MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem11 Structured version   Visualization version   GIF version

Theorem precsexlem11 28160
Description: Lemma for surreal reciprocal. Show that the cut of the left and right sets is a multiplicative inverse for 𝐴. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
precsexlem.7 𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω))
Assertion
Ref Expression
precsexlem11 (𝜑 → (𝐴 ·s 𝑌) = 1s )
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑟   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑥𝑂)   𝑌(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)

Proof of Theorem precsexlem11
Dummy variables 𝑖 𝑗 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27822 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
2 precsexlem.4 . . . . . . 7 (𝜑𝐴 No )
3 precsexlem.5 . . . . . . 7 (𝜑 → 0s <s 𝐴)
42, 30elleft 27861 . . . . . 6 (𝜑 → 0s ∈ ( L ‘𝐴))
54snssd 4769 . . . . 5 (𝜑 → { 0s } ⊆ ( L ‘𝐴))
6 ssrab2 4039 . . . . . 6 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)
76a1i 11 . . . . 5 (𝜑 → {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴))
85, 7unssd 4151 . . . 4 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴))
9 sssslt1 27742 . . . 4 ((( L ‘𝐴) <<s ( R ‘𝐴) ∧ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴)) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴))
101, 8, 9sylancr 587 . . 3 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴))
11 precsexlem.1 . . . 4 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
12 precsexlem.2 . . . 4 𝐿 = (1st𝐹)
13 precsexlem.3 . . . 4 𝑅 = (2nd𝐹)
14 precsexlem.6 . . . 4 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
1511, 12, 13, 2, 3, 14precsexlem10 28159 . . 3 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
162, 3cutpos 27882 . . 3 (𝜑𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |s ( R ‘𝐴)))
17 precsexlem.7 . . . 4 𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω))
1817a1i 11 . . 3 (𝜑𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω)))
1910, 15, 16, 18mulsunif 28094 . 2 (𝜑 → (𝐴 ·s 𝑌) = (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})))
20 0sno 27776 . . . . . . . . 9 0s No
2120elexi 3467 . . . . . . . 8 0s ∈ V
2221snid 4622 . . . . . . 7 0s ∈ { 0s }
23 elun1 4141 . . . . . . 7 ( 0s ∈ { 0s } → 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
2422, 23ax-mp 5 . . . . . 6 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
25 peano1 7845 . . . . . . . . 9 ∅ ∈ ω
2611, 12, 13precsexlem1 28150 . . . . . . . . . 10 (𝐿‘∅) = { 0s }
2722, 26eleqtrri 2827 . . . . . . . . 9 0s ∈ (𝐿‘∅)
28 fveq2 6840 . . . . . . . . . . 11 (𝑏 = ∅ → (𝐿𝑏) = (𝐿‘∅))
2928eleq2d 2814 . . . . . . . . . 10 (𝑏 = ∅ → ( 0s ∈ (𝐿𝑏) ↔ 0s ∈ (𝐿‘∅)))
3029rspcev 3585 . . . . . . . . 9 ((∅ ∈ ω ∧ 0s ∈ (𝐿‘∅)) → ∃𝑏 ∈ ω 0s ∈ (𝐿𝑏))
3125, 27, 30mp2an 692 . . . . . . . 8 𝑏 ∈ ω 0s ∈ (𝐿𝑏)
32 eliun 4955 . . . . . . . 8 ( 0s 𝑏 ∈ ω (𝐿𝑏) ↔ ∃𝑏 ∈ ω 0s ∈ (𝐿𝑏))
3331, 32mpbir 231 . . . . . . 7 0s 𝑏 ∈ ω (𝐿𝑏)
34 fo1st 7967 . . . . . . . . . . 11 1st :V–onto→V
35 fofun 6755 . . . . . . . . . . 11 (1st :V–onto→V → Fun 1st )
3634, 35ax-mp 5 . . . . . . . . . 10 Fun 1st
37 rdgfun 8361 . . . . . . . . . . 11 Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
3811funeqi 6521 . . . . . . . . . . 11 (Fun 𝐹 ↔ Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
3937, 38mpbir 231 . . . . . . . . . 10 Fun 𝐹
40 funco 6540 . . . . . . . . . 10 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
4136, 39, 40mp2an 692 . . . . . . . . 9 Fun (1st𝐹)
4212funeqi 6521 . . . . . . . . 9 (Fun 𝐿 ↔ Fun (1st𝐹))
4341, 42mpbir 231 . . . . . . . 8 Fun 𝐿
44 funiunfv 7204 . . . . . . . 8 (Fun 𝐿 𝑏 ∈ ω (𝐿𝑏) = (𝐿 “ ω))
4543, 44ax-mp 5 . . . . . . 7 𝑏 ∈ ω (𝐿𝑏) = (𝐿 “ ω)
4633, 45eleqtri 2826 . . . . . 6 0s (𝐿 “ ω)
47 addsrid 27912 . . . . . . . . . 10 ( 0s No → ( 0s +s 0s ) = 0s )
4820, 47ax-mp 5 . . . . . . . . 9 ( 0s +s 0s ) = 0s
49 muls01 28056 . . . . . . . . . 10 ( 0s No → ( 0s ·s 0s ) = 0s )
5020, 49ax-mp 5 . . . . . . . . 9 ( 0s ·s 0s ) = 0s
5148, 50oveq12i 7381 . . . . . . . 8 (( 0s +s 0s ) -s ( 0s ·s 0s )) = ( 0s -s 0s )
52 subsid 28014 . . . . . . . . 9 ( 0s No → ( 0s -s 0s ) = 0s )
5320, 52ax-mp 5 . . . . . . . 8 ( 0s -s 0s ) = 0s
5451, 53eqtr2i 2753 . . . . . . 7 0s = (( 0s +s 0s ) -s ( 0s ·s 0s ))
5515scutcld 27750 . . . . . . . . . . 11 (𝜑 → ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No )
5617, 55eqeltrid 2832 . . . . . . . . . 10 (𝜑𝑌 No )
57 muls02 28085 . . . . . . . . . 10 (𝑌 No → ( 0s ·s 𝑌) = 0s )
5856, 57syl 17 . . . . . . . . 9 (𝜑 → ( 0s ·s 𝑌) = 0s )
59 muls01 28056 . . . . . . . . . 10 (𝐴 No → (𝐴 ·s 0s ) = 0s )
602, 59syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ·s 0s ) = 0s )
6158, 60oveq12d 7387 . . . . . . . 8 (𝜑 → (( 0s ·s 𝑌) +s (𝐴 ·s 0s )) = ( 0s +s 0s ))
6261oveq1d 7384 . . . . . . 7 (𝜑 → ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )) = (( 0s +s 0s ) -s ( 0s ·s 0s )))
6354, 62eqtr4id 2783 . . . . . 6 (𝜑 → 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )))
64 oveq1 7376 . . . . . . . . . 10 (𝑐 = 0s → (𝑐 ·s 𝑌) = ( 0s ·s 𝑌))
6564oveq1d 7384 . . . . . . . . 9 (𝑐 = 0s → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)))
66 oveq1 7376 . . . . . . . . 9 (𝑐 = 0s → (𝑐 ·s 𝑑) = ( 0s ·s 𝑑))
6765, 66oveq12d 7387 . . . . . . . 8 (𝑐 = 0s → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))
6867eqeq2d 2740 . . . . . . 7 (𝑐 = 0s → ( 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
69 oveq2 7377 . . . . . . . . . 10 (𝑑 = 0s → (𝐴 ·s 𝑑) = (𝐴 ·s 0s ))
7069oveq2d 7385 . . . . . . . . 9 (𝑑 = 0s → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s 𝑌) +s (𝐴 ·s 0s )))
71 oveq2 7377 . . . . . . . . 9 (𝑑 = 0s → ( 0s ·s 𝑑) = ( 0s ·s 0s ))
7270, 71oveq12d 7387 . . . . . . . 8 (𝑑 = 0s → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )))
7372eqeq2d 2740 . . . . . . 7 (𝑑 = 0s → ( 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) ↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s ))))
7468, 73rspc2ev 3598 . . . . . 6 (( 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 0s (𝐿 “ ω) ∧ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s ))) → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
7524, 46, 63, 74mp3an12i 1467 . . . . 5 (𝜑 → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
76 eqeq1 2733 . . . . . . 7 (𝑏 = 0s → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
77762rexbidv 3200 . . . . . 6 (𝑏 = 0s → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
7821, 77elab 3643 . . . . 5 ( 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
7975, 78sylibr 234 . . . 4 (𝜑 → 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})
80 elun1 4141 . . . 4 ( 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
8179, 80syl 17 . . 3 (𝜑 → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
82 eqid 2729 . . . . . . 7 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
8382rnmpo 7502 . . . . . 6 ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
84 ssltex1 27733 . . . . . . . . 9 (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V)
8510, 84syl 17 . . . . . . . 8 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V)
86 ssltex1 27733 . . . . . . . . 9 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝐿 “ ω) ∈ V)
8715, 86syl 17 . . . . . . . 8 (𝜑 (𝐿 “ ω) ∈ V)
88 mpoexga 8035 . . . . . . . 8 ((({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V ∧ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
8985, 87, 88syl2anc 584 . . . . . . 7 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
90 rnexg 7858 . . . . . . 7 ((𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9189, 90syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9283, 91eqeltrrid 2833 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
93 eqid 2729 . . . . . . 7 (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
9493rnmpo 7502 . . . . . 6 ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
95 fvex 6853 . . . . . . . 8 ( R ‘𝐴) ∈ V
96 ssltex2 27734 . . . . . . . . 9 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝑅 “ ω) ∈ V)
9715, 96syl 17 . . . . . . . 8 (𝜑 (𝑅 “ ω) ∈ V)
98 mpoexga 8035 . . . . . . . 8 ((( R ‘𝐴) ∈ V ∧ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9995, 97, 98sylancr 587 . . . . . . 7 (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
100 rnexg 7858 . . . . . . 7 ((𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
10199, 100syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
10294, 101eqeltrrid 2833 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
10392, 102unexd 7710 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V)
104 snex 5386 . . . . 5 { 1s } ∈ V
105104a1i 11 . . . 4 (𝜑 → { 1s } ∈ V)
106 ssltss1 27735 . . . . . . . . . . . . . 14 (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ No )
10710, 106syl 17 . . . . . . . . . . . . 13 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ No )
108107sselda 3943 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})) → 𝑐 No )
109108adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
11056adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
111109, 110mulscld 28079 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
1122adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
113 ssltss1 27735 . . . . . . . . . . . . . 14 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝐿 “ ω) ⊆ No )
11415, 113syl 17 . . . . . . . . . . . . 13 (𝜑 (𝐿 “ ω) ⊆ No )
115114sselda 3943 . . . . . . . . . . . 12 ((𝜑𝑑 (𝐿 “ ω)) → 𝑑 No )
116115adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
117112, 116mulscld 28079 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
118111, 117addscld 27928 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
119109, 116mulscld 28079 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
120118, 119subscld 28008 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
121 eleq1 2816 . . . . . . . 8 (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑏 No ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No ))
122120, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
123122rexlimdvva 3192 . . . . . 6 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
124123abssdv 4028 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
125 rightssno 27832 . . . . . . . . . . . . . 14 ( R ‘𝐴) ⊆ No
126125a1i 11 . . . . . . . . . . . . 13 (𝜑 → ( R ‘𝐴) ⊆ No )
127126sselda 3943 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝑐 No )
128127adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
12956adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
130128, 129mulscld 28079 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
1312adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
132 ssltss2 27736 . . . . . . . . . . . . . 14 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝑅 “ ω) ⊆ No )
13315, 132syl 17 . . . . . . . . . . . . 13 (𝜑 (𝑅 “ ω) ⊆ No )
134133sselda 3943 . . . . . . . . . . . 12 ((𝜑𝑑 (𝑅 “ ω)) → 𝑑 No )
135134adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
136131, 135mulscld 28079 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
137130, 136addscld 27928 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
138128, 135mulscld 28079 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
139137, 138subscld 28008 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
140139, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
141140rexlimdvva 3192 . . . . . 6 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
142141abssdv 4028 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
143124, 142unssd 4151 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No )
144 1sno 27777 . . . . 5 1s No
145 snssi 4768 . . . . 5 ( 1s No → { 1s } ⊆ No )
146144, 145mp1i 13 . . . 4 (𝜑 → { 1s } ⊆ No )
147 elun 4112 . . . . . . . . 9 (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
148 vex 3448 . . . . . . . . . . 11 𝑒 ∈ V
149 eqeq1 2733 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
1501492rexbidv 3200 . . . . . . . . . . 11 (𝑏 = 𝑒 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
151148, 150elab 3643 . . . . . . . . . 10 (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
1521492rexbidv 3200 . . . . . . . . . . 11 (𝑏 = 𝑒 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
153148, 152elab 3643 . . . . . . . . . 10 (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
154151, 153orbi12i 914 . . . . . . . . 9 ((𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
155147, 154bitri 275 . . . . . . . 8 (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
156 elun 4112 . . . . . . . . . . . . . 14 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 ∈ { 0s } ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
157 velsn 4601 . . . . . . . . . . . . . . 15 (𝑐 ∈ { 0s } ↔ 𝑐 = 0s )
158157orbi1i 913 . . . . . . . . . . . . . 14 ((𝑐 ∈ { 0s } ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
159156, 158bitri 275 . . . . . . . . . . . . 13 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
16058adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s ·s 𝑌) = 0s )
161160oveq1d 7384 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
162 muls02 28085 . . . . . . . . . . . . . . . . . . . 20 (𝑑 No → ( 0s ·s 𝑑) = 0s )
163115, 162syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s ·s 𝑑) = 0s )
164161, 163oveq12d 7387 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (( 0s +s (𝐴 ·s 𝑑)) -s 0s ))
1652adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 (𝐿 “ ω)) → 𝐴 No )
166165, 115mulscld 28079 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝐿 “ ω)) → (𝐴 ·s 𝑑) ∈ No )
167 addslid 27916 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ·s 𝑑) ∈ No → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
168166, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
169168oveq1d 7384 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → (( 0s +s (𝐴 ·s 𝑑)) -s 0s ) = ((𝐴 ·s 𝑑) -s 0s ))
170 subsid1 28013 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ·s 𝑑) ∈ No → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
171166, 170syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
172164, 169, 1713eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (𝐴 ·s 𝑑))
173 eliun 4955 . . . . . . . . . . . . . . . . . . . 20 (𝑑 𝑖 ∈ ω (𝐿𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖))
174 funiunfv 7204 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐿 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω))
17543, 174ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω)
176175eleq2i 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑑 𝑖 ∈ ω (𝐿𝑖) ↔ 𝑑 (𝐿 “ ω))
177173, 176bitr3i 277 . . . . . . . . . . . . . . . . . . 19 (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) ↔ 𝑑 (𝐿 “ ω))
17811, 12, 13, 2, 3, 14precsexlem9 28158 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ ω) → (∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)))
179178simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ ω) → ∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s )
180 rsp 3223 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s → (𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
181179, 180syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ ω) → (𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
182181rexlimdva 3134 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
183177, 182biimtrrid 243 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑑 (𝐿 “ ω) → (𝐴 ·s 𝑑) <s 1s ))
184183imp 406 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝐿 “ ω)) → (𝐴 ·s 𝑑) <s 1s )
185172, 184eqbrtrd 5124 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s )
186185ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑑 (𝐿 “ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s ))
18767breq1d 5112 . . . . . . . . . . . . . . . 16 (𝑐 = 0s → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s ))
188187imbi2d 340 . . . . . . . . . . . . . . 15 (𝑐 = 0s → ((𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ) ↔ (𝑑 (𝐿 “ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s )))
189186, 188syl5ibrcom 247 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 = 0s → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
190 scutcut 27748 . . . . . . . . . . . . . . . . . . . . . 22 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))} ∧ {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω)))
19115, 190syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))} ∧ {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω)))
192191simp3d 1144 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
193192adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
194 ovex 7402 . . . . . . . . . . . . . . . . . . . . . 22 ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ V
195194snid 4622 . . . . . . . . . . . . . . . . . . . . 21 ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))}
19617, 195eqeltri 2824 . . . . . . . . . . . . . . . . . . . 20 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))}
197196a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
198 peano2 7846 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
199198ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → suc 𝑖 ∈ ω)
200 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)
201 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥𝐿 = 𝑐 → (𝑥𝐿 -s 𝐴) = (𝑐 -s 𝐴))
202201oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿))
203202oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐 → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)))
204 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐𝑥𝐿 = 𝑐)
205203, 204oveq12d 7387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥𝐿 = 𝑐 → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐))
206205eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝐿 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐)))
207 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦𝐿 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑑))
208207oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦𝐿 = 𝑑 → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
209208oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦𝐿 = 𝑑 → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
210209eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐿 = 𝑑 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
211206, 210rspc2ev 3598 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
212200, 211mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
213212ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
214 ovex 7402 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ V
215 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
2162152rexbidv 3200 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
217214, 216elab 3643 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
218213, 217sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)})
219 elun1 4141 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
220 elun2 4142 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
221218, 219, 2203syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
22211, 12, 13precsexlem5 28154 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ ω → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
223222ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
224221, 223eleqtrrd 2831 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))
225 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = suc 𝑖 → (𝑅𝑗) = (𝑅‘suc 𝑖))
226225eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = suc 𝑖 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)))
227226rspcev 3585 . . . . . . . . . . . . . . . . . . . . . . 23 ((suc 𝑖 ∈ ω ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
228199, 224, 227syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
229228rexlimdvaa 3135 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗)))
230 eliun 4955 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
231 fo2nd 7968 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2nd :V–onto→V
232 fofun 6755 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2nd :V–onto→V → Fun 2nd )
233231, 232ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fun 2nd
234 funco 6540 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
235233, 39, 234mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 Fun (2nd𝐹)
23613funeqi 6521 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Fun 𝑅 ↔ Fun (2nd𝐹))
237235, 236mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . 24 Fun 𝑅
238 funiunfv 7204 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑅 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω))
239237, 238ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω)
240239eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
241230, 240bitr3i 277 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
242229, 177, 2413imtr3g 295 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω)))
243242impr 454 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
244193, 197, 243ssltsepcd 27741 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
24556adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
246144a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 1s No )
247 leftssno 27831 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( L ‘𝐴) ⊆ No
2486, 247sstri 3953 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ No
249248sseli 3939 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 No )
250249adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 No )
2512adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 No )
252250, 251subscld 28008 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 -s 𝐴) ∈ No )
253252adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 -s 𝐴) ∈ No )
254115adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
255253, 254mulscld 28079 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
256246, 255addscld 27928 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
257249ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
258 breq2 5106 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → ( 0s <s 𝑥 ↔ 0s <s 𝑐))
259258elrab 3656 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑐 ∈ ( L ‘𝐴) ∧ 0s <s 𝑐))
260259simprbi 496 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑐)
261260ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 0s <s 𝑐)
262260adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s 𝑐)
263 breq2 5106 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑂 = 𝑐 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑐))
264 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑂 = 𝑐 → (𝑥𝑂 ·s 𝑦) = (𝑐 ·s 𝑦))
265264eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑂 = 𝑐 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑐 ·s 𝑦) = 1s ))
266265rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑂 = 𝑐 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
267263, 266imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑂 = 𝑐 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )))
26814adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
269 ssun1 4137 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
2706, 269sstri 3953 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
271270sseli 3939 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
272271adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
273267, 268, 272rspcdva 3586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
274262, 273mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
275274adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
276245, 256, 257, 261, 275sltmuldiv2wd 28146 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ↔ 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
277244, 276mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
278257, 254mulscld 28079 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
279166adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
280246, 278, 279addsubsassd 28026 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
2812adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
282257, 281, 254subsdird 28103 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
283282oveq2d 7385 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
284280, 283eqtr4d 2767 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
285277, 284breqtrrd 5130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))
28656adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑌 No )
287250, 286mulscld 28079 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 ·s 𝑌) ∈ No )
288287adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
289288, 279addscld 27928 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
290289, 278, 246sltsubaddd 28034 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑))))
291246, 278addscld 27928 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
292288, 279, 291sltaddsubd 28036 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑)) ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
293290, 292bitrd 279 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
294285, 293mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
295294exp32 420 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
296189, 295jaod 859 . . . . . . . . . . . . 13 (𝜑 → ((𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
297159, 296biimtrid 242 . . . . . . . . . . . 12 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
298297imp32 418 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
299 breq1 5105 . . . . . . . . . . 11 (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑒 <s 1s ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ))
300298, 299syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
301300rexlimdvva 3192 . . . . . . . . 9 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
302192adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
303196a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
304198ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → suc 𝑖 ∈ ω)
305 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝑅 = 𝑐 → (𝑥𝑅 -s 𝐴) = (𝑐 -s 𝐴))
306305oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅))
307306oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐 → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)))
308 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐𝑥𝑅 = 𝑐)
309307, 308oveq12d 7387 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑅 = 𝑐 → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐))
310309eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑅 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐)))
311 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦𝑅 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑑))
312311oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝑅 = 𝑑 → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
313312oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝑅 = 𝑑 → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
314313eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑅 = 𝑑 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
315310, 314rspc2ev 3598 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
316200, 315mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
317316ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
318 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
3193182rexbidv 3200 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
320214, 319elab 3643 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
321317, 320sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})
322 elun2 4142 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
323321, 322, 2203syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
324222ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
325323, 324eleqtrrd 2831 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))
326304, 325, 227syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
327326rexlimdvaa 3135 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗)))
328 eliun 4955 . . . . . . . . . . . . . . . . . 18 (𝑑 𝑖 ∈ ω (𝑅𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖))
329 funiunfv 7204 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑅 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω))
330237, 329ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω)
331330eleq2i 2820 . . . . . . . . . . . . . . . . . 18 (𝑑 𝑖 ∈ ω (𝑅𝑖) ↔ 𝑑 (𝑅 “ ω))
332328, 331bitr3i 277 . . . . . . . . . . . . . . . . 17 (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) ↔ 𝑑 (𝑅 “ ω))
333327, 332, 2413imtr3g 295 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑑 (𝑅 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω)))
334333impr 454 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
335302, 303, 334ssltsepcd 27741 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
336144a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 1s No )
3372adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝐴 No )
338127, 337subscld 28008 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑐 -s 𝐴) ∈ No )
339338adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 -s 𝐴) ∈ No )
340339, 135mulscld 28079 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
341336, 340addscld 27928 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
34220a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s No )
3433adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝐴)
344 rightgt 27814 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ( R ‘𝐴) → 𝐴 <s 𝑐)
345344adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑐)
346342, 337, 127, 343, 345slttrd 27705 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝑐)
347346adantrr 717 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 0s <s 𝑐)
34814adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
349 elun2 4142 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ( R ‘𝐴) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
350349adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
351267, 348, 350rspcdva 3586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
352346, 351mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
353352adantrr 717 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
354129, 341, 128, 347, 353sltmuldiv2wd 28146 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ↔ 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
355335, 354mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
356336, 138, 136addsubsassd 28026 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
357128, 131, 135subsdird 28103 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
358357oveq2d 7385 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
359356, 358eqtr4d 2767 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
360355, 359breqtrrd 5130 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))
361137, 138, 336sltsubaddd 28034 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑))))
362336, 138addscld 27928 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
363130, 136, 362sltaddsubd 28036 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑)) ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
364361, 363bitrd 279 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
365360, 364mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
366365, 299syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
367366rexlimdvva 3192 . . . . . . . . 9 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
368301, 367jaod 859 . . . . . . . 8 (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 𝑒 <s 1s ))
369155, 368biimtrid 242 . . . . . . 7 (𝜑 → (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 1s ))
370369imp 406 . . . . . 6 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 1s )
371 velsn 4601 . . . . . . 7 (𝑓 ∈ { 1s } ↔ 𝑓 = 1s )
372 breq2 5106 . . . . . . 7 (𝑓 = 1s → (𝑒 <s 𝑓𝑒 <s 1s ))
373371, 372sylbi 217 . . . . . 6 (𝑓 ∈ { 1s } → (𝑒 <s 𝑓𝑒 <s 1s ))
374370, 373syl5ibrcom 247 . . . . 5 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → (𝑓 ∈ { 1s } → 𝑒 <s 𝑓))
3753743impia 1117 . . . 4 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∧ 𝑓 ∈ { 1s }) → 𝑒 <s 𝑓)
376103, 105, 143, 146, 375ssltd 27738 . . 3 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) <<s { 1s })
377 eqid 2729 . . . . . . 7 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
378377rnmpo 7502 . . . . . 6 ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
379 mpoexga 8035 . . . . . . . 8 ((({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V ∧ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
38085, 97, 379syl2anc 584 . . . . . . 7 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
381 rnexg 7858 . . . . . . 7 ((𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
382380, 381syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
383378, 382eqeltrrid 2833 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
384 eqid 2729 . . . . . . 7 (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
385384rnmpo 7502 . . . . . 6 ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
386 mpoexga 8035 . . . . . . . 8 ((( R ‘𝐴) ∈ V ∧ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
38795, 87, 386sylancr 587 . . . . . . 7 (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
388 rnexg 7858 . . . . . . 7 ((𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
389387, 388syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
390385, 389eqeltrrid 2833 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
391383, 390unexd 7710 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V)
392108adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
39356adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
394392, 393mulscld 28079 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
3952adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
396134adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
397395, 396mulscld 28079 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
398394, 397addscld 27928 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
399392, 396mulscld 28079 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
400398, 399subscld 28008 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
401400, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
402401rexlimdvva 3192 . . . . . 6 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
403402abssdv 4028 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
404127adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
40556adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
406404, 405mulscld 28079 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
4072adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
408115adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
409407, 408mulscld 28079 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
410406, 409addscld 27928 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
411404, 408mulscld 28079 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
412410, 411subscld 28008 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
413412, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
414413rexlimdvva 3192 . . . . . 6 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
415414abssdv 4028 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
416403, 415unssd 4151 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No )
417 elun 4112 . . . . . . . 8 (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
418 vex 3448 . . . . . . . . . 10 𝑓 ∈ V
419 eqeq1 2733 . . . . . . . . . . 11 (𝑏 = 𝑓 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
4204192rexbidv 3200 . . . . . . . . . 10 (𝑏 = 𝑓 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
421418, 420elab 3643 . . . . . . . . 9 (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
4224192rexbidv 3200 . . . . . . . . . 10 (𝑏 = 𝑓 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
423418, 422elab 3643 . . . . . . . . 9 (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
424421, 423orbi12i 914 . . . . . . . 8 ((𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
425417, 424bitri 275 . . . . . . 7 (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
426 eliun 4955 . . . . . . . . . . . . . . . . . . 19 (𝑑 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗))
427239eleq2i 2820 . . . . . . . . . . . . . . . . . . 19 (𝑑 𝑗 ∈ ω (𝑅𝑗) ↔ 𝑑 (𝑅 “ ω))
428426, 427bitr3i 277 . . . . . . . . . . . . . . . . . 18 (∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗) ↔ 𝑑 (𝑅 “ ω))
42911, 12, 13, 2, 3, 14precsexlem9 28158 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (∀𝑐 ∈ (𝐿𝑗)(𝐴 ·s 𝑐) <s 1s ∧ ∀𝑑 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑑)))
430 rsp 3223 . . . . . . . . . . . . . . . . . . . 20 (∀𝑑 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑑) → (𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
431429, 430simpl2im 503 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω) → (𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
432431rexlimdva 3134 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
433428, 432biimtrrid 243 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑 (𝑅 “ ω) → 1s <s (𝐴 ·s 𝑑)))
434433imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝑅 “ ω)) → 1s <s (𝐴 ·s 𝑑))
43556adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝑅 “ ω)) → 𝑌 No )
43657oveq1d 7384 . . . . . . . . . . . . . . . . . . . 20 (𝑌 No → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
437435, 436syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝑅 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
4382adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 (𝑅 “ ω)) → 𝐴 No )
439438, 134mulscld 28079 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝑅 “ ω)) → (𝐴 ·s 𝑑) ∈ No )
440439, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝑅 “ ω)) → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
441437, 440eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝑅 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
442134, 162syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝑅 “ ω)) → ( 0s ·s 𝑑) = 0s )
443441, 442oveq12d 7387 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝑅 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = ((𝐴 ·s 𝑑) -s 0s ))
444439, 170syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝑅 “ ω)) → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
445443, 444eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝑅 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (𝐴 ·s 𝑑))
446434, 445breqtrrd 5130 . . . . . . . . . . . . . . 15 ((𝜑𝑑 (𝑅 “ ω)) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))
447446ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑑 (𝑅 “ ω) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
44867breq2d 5114 . . . . . . . . . . . . . . 15 (𝑐 = 0s → ( 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
449448imbi2d 340 . . . . . . . . . . . . . 14 (𝑐 = 0s → ((𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ↔ (𝑑 (𝑅 “ ω) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))))
450447, 449syl5ibrcom 247 . . . . . . . . . . . . 13 (𝜑 → (𝑐 = 0s → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
451144a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 1s No )
452249ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
453134adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
454452, 453mulscld 28079 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
455439adantrl 716 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
456451, 454, 455addsubsassd 28026 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
4572adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
458452, 457, 453subsdird 28103 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
459458oveq2d 7385 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
460456, 459eqtr4d 2767 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
461191simp2d 1143 . . . . . . . . . . . . . . . . . . 19 (𝜑 (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
462461adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
463198ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → suc 𝑖 ∈ ω)
464201oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅))
465464oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥𝐿 = 𝑐 → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)))
466465, 204oveq12d 7387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝐿 = 𝑐 → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐))
467466eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝐿 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐)))
468467, 314rspc2ev 3598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
469200, 468mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
470469ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
471 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
4724712rexbidv 3200 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
473214, 472elab 3643 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
474470, 473sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})
475 elun2 4142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
476 elun2 4142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
477474, 475, 4763syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
47811, 12, 13precsexlem4 28153 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ω → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
479478ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
480477, 479eleqtrrd 2831 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))
481 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = suc 𝑖 → (𝐿𝑗) = (𝐿‘suc 𝑖))
482481eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = suc 𝑖 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)))
483482rspcev 3585 . . . . . . . . . . . . . . . . . . . . . 22 ((suc 𝑖 ∈ ω ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
484463, 480, 483syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
485484rexlimdvaa 3135 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗)))
486 eliun 4955 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝐿𝑗) ↔ ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
487 funiunfv 7204 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐿 𝑗 ∈ ω (𝐿𝑗) = (𝐿 “ ω))
48843, 487ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 ∈ ω (𝐿𝑗) = (𝐿 “ ω)
489488eleq2i 2820 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
490486, 489bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 (∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
491485, 332, 4903imtr3g 295 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω)))
492491impr 454 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
493196a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
494462, 492, 493ssltsepcd 27741 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌)
495252adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 -s 𝐴) ∈ No )
496495, 453mulscld 28079 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
497451, 496addscld 27928 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
49856adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
499260ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 0s <s 𝑐)
500274adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
501497, 498, 452, 499, 500sltdivmulwd 28143 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)))
502494, 501mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))
503460, 502eqbrtrd 5124 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌))
504451, 454addscld 27928 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
505287adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
506504, 455, 505sltsubaddd 28034 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑))))
507505, 455addscld 27928 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
508451, 454, 507sltaddsubd 28036 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
509506, 508bitrd 279 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
510503, 509mpbid 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
511510exp32 420 . . . . . . . . . . . . 13 (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
512450, 511jaod 859 . . . . . . . . . . . 12 (𝜑 → ((𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
513159, 512biimtrid 242 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
514513imp32 418 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
515 breq2 5106 . . . . . . . . . 10 (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → ( 1s <s 𝑓 ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
516514, 515syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
517516rexlimdvva 3192 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
518144a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 1s No )
519518, 411, 409addsubsassd 28026 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
520404, 407, 408subsdird 28103 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
521520oveq2d 7385 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
522519, 521eqtr4d 2767 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
523461adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
524198ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → suc 𝑖 ∈ ω)
525305oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿))
526525oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑅 = 𝑐 → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)))
527526, 308oveq12d 7387 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑅 = 𝑐 → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐))
528527eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑅 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐)))
529528, 210rspc2ev 3598 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
530200, 529mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
531530ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
532 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
5335322rexbidv 3200 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
534214, 533elab 3643 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
535531, 534sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)})
536 elun1 4141 . . . . . . . . . . . . . . . . . . . 20 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
537535, 536, 4763syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
538478ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
539537, 538eleqtrrd 2831 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))
540524, 539, 483syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
541540rexlimdvaa 3135 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗)))
542541, 177, 4903imtr3g 295 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑑 (𝐿 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω)))
543542impr 454 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
544196a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
545523, 543, 544ssltsepcd 27741 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌)
546338adantrr 717 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 -s 𝐴) ∈ No )
547546, 408mulscld 28079 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
548518, 547addscld 27928 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
549346adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 0s <s 𝑐)
550352adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
551548, 405, 404, 549, 550sltdivmulwd 28143 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)))
552545, 551mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))
553522, 552eqbrtrd 5124 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌))
554518, 411addscld 27928 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
555554, 409, 406sltsubaddd 28034 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑))))
556518, 411, 410sltaddsubd 28036 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
557555, 556bitrd 279 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
558553, 557mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
559558, 515syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
560559rexlimdvva 3192 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
561517, 560jaod 859 . . . . . . 7 (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 1s <s 𝑓))
562425, 561biimtrid 242 . . . . . 6 (𝜑 → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓))
563 velsn 4601 . . . . . . 7 (𝑒 ∈ { 1s } ↔ 𝑒 = 1s )
564 breq1 5105 . . . . . . . 8 (𝑒 = 1s → (𝑒 <s 𝑓 ↔ 1s <s 𝑓))
565564imbi2d 340 . . . . . . 7 (𝑒 = 1s → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)))
566563, 565sylbi 217 . . . . . 6 (𝑒 ∈ { 1s } → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)))
567562, 566syl5ibrcom 247 . . . . 5 (𝜑 → (𝑒 ∈ { 1s } → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓)))
5685673imp 1110 . . . 4 ((𝜑𝑒 ∈ { 1s } ∧ 𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 𝑓)
569105, 391, 146, 416, 568ssltd 27738 . . 3 (𝜑 → { 1s } <<s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
57081, 376, 569cuteq1 27784 . 2 (𝜑 → (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) = 1s )
57119, 570eqtrd 2764 1 (𝜑 → (𝐴 ·s 𝑌) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  csb 3859  cun 3909  wss 3911  c0 4292  {csn 4585  cop 4591   cuni 4867   ciun 4951   class class class wbr 5102  cmpt 5183  ran crn 5632  cima 5634  ccom 5635  suc csuc 6322  Fun wfun 6493  ontowfo 6497  cfv 6499  (class class class)co 7369  cmpo 7371  ωcom 7822  1st c1st 7945  2nd c2nd 7946  reccrdg 8354   No csur 27585   <s cslt 27586   <<s csslt 27727   |s cscut 27729   0s c0s 27772   1s c1s 27773   L cleft 27791   R cright 27792   +s cadds 27907   -s csubs 27967   ·s cmuls 28050   /su cdivs 28131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-dc 10377
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-nadd 8607  df-no 27588  df-slt 27589  df-bday 27590  df-sle 27691  df-sslt 27728  df-scut 27730  df-0s 27774  df-1s 27775  df-made 27793  df-old 27794  df-left 27796  df-right 27797  df-norec 27886  df-norec2 27897  df-adds 27908  df-negs 27968  df-subs 27969  df-muls 28051  df-divs 28132
This theorem is referenced by:  precsex  28161
  Copyright terms: Public domain W3C validator