induction on the birthdays of the surreal numbers involved. This pattern occurs throughout surreal development. Theorem 3.1 of [Gonshor] p. 14. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → ((𝑋 +s 𝑌) ∈ No ∧ (𝑌 <s 𝑍 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))) | ||
Theorem | addscut 27289* | Demonstrate the cut properties of surreal addition. This gives us closure together with a pair of set-less-than relationships for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) | ||
Theorem | addscld 27290 | Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) | ||
Theorem | addscl 27291 | Surreal numbers are closed under addition. Theorem 6(iii) of [Conway[ p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) ∈ No ) | ||
Theorem | addsf 27292 | Function statement for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ +s :( No × No )⟶ No | ||
Theorem | addsfo 27293 | Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ +s :( No × No )–onto→ No | ||
Theorem | sltadd1im 27294 | Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 → (𝐴 +s 𝐶) <s (𝐵 +s 𝐶))) | ||
Theorem | sltadd2im 27295 | Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 → (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) | ||
Theorem | sleadd1im 27296 | Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶) → 𝐴 ≤s 𝐵)) | ||
Theorem | sleadd2im 27297 | Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵) → 𝐴 ≤s 𝐵)) | ||
Theorem | sleadd1 27298 | Addition to both sides of surreal less-than or equal. Theorem 5 of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) | ||
Theorem | sleadd2 27299 | Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵))) | ||
Theorem | sltadd2 27300 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |