Home | Metamath
Proof Explorer Theorem List (p. 273 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ax5seglem3a 27201 | Lemma for ax5seg 27209. (Contributed by Scott Fenton, 7-May-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℝ ∧ ((𝐷‘𝑗) − (𝐹‘𝑗)) ∈ ℝ)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ax5seglem3 27202* | Lemma for ax5seg 27209. Combine congruences for points on a line. (Contributed by Scott Fenton, 11-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸‘𝑖) = (((1 − 𝑆) · (𝐷‘𝑖)) + (𝑆 · (𝐹‘𝑖))))) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐷‘𝑗) − (𝐹‘𝑗))↑2)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ax5seglem4 27203* | Lemma for ax5seg 27209. Given two distinct points, the scaling constant in a betweenness statement is nonzero. (Contributed by Scott Fenton, 11-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝐴 ≠ 𝐵) → 𝑇 ≠ 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ax5seglem5 27204* | Lemma for ax5seg 27209. If 𝐵 is between 𝐴 and 𝐶, and 𝐴 is distinct from 𝐵, then 𝐴 is distinct from 𝐶. (Contributed by Scott Fenton, 11-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ 𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ≠ 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ax5seglem6 27205* | Lemma for ax5seg 27209. Given two line segments that are divided into pieces, if the pieces are congruent, then the scaling constant is the same. (Contributed by Scott Fenton, 12-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴 ≠ 𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸‘𝑖) = (((1 − 𝑆) · (𝐷‘𝑖)) + (𝑆 · (𝐹‘𝑖))))) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 𝑇 = 𝑆) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ax5seglem7 27206 | Lemma for ax5seg 27209. An algebraic calculation needed further down the line. (Contributed by Scott Fenton, 12-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 ∈ ℂ & ⊢ 𝑇 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ (𝑇 · ((𝐶 − 𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ax5seglem8 27207 | Lemma for ax5seg 27209. Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 27206. (Contributed by Scott Fenton, 11-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶 − 𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ax5seglem9 27208* | Lemma for ax5seg 27209. Take the calculation in ax5seglem8 27207 and turn it into a series of measurements. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐶‘𝑗) − (𝐷‘𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐵‘𝑗) − (𝐷‘𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐷‘𝑗))↑2))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ax5seg 27209 | The five segment axiom. Take two triangles 𝐴𝐷𝐶 and 𝐸𝐻𝐺, a point 𝐵 on 𝐴𝐶, and a point 𝐹 on 𝐸𝐺. If all corresponding line segments except for 𝐶𝐷 and 𝐺𝐻 are congruent, then so are 𝐶𝐷 and 𝐺𝐻. Axiom A5 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 12-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐹 Btwn 〈𝐸, 𝐺〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐹, 𝐺〉) ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)) → 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axbtwnid 27210 | Points are indivisible. That is, if 𝐴 lies between 𝐵 and 𝐵, then 𝐴 = 𝐵. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 3-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐵〉 → 𝐴 = 𝐵)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axpaschlem 27211* | Lemma for axpasch 27212. Set up coefficents used in the proof. (Contributed by Scott Fenton, 5-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axpasch 27212* | The inner Pasch axiom. Take a triangle 𝐴𝐶𝐸, a point 𝐷 on 𝐴𝐶, and a point 𝐵 extending 𝐶𝐸. Then 𝐴𝐸 and 𝐷𝐵 intersect at some point 𝑥. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐵, 𝐶〉) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn 〈𝐷, 𝐵〉 ∧ 𝑥 Btwn 〈𝐸, 𝐴〉))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem1 27213 | Lemma for axlowdim 27232. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((3...𝑁) × {0}):(3...𝑁)⟶ℝ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem2 27214 | Lemma for axlowdim 27232. Show that two sets are disjoint. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((1...2) ∩ (3...𝑁)) = ∅ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem3 27215 | Lemma for axlowdim 27232. Set up a union property for an interval of integers. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ (ℤ≥‘2) → (1...𝑁) = ((1...2) ∪ (3...𝑁))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem4 27216 | Lemma for axlowdim 27232. Set up a particular constant function. (Contributed by Scott Fenton, 17-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ {〈1, 𝐴〉, 〈2, 𝐵〉}:(1...2)⟶ℝ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem5 27217 | Lemma for axlowdim 27232. Show that a particular union is a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘2) → ({〈1, 𝐴〉, 〈2, 𝐵〉} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem6 27218 | Lemma for axlowdim 27232. Show that three points are non-colinear. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) & ⊢ 𝐵 = ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) & ⊢ 𝐶 = ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘2) → ¬ (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem7 27219 | Lemma for axlowdim 27232. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem8 27220 | Lemma for axlowdim 27232. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ⇒ ⊢ (𝑃‘3) = -1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem9 27221 | Lemma for axlowdim 27232. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ⇒ ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem10 27222 | Lemma for axlowdim 27232. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem11 27223 | Lemma for axlowdim 27232. Calculate the value of 𝑄 at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ (𝑄‘(𝐼 + 1)) = 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem12 27224 | Lemma for axlowdim 27232. Calculate the value of 𝑄 away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄‘𝐾) = 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem13 27225 | Lemma for axlowdim 27232. Establish that 𝑃 and 𝑄 are different points. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) & ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃 ≠ 𝑄) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem14 27226 | Lemma for axlowdim 27232. Take two possible 𝑄 from axlowdimlem10 27222. They are the same iff their distinguished values are the same. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) & ⊢ 𝑅 = ({〈(𝐽 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅 → 𝐼 = 𝐽)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem15 27227* | Lemma for axlowdim 27232. Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem16 27228* | Lemma for axlowdim 27232. Set up a summation that will help establish distance. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) & ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdimlem17 27229 | Lemma for axlowdim 27232. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) & ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) & ⊢ 𝐴 = ({〈1, 𝑋〉, 〈2, 𝑌〉} ∪ ((3...𝑁) × {0})) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝑌 ∈ ℝ ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 〈𝑃, 𝐴〉Cgr〈𝑄, 𝐴〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdim1 27230* | The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 27231. (Contributed by Scott Fenton, 22-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdim2 27231* | The lower two-dimensional axiom. In any space where the dimension is greater than one, there are three non-colinear points. Axiom A8 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 15-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁) ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axlowdim 27232* | The general lower dimension axiom. Take a dimension 𝑁 greater than or equal to three. Then, there are three non-colinear points in 𝑁 dimensional space that are equidistant from 𝑁 − 1 distinct points. Derived from remarks in Tarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈(𝑝‘1), 𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ∧ 〈(𝑝‘1), 𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ∧ 〈(𝑝‘1), 𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axeuclidlem 27233* | Lemma for axeuclid 27234. Handle the algebraic aspects of the theorem. (Contributed by Scott Fenton, 9-Sep-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴‘𝑖)) + (𝑃 · (𝑇‘𝑖))) = (((1 − 𝑄) · (𝐵‘𝑖)) + (𝑄 · (𝐶‘𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵‘𝑖) = (((1 − 𝑟) · (𝐴‘𝑖)) + (𝑟 · (𝑥‘𝑖))) ∧ (𝐶‘𝑖) = (((1 − 𝑠) · (𝐴‘𝑖)) + (𝑠 · (𝑦‘𝑖))) ∧ (𝑇‘𝑖) = (((1 − 𝑢) · (𝑥‘𝑖)) + (𝑢 · (𝑦‘𝑖))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axeuclid 27234* | Euclid's axiom. Take an angle 𝐵𝐴𝐶 and a point 𝐷 between 𝐵 and 𝐶. Now, if you extend the segment 𝐴𝐷 to a point 𝑇, then 𝑇 lies between two points 𝑥 and 𝑦 that lie on the angle. Axiom A10 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 9-Sep-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn 〈𝐴, 𝑇〉 ∧ 𝐷 Btwn 〈𝐵, 𝐶〉 ∧ 𝐴 ≠ 𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 𝐶 Btwn 〈𝐴, 𝑦〉 ∧ 𝑇 Btwn 〈𝑥, 𝑦〉))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem1 27235* | Lemma for axcont 27247. Change bound variables for later use. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ 𝐹 = {〈𝑦, 𝑠〉 ∣ (𝑦 ∈ 𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦‘𝑗) = (((1 − 𝑠) · (𝑍‘𝑗)) + (𝑠 · (𝑈‘𝑗)))))} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem2 27236* | Lemma for axcont 27247. The idea here is to set up a mapping 𝐹 that will allow us to transfer dedekind 11068 to two sets of points. Here, we set up 𝐹 and show its domain and range. (Contributed by Scott Fenton, 17-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) → 𝐹:𝐷–1-1-onto→(0[,)+∞)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem3 27237* | Lemma for axcont 27247. Given the separation assumption, 𝐵 is a subset of 𝐷. (Contributed by Scott Fenton, 18-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) → 𝐵 ⊆ 𝐷) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem4 27238* | Lemma for axcont 27247. Given the separation assumption, 𝐴 is a subset of 𝐷. (Contributed by Scott Fenton, 18-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝐴 ⊆ 𝐷) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem5 27239* | Lemma for axcont 27247. Compute the value of 𝐹. (Contributed by Scott Fenton, 18-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − 𝑇) · (𝑍‘𝑖)) + (𝑇 · (𝑈‘𝑖)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem6 27240* | Lemma for axcont 27247. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem7 27241* | Lemma for axcont 27247. Given two points in 𝐷, one preceeds the other iff its scaling constant is less than the other point's. (Contributed by Scott Fenton, 18-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷)) → (𝑃 Btwn 〈𝑍, 𝑄〉 ↔ (𝐹‘𝑃) ≤ (𝐹‘𝑄))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem8 27242* | Lemma for axcont 27247. A point in 𝐷 is between two others if its function value falls in the middle. (Contributed by Scott Fenton, 18-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) → (((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)) → 𝑄 Btwn 〈𝑃, 𝑅〉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem9 27243* | Lemma for axcont 27247. Given the separation assumption, all values of 𝐹 over 𝐴 are less than or equal to all values of 𝐹 over 𝐵. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∀𝑛 ∈ (𝐹 “ 𝐴)∀𝑚 ∈ (𝐹 “ 𝐵)𝑛 ≤ 𝑚) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem10 27244* | Lemma for axcont 27247. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem11 27245* | Lemma for axcont 27247. Eliminate the hypotheses from axcontlem10 27244. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcontlem12 27246* | Lemma for axcont 27247. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | axcont 27247* | The axiom of continuity. Take two sets of points 𝐴 and 𝐵. If all the points in 𝐴 come before the points of 𝐵 on a line, then there is a point separating the two. Axiom A11 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | ceeng 27248 | Extends class notation with the Tarski geometry structure for 𝔼↑𝑁. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class EEG | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-eeng 27249* | Define the geometry structure for 𝔼↑𝑁. (Contributed by Thierry Arnoux, 24-Aug-2017.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ EEG = (𝑛 ∈ ℕ ↦ ({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | eengv 27250* | The value of the Euclidean geometry for dimension 𝑁. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) = ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | eengstr 27251 | The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | eengbas 27252 | The Base of the Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ebtwntg 27253 | The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ 𝐼 = (Itv‘(EEG‘𝑁)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑍 Btwn 〈𝑋, 𝑌〉 ↔ 𝑍 ∈ (𝑋𝐼𝑌))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | ecgrtg 27254 | The congruence relation used in the Tarski structure for the Euclidean geometry is the same as Cgr. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ − = (dist‘(EEG‘𝑁)) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ (𝐴 − 𝐵) = (𝐶 − 𝐷))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | elntg 27255* | The line definition in the Tarski structure for the Euclidean geometry. (Contributed by Thierry Arnoux, 7-Apr-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ 𝐼 = (Itv‘(EEG‘𝑁)) ⇒ ⊢ (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | elntg2 27256* | The line definition in the Tarski structure for the Euclidean geometry. In contrast to elntg 27255, the betweenness can be strengthened by excluding 1 resp. 0 from the related intervals (because of 𝑥 ≠ 𝑦). (Contributed by AV, 14-Feb-2023.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ 𝐼 = (1...𝑁) ⇒ ⊢ (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | eengtrkg 27257 | The geometry structure for 𝔼↑𝑁 is a Tarski geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | eengtrkge 27258 | The geometry structure for 𝔼↑𝑁 is a Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGE) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basic concepts:
Basic kinds of graphs:
Terms and properties of graphs:
Special kinds of graphs:
For the terms "Path", "Walk", "Trail", "Circuit", "Cycle" see the remarks below and the definitions in Section I.1 in [Bollobas] p. 4-5. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In the following, the vertices and (indexed) edges for an arbitrary class 𝐺 (called "graph" in the following) are defined and examined. The main result of this section is to show that the set of vertices (Vtx‘𝐺) of a graph 𝐺 is the first component 𝑉 of the graph 𝐺 if it is represented by an ordered pair 〈𝑉, 𝐸〉 (see opvtxfv 27277), or the base set (Base‘𝐺) of the graph 𝐺 if it is represented as extensible structure (see basvtxval 27289), and that the set of indexed edges resp. the edge function (iEdg‘𝐺) is the second component 𝐸 of the graph 𝐺 if it is represented by an ordered pair 〈𝑉, 𝐸〉 (see opiedgfv 27280), or the component (.ef‘𝐺) of the graph 𝐺 if it is represented as extensible structure (see edgfiedgval 27290). Finally, it is shown that the set of edges of a graph 𝐺 is the range of its edge function: (Edg‘𝐺) = ran (iEdg‘𝐺), see edgval 27322. Usually, a graph 𝐺 is a set. If 𝐺 is a proper class, however, it represents the null graph (without vertices and edges), because (Vtx‘𝐺) = ∅ and (iEdg‘𝐺) = ∅ holds, see vtxvalprc 27318 and iedgvalprc 27319. Up to the end of this section, the edges need not be related to the vertices. Once undirected hypergraphs are defined (see df-uhgr 27331), the edges become nonempty sets of vertices, and by this obtain their meaning as "connectors" of vertices. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cedgf 27259 | Extend class notation with an edge function. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class .ef | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-edgf 27260 | Define the edge function (indexed edges) of a graph. (Contributed by AV, 18-Jan-2020.) Use its index-independent form edgfid 27261 instead. (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ .ef = Slot ;18 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | edgfid 27261 | Utility theorem: index-independent form of df-edgf 27260. (Contributed by AV, 16-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ .ef = Slot (.ef‘ndx) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | edgfndx 27262 | Index value of the df-edgf 27260 slot. (Contributed by AV, 13-Oct-2024.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (.ef‘ndx) = ;18 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | edgfndxnn 27263 | The index value of the edge function extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (.ef‘ndx) ∈ ℕ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | edgfndxid 27264 | The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 28-Oct-2024.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐺 ∈ 𝑉 → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | edgfndxidOLD 27265 | Obsolete version of edgfndxid 27264 as of 28-Oct-2024. The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐺 ∈ 𝑉 → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | baseltedgf 27266 | The index value of the Base slot is less than the index value of the .ef slot. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 30-Oct-2024.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (Base‘ndx) < (.ef‘ndx) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | baseltedgfOLD 27267 | Obsolete proof of baseltedgf 27266 as of 30-Oct-2024. The index value of the Base slot is less than the index value of the .ef slot. (Contributed by AV, 21-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (Base‘ndx) < (.ef‘ndx) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | basendxnedgfndx 27268 | The slots Base and .ef are different. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (Base‘ndx) ≠ (.ef‘ndx) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The key concepts in graph theory are vertices and edges. In general, a graph "consists" (at least) of two sets: the set of vertices and the set of edges. The edges "connect" vertices. The meaning of "connect" is different for different kinds of graphs (directed/undirected graphs, hyper-/pseudo-/ multi-/simple graphs, etc.). The simplest way to represent a graph (of any kind) is to define a graph as "an ordered pair of disjoint sets (V, E)" (see section I.1 in [Bollobas] p. 1), or in the notation of Metamath: 〈𝑉, 𝐸〉. Another way is to regard a graph as a mathematical structure, which consistes at least of a set (of vertices) and a relation between the vertices (edge function), but which can be enhanced by additional features (see Wikipedia "Mathematical structure", 24-Sep-2020, https://en.wikipedia.org/wiki/Mathematical_structure): "In mathematics, a structure is a set endowed with some additional features on the set (e.g., operation, relation, metric, topology). Often, the additional features are attached or related to the set, so as to provide it with some additional meaning or significance.". Such structures are provided as "extensible structures" in Metamath, see df-struct 16776. To allow for expressing and proving most of the theorems for graphs independently from their representation, the functions Vtx and iEdg are defined (see df-vtx 27271 and df-iedg 27272), which provide the vertices resp. (indexed) edges of an arbitrary class 𝐺 which represents a graph: (Vtx‘𝐺) resp. (iEdg‘𝐺). In literature, these functions are often denoted also by "V" and "E", see section I.1 in [Bollobas] p. 1 ("If G is a graph, then V = V(G) is the vertex set of G, and E = E(G) is the edge set.") or section 1.1 in [Diestel] p. 2 ("The vertex set of graph G is referred to as V(G), its edge set as E(G)."). Instead of providing edges themselves, iEdg is intended to provide a function as mapping of "indices" (the domain of the function) to the edges (therefore called "set of indexed edges"), which allows for hyper-/pseudo-/multigraphs with more than one edge between two (or more) vertices. For example, e1 = e(1) = { a, b } and e2 = e(2) = { a, b } are two different edges connecting the same two vertices a and b (in a pseudograph). In section 1.10 of [Diestel] p. 28, the edge function is defined differently: as "map E -> V u. [V]^2 assigning to every edge either one or two vertices, its end.". Here, the domain is the set of abstract edges: for two different edges e1 and e2 connecting the same two vertices a and b, we would have e(e1) = e(e2) = { a, b }. Since the set of abstract edges can be chosen as index set, these definitions are equivalent. The result of these functions are as expected: for a graph represented as ordered pair (𝐺 ∈ (V × V)), the set of vertices is (Vtx‘𝐺) = (1st ‘𝐺) (see opvtxval 27276) and the set of (indexed) edges is (iEdg‘𝐺) = (2nd ‘𝐺) (see opiedgval 27279), or if 𝐺 is given as ordered pair 𝐺 = 〈𝑉, 𝐸〉, the set of vertices is (Vtx‘𝐺) = 𝑉 (see opvtxfv 27277) and the set of (indexed) edges is (iEdg‘𝐺) = 𝐸 (see opiedgfv 27280). And for a graph represented as extensible structure (𝐺 Struct 〈(Base‘ndx), (.ef‘ndx)〉), the set of vertices is (Vtx‘𝐺) = (Base‘𝐺) (see funvtxval 27291) and the set of (indexed) edges is (iEdg‘𝐺) = (.ef‘𝐺) (see funiedgval 27292), or if 𝐺 is given in its simplest form as extensible structure with two slots (𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉}), the set of vertices is (Vtx‘𝐺) = 𝑉 (see struct2grvtx 27300) and the set of (indexed) edges is (iEdg‘𝐺) = 𝐸 (see struct2griedg 27301). These two representations are convertible, see graop 27302 and grastruct 27303: If 𝐺 is a graph (for example 𝐺 = 〈𝑉, 𝐸〉), then 𝐻 = {〈(Base‘ndx), (Vtx‘𝐺)〉, 〈(.ef‘ndx), (iEdg‘𝐺)〉} represents essentially the same graph, and if 𝐺 is a graph (for example 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉}), then 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 represents essentially the same graph. In both cases, (Vtx‘𝐺) = (Vtx‘𝐻) and (iEdg‘𝐺) = (iEdg‘𝐻) hold. Theorems gropd 27304 and gropeld 27306 show that if any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. Analogously, theorems grstructd 27305 and grstructeld 27307 show that if any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property, then any extensible structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is also such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. Besides the usual way to represent graphs without edges (consisting of unconnected vertices only), which would be 𝐺 = 〈𝑉, ∅〉 or 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), ∅〉}, a structure without a slot for edges can be used: 𝐺 = {〈(Base‘ndx), 𝑉〉}, see snstrvtxval 27310 and snstriedgval 27311. Analogously, the empty set ∅ can be used to represent the null graph, see vtxval0 27312 and iedgval0 27313, which can also be represented by 𝐺 = 〈∅, ∅〉 or 𝐺 = {〈(Base‘ndx), ∅〉, 〈(.ef‘ndx), ∅〉}. Even proper classes can be used to represent the null graph, see vtxvalprc 27318 and iedgvalprc 27319. Other classes should not be used to represent graphs, because there could be a degenerate behavior of the vertex set and (indexed) edge functions, see vtxvalsnop 27314 resp. iedgvalsnop 27315, and vtxval3sn 27316 resp. iedgval3sn 27317. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction of ordered pairs, see also the comment for df-op 4565. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cvtx 27269 | Extend class notation with the vertices of "graphs". | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class Vtx | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | ciedg 27270 | Extend class notation with the indexed edges of "graphs". | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class iEdg | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-vtx 27271 | Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-iedg 27272 | Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | vtxval 27273 | The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | iedgval 27274 | The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 1vgrex 27275 | A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opvtxval 27276 | The set of vertices of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐺 ∈ (V × V) → (Vtx‘𝐺) = (1st ‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opvtxfv 27277 | The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opvtxov 27278 | The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑉Vtx𝐸) = 𝑉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opiedgval 27279 | The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐺 ∈ (V × V) → (iEdg‘𝐺) = (2nd ‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opiedgfv 27280 | The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opiedgov 27281 | The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑉iEdg𝐸) = 𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opvtxfvi 27282 | The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑉 ∈ V & ⊢ 𝐸 ∈ V ⇒ ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | opiedgfvi 27283 | The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑉 ∈ V & ⊢ 𝐸 ∈ V ⇒ ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | funvtxdmge2val 27284 | The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (Vtx‘𝐺) = (Base‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | funiedgdmge2val 27285 | The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | funvtxdm2val 27286 | The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | funiedgdm2val 27287 | The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | funvtxval0 27288 | The set of vertices of an extensible structure with a base set and (at least) another slot. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑆 ∈ V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝑆 ≠ (Base‘ndx) ∧ {(Base‘ndx), 𝑆} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | basvtxval 27289 | The set of vertices of a graph represented as an extensible structure with the set of vertices as base set. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐺)) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝐺) ⇒ ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | edgfiedgval 27290 | The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐺)) & ⊢ (𝜑 → 𝐸 ∈ 𝑌) & ⊢ (𝜑 → 〈(.ef‘ndx), 𝐸〉 ∈ 𝐺) ⇒ ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | funvtxval 27291 | The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | funiedgval 27292 | The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | structvtxvallem 27293 | Lemma for structvtxval 27294 and structiedg0val 27295. (Contributed by AV, 23-Sep-2020.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2 ≤ (♯‘dom 𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | structvtxval 27294 | The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = 𝑉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | structiedg0val 27295 | The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | structgrssvtxlem 27296 | Lemma for structgrssvtx 27297 and structgrssiedg 27298. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 𝐸 ∈ 𝑍) & ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) ⇒ ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | structgrssvtx 27297 | The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 𝐸 ∈ 𝑍) & ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) ⇒ ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | structgrssiedg 27298 | The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 𝐸 ∈ 𝑍) & ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) ⇒ ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | struct2grstr 27299 | A graph represented as an extensible structure with vertices as base set and indexed edges is actually an extensible structure. (Contributed by AV, 23-Nov-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (.ef‘ndx)〉 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | struct2grvtx 27300 | The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = 𝑉) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |