HomeHome Metamath Proof Explorer
Theorem List (p. 273 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 27201-27300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremax5seglem3a 27201 Lemma for ax5seg 27209. (Contributed by Scott Fenton, 7-May-2015.)
(((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗)) ∈ ℝ ∧ ((𝐷𝑗) − (𝐹𝑗)) ∈ ℝ))
 
Theoremax5seglem3 27202* Lemma for ax5seg 27209. Combine congruences for points on a line. (Contributed by Scott Fenton, 11-Jun-2013.)
(((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐷𝑗) − (𝐹𝑗))↑2))
 
Theoremax5seglem4 27203* Lemma for ax5seg 27209. Given two distinct points, the scaling constant in a betweenness statement is nonzero. (Contributed by Scott Fenton, 11-Jun-2013.)
(((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴𝐵) → 𝑇 ≠ 0)
 
Theoremax5seglem5 27204* Lemma for ax5seg 27209. If 𝐵 is between 𝐴 and 𝐶, and 𝐴 is distinct from 𝐵, then 𝐴 is distinct from 𝐶. (Contributed by Scott Fenton, 11-Jun-2013.)
(((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) ≠ 0)
 
Theoremax5seglem6 27205* Lemma for ax5seg 27209. Given two line segments that are divided into pieces, if the pieces are congruent, then the scaling constant is the same. (Contributed by Scott Fenton, 12-Jun-2013.)
(((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑆) · (𝐷𝑖)) + (𝑆 · (𝐹𝑖))))) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → 𝑇 = 𝑆)
 
Theoremax5seglem7 27206 Lemma for ax5seg 27209. An algebraic calculation needed further down the line. (Contributed by Scott Fenton, 12-Jun-2013.)
𝐴 ∈ ℂ    &   𝑇 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2))))
 
Theoremax5seglem8 27207 Lemma for ax5seg 27209. Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 27206. (Contributed by Scott Fenton, 11-Jun-2013.)
(((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))))
 
Theoremax5seglem9 27208* Lemma for ax5seg 27209. Take the calculation in ax5seglem8 27207 and turn it into a series of measurements. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.)
(((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐶𝑗) − (𝐷𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐵𝑗) − (𝐷𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐷𝑗))↑2)))))
 
Theoremax5seg 27209 The five segment axiom. Take two triangles 𝐴𝐷𝐶 and 𝐸𝐻𝐺, a point 𝐵 on 𝐴𝐶, and a point 𝐹 on 𝐸𝐺. If all corresponding line segments except for 𝐶𝐷 and 𝐺𝐻 are congruent, then so are 𝐶𝐷 and 𝐺𝐻. Axiom A5 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 12-Jun-2013.)
(((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐴𝐵𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
 
Theoremaxbtwnid 27210 Points are indivisible. That is, if 𝐴 lies between 𝐵 and 𝐵, then 𝐴 = 𝐵. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 3-Jun-2013.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐵⟩ → 𝐴 = 𝐵))
 
Theoremaxpaschlem 27211* Lemma for axpasch 27212. Set up coefficents used in the proof. (Contributed by Scott Fenton, 5-Jun-2013.)
((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆)))
 
Theoremaxpasch 27212* The inner Pasch axiom. Take a triangle 𝐴𝐶𝐸, a point 𝐷 on 𝐴𝐶, and a point 𝐵 extending 𝐶𝐸. Then 𝐴𝐸 and 𝐷𝐵 intersect at some point 𝑥. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
 
Theoremaxlowdimlem1 27213 Lemma for axlowdim 27232. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.)
((3...𝑁) × {0}):(3...𝑁)⟶ℝ
 
Theoremaxlowdimlem2 27214 Lemma for axlowdim 27232. Show that two sets are disjoint. (Contributed by Scott Fenton, 29-Jun-2013.)
((1...2) ∩ (3...𝑁)) = ∅
 
Theoremaxlowdimlem3 27215 Lemma for axlowdim 27232. Set up a union property for an interval of integers. (Contributed by Scott Fenton, 29-Jun-2013.)
(𝑁 ∈ (ℤ‘2) → (1...𝑁) = ((1...2) ∪ (3...𝑁)))
 
Theoremaxlowdimlem4 27216 Lemma for axlowdim 27232. Set up a particular constant function. (Contributed by Scott Fenton, 17-Apr-2013.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       {⟨1, 𝐴⟩, ⟨2, 𝐵⟩}:(1...2)⟶ℝ
 
Theoremaxlowdimlem5 27217 Lemma for axlowdim 27232. Show that a particular union is a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝑁 ∈ (ℤ‘2) → ({⟨1, 𝐴⟩, ⟨2, 𝐵⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
 
Theoremaxlowdimlem6 27218 Lemma for axlowdim 27232. Show that three points are non-colinear. (Contributed by Scott Fenton, 29-Jun-2013.)
𝐴 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))    &   𝐵 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))    &   𝐶 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))       (𝑁 ∈ (ℤ‘2) → ¬ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))
 
Theoremaxlowdimlem7 27219 Lemma for axlowdim 27232. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.)
𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))       (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
 
Theoremaxlowdimlem8 27220 Lemma for axlowdim 27232. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.)
𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))       (𝑃‘3) = -1
 
Theoremaxlowdimlem9 27221 Lemma for axlowdim 27232. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.)
𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))       ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)
 
Theoremaxlowdimlem10 27222 Lemma for axlowdim 27232. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.)
𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))       ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
 
Theoremaxlowdimlem11 27223 Lemma for axlowdim 27232. Calculate the value of 𝑄 at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))       (𝑄‘(𝐼 + 1)) = 1
 
Theoremaxlowdimlem12 27224 Lemma for axlowdim 27232. Calculate the value of 𝑄 away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))       ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄𝐾) = 0)
 
Theoremaxlowdimlem13 27225 Lemma for axlowdim 27232. Establish that 𝑃 and 𝑄 are different points. (Contributed by Scott Fenton, 21-Apr-2013.)
𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))    &   𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))       ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)
 
Theoremaxlowdimlem14 27226 Lemma for axlowdim 27232. Take two possible 𝑄 from axlowdimlem10 27222. They are the same iff their distinguished values are the same. (Contributed by Scott Fenton, 21-Apr-2013.)
𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))    &   𝑅 = ({⟨(𝐽 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0}))       ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅𝐼 = 𝐽))
 
Theoremaxlowdimlem15 27227* Lemma for axlowdim 27232. Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013.)
𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))       (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
 
Theoremaxlowdimlem16 27228* Lemma for axlowdim 27232. Set up a summation that will help establish distance. (Contributed by Scott Fenton, 21-Apr-2013.)
𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))    &   𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))       ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
 
Theoremaxlowdimlem17 27229 Lemma for axlowdim 27232. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.)
𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))    &   𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))    &   𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))    &   𝑋 ∈ ℝ    &   𝑌 ∈ ℝ       ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)
 
Theoremaxlowdim1 27230* The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 27231. (Contributed by Scott Fenton, 22-Apr-2013.)
(𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥𝑦)
 
Theoremaxlowdim2 27231* The lower two-dimensional axiom. In any space where the dimension is greater than one, there are three non-colinear points. Axiom A8 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 15-Apr-2013.)
(𝑁 ∈ (ℤ‘2) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁) ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))
 
Theoremaxlowdim 27232* The general lower dimension axiom. Take a dimension 𝑁 greater than or equal to three. Then, there are three non-colinear points in 𝑁 dimensional space that are equidistant from 𝑁 − 1 distinct points. Derived from remarks in Tarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013.)
(𝑁 ∈ (ℤ‘3) → ∃𝑝𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(⟨(𝑝‘1), 𝑥⟩Cgr⟨(𝑝𝑖), 𝑥⟩ ∧ ⟨(𝑝‘1), 𝑦⟩Cgr⟨(𝑝𝑖), 𝑦⟩ ∧ ⟨(𝑝‘1), 𝑧⟩Cgr⟨(𝑝𝑖), 𝑧⟩) ∧ ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩)))
 
Theoremaxeuclidlem 27233* Lemma for axeuclid 27234. Handle the algebraic aspects of the theorem. (Contributed by Scott Fenton, 9-Sep-2013.)
((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴𝑖)) + (𝑃 · (𝑇𝑖))) = (((1 − 𝑄) · (𝐵𝑖)) + (𝑄 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵𝑖) = (((1 − 𝑟) · (𝐴𝑖)) + (𝑟 · (𝑥𝑖))) ∧ (𝐶𝑖) = (((1 − 𝑠) · (𝐴𝑖)) + (𝑠 · (𝑦𝑖))) ∧ (𝑇𝑖) = (((1 − 𝑢) · (𝑥𝑖)) + (𝑢 · (𝑦𝑖)))))
 
Theoremaxeuclid 27234* Euclid's axiom. Take an angle 𝐵𝐴𝐶 and a point 𝐷 between 𝐵 and 𝐶. Now, if you extend the segment 𝐴𝐷 to a point 𝑇, then 𝑇 lies between two points 𝑥 and 𝑦 that lie on the angle. Axiom A10 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 9-Sep-2013.)
((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝑇⟩ ∧ 𝐷 Btwn ⟨𝐵, 𝐶⟩ ∧ 𝐴𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑦⟩ ∧ 𝑇 Btwn ⟨𝑥, 𝑦⟩)))
 
Theoremaxcontlem1 27235* Lemma for axcont 27247. Change bound variables for later use. (Contributed by Scott Fenton, 20-Jun-2013.)
𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}       𝐹 = {⟨𝑦, 𝑠⟩ ∣ (𝑦𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))}
 
Theoremaxcontlem2 27236* Lemma for axcont 27247. The idea here is to set up a mapping 𝐹 that will allow us to transfer dedekind 11068 to two sets of points. Here, we set up 𝐹 and show its domain and range. (Contributed by Scott Fenton, 17-Jun-2013.)
𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}    &   𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}       (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
 
Theoremaxcontlem3 27237* Lemma for axcont 27247. Given the separation assumption, 𝐵 is a subset of 𝐷. (Contributed by Scott Fenton, 18-Jun-2013.)
𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}       (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝐵𝐷)
 
Theoremaxcontlem4 27238* Lemma for axcont 27247. Given the separation assumption, 𝐴 is a subset of 𝐷. (Contributed by Scott Fenton, 18-Jun-2013.)
𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}       (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → 𝐴𝐷)
 
Theoremaxcontlem5 27239* Lemma for axcont 27247. Compute the value of 𝐹. (Contributed by Scott Fenton, 18-Jun-2013.)
𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}    &   𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}       ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
 
Theoremaxcontlem6 27240* Lemma for axcont 27247. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.)
𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}    &   𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}       ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
 
Theoremaxcontlem7 27241* Lemma for axcont 27247. Given two points in 𝐷, one preceeds the other iff its scaling constant is less than the other point's. (Contributed by Scott Fenton, 18-Jun-2013.)
𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}    &   𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}       ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑃𝐷𝑄𝐷)) → (𝑃 Btwn ⟨𝑍, 𝑄⟩ ↔ (𝐹𝑃) ≤ (𝐹𝑄)))
 
Theoremaxcontlem8 27242* Lemma for axcont 27247. A point in 𝐷 is between two others if its function value falls in the middle. (Contributed by Scott Fenton, 18-Jun-2013.)
𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}    &   𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}       ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ (𝑃𝐷𝑄𝐷𝑅𝐷)) → (((𝐹𝑃) ≤ (𝐹𝑄) ∧ (𝐹𝑄) ≤ (𝐹𝑅)) → 𝑄 Btwn ⟨𝑃, 𝑅⟩))
 
Theoremaxcontlem9 27243* Lemma for axcont 27247. Given the separation assumption, all values of 𝐹 over 𝐴 are less than or equal to all values of 𝐹 over 𝐵. (Contributed by Scott Fenton, 20-Jun-2013.)
𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}    &   𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}       (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∀𝑛 ∈ (𝐹𝐴)∀𝑚 ∈ (𝐹𝐵)𝑛𝑚)
 
Theoremaxcontlem10 27244* Lemma for axcont 27247. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.)
𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}    &   𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}       (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
 
Theoremaxcontlem11 27245* Lemma for axcont 27247. Eliminate the hypotheses from axcontlem10 27244. (Contributed by Scott Fenton, 20-Jun-2013.)
(((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝐵 ≠ ∅) ∧ 𝑍𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
 
Theoremaxcontlem12 27246* Lemma for axcont 27247. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
(((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
 
Theoremaxcont 27247* The axiom of continuity. Take two sets of points 𝐴 and 𝐵. If all the points in 𝐴 come before the points of 𝐵 on a line, then there is a point separating the two. Axiom A11 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 20-Jun-2013.)
((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑎, 𝑦⟩)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
 
15.4.2.3  EE^n fulfills Tarski's Axioms
 
Syntaxceeng 27248 Extends class notation with the Tarski geometry structure for 𝔼↑𝑁.
class EEG
 
Definitiondf-eeng 27249* Define the geometry structure for 𝔼↑𝑁. (Contributed by Thierry Arnoux, 24-Aug-2017.)
EEG = (𝑛 ∈ ℕ ↦ ({⟨(Base‘ndx), (𝔼‘𝑛)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
 
Theoremeengv 27250* The value of the Euclidean geometry for dimension 𝑁. (Contributed by Thierry Arnoux, 15-Mar-2019.)
(𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
 
Theoremeengstr 27251 The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.)
(𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
 
Theoremeengbas 27252 The Base of the Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.)
(𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
 
Theoremebtwntg 27253 The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn. (Contributed by Thierry Arnoux, 15-Mar-2019.)
(𝜑𝑁 ∈ ℕ)    &   𝑃 = (Base‘(EEG‘𝑁))    &   𝐼 = (Itv‘(EEG‘𝑁))    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)       (𝜑 → (𝑍 Btwn ⟨𝑋, 𝑌⟩ ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
 
Theoremecgrtg 27254 The congruence relation used in the Tarski structure for the Euclidean geometry is the same as Cgr. (Contributed by Thierry Arnoux, 15-Mar-2019.)
(𝜑𝑁 ∈ ℕ)    &   𝑃 = (Base‘(EEG‘𝑁))    &    = (dist‘(EEG‘𝑁))    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)       (𝜑 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ (𝐴 𝐵) = (𝐶 𝐷)))
 
Theoremelntg 27255* The line definition in the Tarski structure for the Euclidean geometry. (Contributed by Thierry Arnoux, 7-Apr-2019.)
𝑃 = (Base‘(EEG‘𝑁))    &   𝐼 = (Itv‘(EEG‘𝑁))       (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
 
Theoremelntg2 27256* The line definition in the Tarski structure for the Euclidean geometry. In contrast to elntg 27255, the betweenness can be strengthened by excluding 1 resp. 0 from the related intervals (because of 𝑥𝑦). (Contributed by AV, 14-Feb-2023.)
𝑃 = (Base‘(EEG‘𝑁))    &   𝐼 = (1...𝑁)       (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))}))
 
Theoremeengtrkg 27257 The geometry structure for 𝔼↑𝑁 is a Tarski geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.)
(𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG)
 
Theoremeengtrkge 27258 The geometry structure for 𝔼↑𝑁 is a Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.)
(𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGE)
 
PART 16  GRAPH THEORY



To give an overview of the definitions and terms used in the context of graph theory, a glossary is provided in the following, mainly according to definitions in [Bollobas] p. 1-8 or in [Diestel] p. 2-28. Although this glossary concentrates on undirected graphs, many of the concepts are also useful for directed graphs.

Basic concepts:

TermReferenceDefinitionRemarks
Vertex df-vtx 27271 A vertex of a graph 𝐺 is an element of the set of vertices (Vtx‘𝐺) of the graph 𝐺. The set of vertices (Vtx‘𝐺) (corresponding to V(G) in [Bollobas] p. 1) is usually the first component 𝑉 of the graph 𝐺 if it is represented by an ordered pair 𝑉, 𝐸 (see opvtxfv 27277), or the base set (Base‘𝐺) of the graph 𝐺 if it is represented as extensible structure (see basvtxval 27289).
Edge df-edg 27321 An edge of a graph 𝐺 is a nonempty set of vertices of the graph. It is said that these vertices are "joined" or "connected" by the edge, see [Bollobas] p. 1. The set of edges (Edg‘𝐺) (corresponding to E(G) in [Bollobas] p. 1) is usually the range ran 𝐸 of the second component 𝐸 of the graph 𝐺 if it is represented by an ordered pair 𝑉, 𝐸, or the range of the component (.ef‘𝐺) of the graph 𝐺 if it is represented as extensible structure.
Loop A loop in a graph 𝐺 is an edge which connects a single vertex with itself (or, according to [Bollobas] p. 7 "joins a vertex to itself"). In other words, a loop is an edge 𝑒 ∈ (Edg‘𝐺) which is a singleton consisting of a vertex 𝑣 ∈ (Vtx‘𝐺): 𝑒 = {𝑣}
Edge function resp. indexed edges df-iedg 27272 An edge function (or indexed set of edges) of a graph 𝐺 is a mapping of an arbitrary index set to nonempty sets of vertices of the graph. The edge function (iEdg‘𝐺) is usually the second component 𝐸 of the graph 𝐺 if it is represented by an ordered pair 𝑉, 𝐸 > (see opiedgfv 27280), or the component (.ef‘𝐺) of the graph 𝐺 if it is represented as extensible structure (see edgfiedgval 27290).
The set of edges of a graph 𝐺 is the range of its edge function: (Edg‘𝐺) = ran (iEdg‘𝐺), see edgval 27322.
Whereas the concept of plain edges is sufficient for simple hypergraphs, indexed edges are required for e.g., multigraphs in which the same vertices may be connected by more than one edge.

Basic kinds of graphs:

TermReferenceDefinitionRemarks
Undirected hypergraph df-uhgr 27331 a class 𝐺 with an edge function 𝐸 = (iEdg‘𝐺) which is a function into the power set of the vertices 𝑉 = (Vtx‘𝐺): ran 𝐸 ⊆ (𝒫 𝑉 ∖ {∅}). In this most general definition of a graph, an "edge" may connect three or more vertices with each other, see [Berge] p. 1.
In Wikipedia "Hypergraph", see https://en.wikipedia.org/wiki/Hypergraph 27331 (18-Jan-2020) such a hypergraph is called a "non-simple hypergraph", "multiple hypergraph" or "multi-hypergraphs". According to Wikipedia "Incidence structure", see https://en.wikipedia.org/wiki/Incidence_structure 27331 (18-Jan-2020) "Each hypergraph [...] can be regarded as an incidence structure in which the [vertices] play the role of "points", the corresponding family of [edges] plays the role of "lines" and the incidence relation is set membership".

Notice that by using (Edg‘𝐺) the (possibly more than one) edges connecting the same vertices could not be distinguished anymore. Therefore, this representation will only be used for undirected simple hypergraphs.
Undirected simple hypergraph df-ushgr 27332 a class 𝐺 with an edge function 𝐸 = (iEdg‘𝐺) which is a one-to-one function into the power set of the vertices 𝑉 = (Vtx‘𝐺): ran 𝐸 ⊆ (𝒫 𝑉 ∖ {∅}). See also Wikipedia "Hypergraph", https://en.wikipedia.org/wiki/Hypergraph 27332 (18-Jan-2020). This is how a "hypergraph" is defined in Section I.1 in [Bollobas] p. 7 or the definition in section 1.10 in [Diestel] p. 27. A simple hypergraph has at most one edge between the same vertices, hence a pseudograph needs not be a simple hypergraph.
According to [Berge] p. 1, "A simple hypergraph (or "Sperner family") is a hypergraph H = { E_1, E_2, ..., E_m } such that E_i C_ E_j => i = j". By this definition, a simple hypergraph cannot contain the edges E_1 = { v_1 , v_2 } and E_2 = { v_1, v_2, v_3 }, because E_1 C_ E_2, but 1 =/= 2.
Undirected loop-free hypergraph--- an undirected hypergraph without a loop, i.e. all edges connect at least two vertices.
Undirected pseudograph df-upgr 27355 a class 𝐺 with an edge function 𝐸 = (iEdg‘𝐺) which is a function into the set of (proper or not proper) unordered pairs of vertices 𝑉 = (Vtx‘𝐺). A proper unordered pair contains two different elements, a not proper unordered pair contains two times the same element, so it is a singleton (see preqsn 4789). This means a pseudograph may contain loops.
This definition corresponds to the definition of a "multigraph" in Section I.1 in [Bollobas] p. 7, "In a multigraph both multiple edges [joining two vertices] and multiple loops [joining a vertex to itself] are allowed", or in [Diestel] p. 28, "A multigraph is a pair (V,E) of disjoint sets (of vertices and edges) together with a map E -> V u. [V]^2 assigning to every edge either one or two vertices, its end(s).".
Undirected multigraph df-umgr 27356 a class 𝐺 with an edge function 𝐸 = (iEdg‘𝐺) which is a function into the set of (proper!) unordered pairs of vertices 𝑉 = (Vtx‘𝐺). This definition is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges."
A proper unordered pair contains two different elements, therefore a multigraph does not have loops.
Undirected simple pseudograph df-uspgr 27423 a class 𝐺 with an edge function 𝐸 = (iEdg‘𝐺) which is a one-to-one function into the set of (proper or not proper) unordered pairs of vertices 𝑉 = (Vtx‘𝐺). This means that there is at most one edge between two vertices, and at most one loop from a vertex to itself.
Undirected simple graph df-usgr 27424 a class 𝐺 with an edge function 𝐸 = (iEdg‘𝐺) which is a one-to-one function into the set of (proper!) unordered pairs of vertices 𝑉 = (Vtx‘𝐺). An ordered pair 𝑉, 𝐸 of two distinct sets 𝑉 (the vertices) and 𝐸 (the edges), the "usual" definition of a "graph", see, for example, the definition in section I.1 of [Bollobas] p. 1 or in section 1.1 of [Diestel] p. 2, can be identified with an undirected simple graph without loops by "indexing" the edges with themselves, see usgrausgrb 27442.
Finite graph df-fusgr 27587 a graph 𝐺 with a finite set of vertices 𝑉 = (Vtx‘𝐺). See definitions in [Bollobas] p. 1 or [Diestel] p. 2.
In simple graphs, the set of (indexed) edges (iEdg‘𝐺) (and therefore also the set of edges (Edg‘𝐺)) is finite if 𝑉 = (Vtx‘𝐺) is finite, see fusgrfis 27600. The number of edges is limited by (𝑛C2) (or "𝑛 choose 2") with 𝑛 = (♯‘𝑉), see fusgrmaxsize 27734. Analogously, the number of edges 𝐸 = (iEdg‘𝐺) of an undirected simple pseudograph (which may have loops) is limited by ((𝑛 + 1)C2). In pseudographs or multigraphs, however, 𝐸 can be infinite although 𝑉 is finite.
Graph of finite size--- a graph 𝐺 with a finite set 𝐸 = (iEdg‘𝐺), i.e. with a finite number of edges. A graph can be of finite size although its set of vertices is infinite (most of the vertices would not be connected by an edge).

Terms and properties of graphs:

TermReferenceDefinitionRemarks
Edge joining resp. connecting (two) vertices --- An edge 𝑒 ∈ (Edg‘𝐺) joins resp. connects the vertices v_1, v_2, ... v_n (𝑛 ∈ ℕ) if 𝑒 = { v_1, v_2, ... v_n }. If 𝑛 = 1, 𝑒 = { v_1 } is a loop, if 𝑛 = 2, 𝑒 = { v_1 , v_2 } is an edge as it is usually defined, see definition in Section I.1 in [Bollobas] p. 1.
(Two) Endvertices of an edge see definition in Section I.1 in [Bollobas] p. 1. If an edge 𝑒 ∈ (Edg‘𝐺) joins the vertices v_1, v_2, ... v_n (𝑛 ∈ ℕ), then the vertices v_1, v_2, ... v_n are called the endvertices of the edge 𝑒.
(Two) Adjacent vertices see definition in Section I.1 in [Bollobas] p. 1/2. The vertices v_1, v_2, ... v_n (𝑛 ∈ ℕ) are adjacent if there is an edge e = { v_1, v_2, ... v_n } joining these vertices. In this case, the vertices are incident with the edge e (see definition in Section I.1 in [Bollobas] p. 2) or connected by the edge e.
Edge ending at a vertex An edge 𝑒 ∈ (Edg‘𝐺) is ending at a vertex 𝑣 if the vertex is an endvertex of the edge: 𝑣𝑒. In other words, the vertex 𝑣 is incident with the edge 𝑒.
(Two) Adjacent edges The edges e_0, e_1, ... e_n (𝑛 ∈ ℕ) are adjacent if they have exactly one common endvertex. Generalization of definition in Section I.1 in [Bollobas] p. 2.
Order of a graph see definition in Section I.1 in [Bollobas] p. 3 The order of a graph 𝐺 is the number of vertices in the graph: (♯‘(Vtx‘𝐺)).
Size of a graph see definition in Section I.1 in [Bollobas] p. 3 The size of a graph 𝐺 is the number of edges in the graph: (♯‘(iEdg‘𝐺)). Or, for a simple graph 𝐺: (♯‘(Edg‘𝐺))).
Neighborhood of a vertex df-nbgr 27603 resp. definition in Section I.1 in [Bollobas] p. 3 A vertex connected with a vertex 𝑣 by an edge is called a neighbor of the vertex 𝑣. The set of neighbors of a vertex 𝑣 is called the neighborhood (or open neighborhood) of the vertex 𝑣. The closed neighborhood is the union of the (open) neighborhood of the vertex 𝑣 with {𝑣}.
Degree of a vertex df-vtxdg 27736 The degree of a vertex is the number of the edges ending at this vertex. In a simple graph, the degree of a vertex is the number of neighbors of this vertex, see definition in Section I.1 in [Bollobas] p. 3
Isolated vertex usgrvd0nedg 27803 A vertex is called isolated if it is not an endvertex of any edge, thus having degree 0.
Universal vertex df-uvtx 27656 A vertex is called universal if it is connected with every other vertex of the graph by an edge, thus having degree ((♯‘(Vtx‘𝐺)) − ).

Special kinds of graphs:

TermReferenceDefinitionRemarks
Complete graph df-cplgr 27681 A graph is called complete if each pair of vertices is connected by an edge. The size of a complete undirected simple graph of order 𝑛 is (𝑛C2) (or "𝑛 choose 2"), see cusgrsize 27724.
Empty graph uhgr0e 27344 A graph is called empty if it has no edges.
Null graph uhgr0 27346 and uhgr0vb 27345 A graph is called a null graph if it has no vertices (and therefore also no edges).
Trivial graph usgr1v 27526 A graph is called the "trivial graph" if it has only one vertex and no edges.
Connected graph df-conngr 28452 resp. definition in Section I.1 in [Bollobas] p. 6 A graph is called connected if for each pair of vertices there is a path between these vertices.


For the terms "Path", "Walk", "Trail", "Circuit", "Cycle" see the remarks below and the definitions in Section I.1 in [Bollobas] p. 4-5.
 
16.1  Vertices and edges

In the following, the vertices and (indexed) edges for an arbitrary class 𝐺 (called "graph" in the following) are defined and examined. The main result of this section is to show that the set of vertices (Vtx‘𝐺) of a graph 𝐺 is the first component 𝑉 of the graph 𝐺 if it is represented by an ordered pair 𝑉, 𝐸 (see opvtxfv 27277), or the base set (Base‘𝐺) of the graph 𝐺 if it is represented as extensible structure (see basvtxval 27289), and that the set of indexed edges resp. the edge function (iEdg‘𝐺) is the second component 𝐸 of the graph 𝐺 if it is represented by an ordered pair 𝑉, 𝐸 (see opiedgfv 27280), or the component (.ef‘𝐺) of the graph 𝐺 if it is represented as extensible structure (see edgfiedgval 27290). Finally, it is shown that the set of edges of a graph 𝐺 is the range of its edge function: (Edg‘𝐺) = ran (iEdg‘𝐺), see edgval 27322.

Usually, a graph 𝐺 is a set. If 𝐺 is a proper class, however, it represents the null graph (without vertices and edges), because (Vtx‘𝐺) = ∅ and (iEdg‘𝐺) = ∅ holds, see vtxvalprc 27318 and iedgvalprc 27319.

Up to the end of this section, the edges need not be related to the vertices. Once undirected hypergraphs are defined (see df-uhgr 27331), the edges become nonempty sets of vertices, and by this obtain their meaning as "connectors" of vertices.

 
16.1.1  The edge function extractor for extensible structures
 
Syntaxcedgf 27259 Extend class notation with an edge function.
class .ef
 
Definitiondf-edgf 27260 Define the edge function (indexed edges) of a graph. (Contributed by AV, 18-Jan-2020.) Use its index-independent form edgfid 27261 instead. (New usage is discouraged.)
.ef = Slot 18
 
Theoremedgfid 27261 Utility theorem: index-independent form of df-edgf 27260. (Contributed by AV, 16-Nov-2021.)
.ef = Slot (.ef‘ndx)
 
Theoremedgfndx 27262 Index value of the df-edgf 27260 slot. (Contributed by AV, 13-Oct-2024.) (New usage is discouraged.)
(.ef‘ndx) = 18
 
Theoremedgfndxnn 27263 The index value of the edge function extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.)
(.ef‘ndx) ∈ ℕ
 
Theoremedgfndxid 27264 The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 28-Oct-2024.)
(𝐺𝑉 → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
 
TheoremedgfndxidOLD 27265 Obsolete version of edgfndxid 27264 as of 28-Oct-2024. The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐺𝑉 → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
 
Theorembaseltedgf 27266 The index value of the Base slot is less than the index value of the .ef slot. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 30-Oct-2024.)
(Base‘ndx) < (.ef‘ndx)
 
TheorembaseltedgfOLD 27267 Obsolete proof of baseltedgf 27266 as of 30-Oct-2024. The index value of the Base slot is less than the index value of the .ef slot. (Contributed by AV, 21-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(Base‘ndx) < (.ef‘ndx)
 
Theorembasendxnedgfndx 27268 The slots Base and .ef are different. (Contributed by AV, 21-Sep-2020.)
(Base‘ndx) ≠ (.ef‘ndx)
 
16.1.2  Vertices and indexed edges

The key concepts in graph theory are vertices and edges. In general, a graph "consists" (at least) of two sets: the set of vertices and the set of edges. The edges "connect" vertices. The meaning of "connect" is different for different kinds of graphs (directed/undirected graphs, hyper-/pseudo-/ multi-/simple graphs, etc.). The simplest way to represent a graph (of any kind) is to define a graph as "an ordered pair of disjoint sets (V, E)" (see section I.1 in [Bollobas] p. 1), or in the notation of Metamath: 𝑉, 𝐸.

Another way is to regard a graph as a mathematical structure, which consistes at least of a set (of vertices) and a relation between the vertices (edge function), but which can be enhanced by additional features (see Wikipedia "Mathematical structure", 24-Sep-2020, https://en.wikipedia.org/wiki/Mathematical_structure): "In mathematics, a structure is a set endowed with some additional features on the set (e.g., operation, relation, metric, topology). Often, the additional features are attached or related to the set, so as to provide it with some additional meaning or significance.". Such structures are provided as "extensible structures" in Metamath, see df-struct 16776.

To allow for expressing and proving most of the theorems for graphs independently from their representation, the functions Vtx and iEdg are defined (see df-vtx 27271 and df-iedg 27272), which provide the vertices resp. (indexed) edges of an arbitrary class 𝐺 which represents a graph: (Vtx‘𝐺) resp. (iEdg‘𝐺). In literature, these functions are often denoted also by "V" and "E", see section I.1 in [Bollobas] p. 1 ("If G is a graph, then V = V(G) is the vertex set of G, and E = E(G) is the edge set.") or section 1.1 in [Diestel] p. 2 ("The vertex set of graph G is referred to as V(G), its edge set as E(G).").

Instead of providing edges themselves, iEdg is intended to provide a function as mapping of "indices" (the domain of the function) to the edges (therefore called "set of indexed edges"), which allows for hyper-/pseudo-/multigraphs with more than one edge between two (or more) vertices. For example, e1 = e(1) = { a, b } and e2 = e(2) = { a, b } are two different edges connecting the same two vertices a and b (in a pseudograph). In section 1.10 of [Diestel] p. 28, the edge function is defined differently: as "map E -> V u. [V]^2 assigning to every edge either one or two vertices, its end.". Here, the domain is the set of abstract edges: for two different edges e1 and e2 connecting the same two vertices a and b, we would have e(e1) = e(e2) = { a, b }. Since the set of abstract edges can be chosen as index set, these definitions are equivalent.

The result of these functions are as expected: for a graph represented as ordered pair (𝐺 ∈ (V × V)), the set of vertices is (Vtx‘𝐺) = (1st𝐺) (see opvtxval 27276) and the set of (indexed) edges is (iEdg‘𝐺) = (2nd𝐺) (see opiedgval 27279), or if 𝐺 is given as ordered pair 𝐺 = ⟨𝑉, 𝐸, the set of vertices is (Vtx‘𝐺) = 𝑉 (see opvtxfv 27277) and the set of (indexed) edges is (iEdg‘𝐺) = 𝐸 (see opiedgfv 27280).

And for a graph represented as extensible structure (𝐺 Struct ⟨(Base‘ndx), (.ef‘ndx)⟩), the set of vertices is (Vtx‘𝐺) = (Base‘𝐺) (see funvtxval 27291) and the set of (indexed) edges is (iEdg‘𝐺) = (.ef‘𝐺) (see funiedgval 27292), or if 𝐺 is given in its simplest form as extensible structure with two slots (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}), the set of vertices is (Vtx‘𝐺) = 𝑉 (see struct2grvtx 27300) and the set of (indexed) edges is (iEdg‘𝐺) = 𝐸 (see struct2griedg 27301).

These two representations are convertible, see graop 27302 and grastruct 27303: If 𝐺 is a graph (for example 𝐺 = ⟨𝑉, 𝐸), then 𝐻 = {⟨(Base‘ndx), (Vtx‘𝐺)⟩, ⟨(.ef‘ndx), (iEdg‘𝐺)⟩} represents essentially the same graph, and if 𝐺 is a graph (for example 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}), then 𝐻 = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ represents essentially the same graph. In both cases, (Vtx‘𝐺) = (Vtx‘𝐻) and (iEdg‘𝐺) = (iEdg‘𝐻) hold. Theorems gropd 27304 and gropeld 27306 show that if any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. Analogously, theorems grstructd 27305 and grstructeld 27307 show that if any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property, then any extensible structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is also such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property.

Besides the usual way to represent graphs without edges (consisting of unconnected vertices only), which would be 𝐺 = ⟨𝑉, ∅⟩ or 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), ∅⟩}, a structure without a slot for edges can be used: 𝐺 = {⟨(Base‘ndx), 𝑉⟩}, see snstrvtxval 27310 and snstriedgval 27311. Analogously, the empty set can be used to represent the null graph, see vtxval0 27312 and iedgval0 27313, which can also be represented by 𝐺 = ⟨∅, ∅⟩ or 𝐺 = {⟨(Base‘ndx), ∅⟩, ⟨(.ef‘ndx), ∅⟩}. Even proper classes can be used to represent the null graph, see vtxvalprc 27318 and iedgvalprc 27319.

Other classes should not be used to represent graphs, because there could be a degenerate behavior of the vertex set and (indexed) edge functions, see vtxvalsnop 27314 resp. iedgvalsnop 27315, and vtxval3sn 27316 resp. iedgval3sn 27317. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction of ordered pairs, see also the comment for df-op 4565.

 
16.1.2.1  Definitions and basic properties
 
Syntaxcvtx 27269 Extend class notation with the vertices of "graphs".
class Vtx
 
Syntaxciedg 27270 Extend class notation with the indexed edges of "graphs".
class iEdg
 
Definitiondf-vtx 27271 Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
 
Definitiondf-iedg 27272 Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.)
iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
 
Theoremvtxval 27273 The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
(Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺))
 
Theoremiedgval 27274 The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.)
(iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
 
Theorem1vgrex 27275 A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.)
𝑉 = (Vtx‘𝐺)       (𝑁𝑉𝐺 ∈ V)
 
16.1.2.2  The vertices and edges of a graph represented as ordered pair
 
Theoremopvtxval 27276 The set of vertices of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
(𝐺 ∈ (V × V) → (Vtx‘𝐺) = (1st𝐺))
 
Theoremopvtxfv 27277 The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
 
Theoremopvtxov 27278 The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020.)
((𝑉𝑋𝐸𝑌) → (𝑉Vtx𝐸) = 𝑉)
 
Theoremopiedgval 27279 The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 21-Sep-2020.)
(𝐺 ∈ (V × V) → (iEdg‘𝐺) = (2nd𝐺))
 
Theoremopiedgfv 27280 The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.)
((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
 
Theoremopiedgov 27281 The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020.)
((𝑉𝑋𝐸𝑌) → (𝑉iEdg𝐸) = 𝐸)
 
Theoremopvtxfvi 27282 The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
𝑉 ∈ V    &   𝐸 ∈ V       (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉
 
Theoremopiedgfvi 27283 The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
𝑉 ∈ V    &   𝐸 ∈ V       (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸
 
16.1.2.3  The vertices and edges of a graph represented as extensible structure
 
Theoremfunvtxdmge2val 27284 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (Vtx‘𝐺) = (Base‘𝐺))
 
Theoremfuniedgdmge2val 27285 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺))
 
Theoremfunvtxdm2val 27286 The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
𝐴 ∈ V    &   𝐵 ∈ V       ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺))
 
Theoremfuniedgdm2val 27287 The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
𝐴 ∈ V    &   𝐵 ∈ V       ((Fun (𝐺 ∖ {∅}) ∧ 𝐴𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺))
 
Theoremfunvtxval0 27288 The set of vertices of an extensible structure with a base set and (at least) another slot. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
𝑆 ∈ V       ((Fun (𝐺 ∖ {∅}) ∧ 𝑆 ≠ (Base‘ndx) ∧ {(Base‘ndx), 𝑆} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺))
 
Theorembasvtxval 27289 The set of vertices of a graph represented as an extensible structure with the set of vertices as base set. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑 → 2 ≤ (♯‘dom 𝐺))    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝐺)       (𝜑 → (Vtx‘𝐺) = 𝑉)
 
Theoremedgfiedgval 27290 The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑 → 2 ≤ (♯‘dom 𝐺))    &   (𝜑𝐸𝑌)    &   (𝜑 → ⟨(.ef‘ndx), 𝐸⟩ ∈ 𝐺)       (𝜑 → (iEdg‘𝐺) = 𝐸)
 
Theoremfunvtxval 27291 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
((Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺))
 
Theoremfuniedgval 27292 The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.)
((Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺))
 
Theoremstructvtxvallem 27293 Lemma for structvtxval 27294 and structiedg0val 27295. (Contributed by AV, 23-Sep-2020.) (Revised by AV, 12-Nov-2021.)
𝑆 ∈ ℕ    &   (Base‘ndx) < 𝑆    &   𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}       ((𝑉𝑋𝐸𝑌) → 2 ≤ (♯‘dom 𝐺))
 
Theoremstructvtxval 27294 The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
𝑆 ∈ ℕ    &   (Base‘ndx) < 𝑆    &   𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}       ((𝑉𝑋𝐸𝑌) → (Vtx‘𝐺) = 𝑉)
 
Theoremstructiedg0val 27295 The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
𝑆 ∈ ℕ    &   (Base‘ndx) < 𝑆    &   𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}       ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)
 
Theoremstructgrssvtxlem 27296 Lemma for structgrssvtx 27297 and structgrssiedg 27298. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑𝐸𝑍)    &   (𝜑 → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ⊆ 𝐺)       (𝜑 → 2 ≤ (♯‘dom 𝐺))
 
Theoremstructgrssvtx 27297 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑𝐸𝑍)    &   (𝜑 → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ⊆ 𝐺)       (𝜑 → (Vtx‘𝐺) = 𝑉)
 
Theoremstructgrssiedg 27298 The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.)
(𝜑𝐺 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑𝐸𝑍)    &   (𝜑 → {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ⊆ 𝐺)       (𝜑 → (iEdg‘𝐺) = 𝐸)
 
Theoremstruct2grstr 27299 A graph represented as an extensible structure with vertices as base set and indexed edges is actually an extensible structure. (Contributed by AV, 23-Nov-2020.)
𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}       𝐺 Struct ⟨(Base‘ndx), (.ef‘ndx)⟩
 
Theoremstruct2grvtx 27300 The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 23-Sep-2020.)
𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}       ((𝑉𝑋𝐸𝑌) → (Vtx‘𝐺) = 𝑉)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >