MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem11 Structured version   Visualization version   GIF version

Theorem precsexlem11 28028
Description: Lemma for surreal reciprocal. Show that the cut of the left and right sets is a multiplicative inverse for 𝐴. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
precsexlem.7 𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω))
Assertion
Ref Expression
precsexlem11 (𝜑 → (𝐴 ·s 𝑌) = 1s )
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑟   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑥𝑂)   𝑌(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)

Proof of Theorem precsexlem11
Dummy variables 𝑖 𝑗 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27712 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
2 precsexlem.4 . . . . . . 7 (𝜑𝐴 No )
3 precsexlem.5 . . . . . . 7 (𝜑 → 0s <s 𝐴)
42, 30elleft 27749 . . . . . 6 (𝜑 → 0s ∈ ( L ‘𝐴))
54snssd 4812 . . . . 5 (𝜑 → { 0s } ⊆ ( L ‘𝐴))
6 ssrab2 4077 . . . . . 6 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)
76a1i 11 . . . . 5 (𝜑 → {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴))
85, 7unssd 4186 . . . 4 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴))
9 sssslt1 27641 . . . 4 ((( L ‘𝐴) <<s ( R ‘𝐴) ∧ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴)) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴))
101, 8, 9sylancr 586 . . 3 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴))
11 precsexlem.1 . . . 4 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
12 precsexlem.2 . . . 4 𝐿 = (1st𝐹)
13 precsexlem.3 . . . 4 𝑅 = (2nd𝐹)
14 precsexlem.6 . . . 4 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
1511, 12, 13, 2, 3, 14precsexlem10 28027 . . 3 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
162, 3cutpos 27766 . . 3 (𝜑𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |s ( R ‘𝐴)))
17 precsexlem.7 . . . 4 𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω))
1817a1i 11 . . 3 (𝜑𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω)))
1910, 15, 16, 18mulsunif 27963 . 2 (𝜑 → (𝐴 ·s 𝑌) = (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})))
20 0sno 27672 . . . . . . . . 9 0s No
2120elexi 3493 . . . . . . . 8 0s ∈ V
2221snid 4664 . . . . . . 7 0s ∈ { 0s }
23 elun1 4176 . . . . . . 7 ( 0s ∈ { 0s } → 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
2422, 23ax-mp 5 . . . . . 6 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
25 peano1 7883 . . . . . . . . 9 ∅ ∈ ω
2611, 12, 13precsexlem1 28018 . . . . . . . . . 10 (𝐿‘∅) = { 0s }
2722, 26eleqtrri 2831 . . . . . . . . 9 0s ∈ (𝐿‘∅)
28 fveq2 6891 . . . . . . . . . . 11 (𝑏 = ∅ → (𝐿𝑏) = (𝐿‘∅))
2928eleq2d 2818 . . . . . . . . . 10 (𝑏 = ∅ → ( 0s ∈ (𝐿𝑏) ↔ 0s ∈ (𝐿‘∅)))
3029rspcev 3612 . . . . . . . . 9 ((∅ ∈ ω ∧ 0s ∈ (𝐿‘∅)) → ∃𝑏 ∈ ω 0s ∈ (𝐿𝑏))
3125, 27, 30mp2an 689 . . . . . . . 8 𝑏 ∈ ω 0s ∈ (𝐿𝑏)
32 eliun 5001 . . . . . . . 8 ( 0s 𝑏 ∈ ω (𝐿𝑏) ↔ ∃𝑏 ∈ ω 0s ∈ (𝐿𝑏))
3331, 32mpbir 230 . . . . . . 7 0s 𝑏 ∈ ω (𝐿𝑏)
34 fo1st 7999 . . . . . . . . . . 11 1st :V–onto→V
35 fofun 6806 . . . . . . . . . . 11 (1st :V–onto→V → Fun 1st )
3634, 35ax-mp 5 . . . . . . . . . 10 Fun 1st
37 rdgfun 8422 . . . . . . . . . . 11 Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
3811funeqi 6569 . . . . . . . . . . 11 (Fun 𝐹 ↔ Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
3937, 38mpbir 230 . . . . . . . . . 10 Fun 𝐹
40 funco 6588 . . . . . . . . . 10 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
4136, 39, 40mp2an 689 . . . . . . . . 9 Fun (1st𝐹)
4212funeqi 6569 . . . . . . . . 9 (Fun 𝐿 ↔ Fun (1st𝐹))
4341, 42mpbir 230 . . . . . . . 8 Fun 𝐿
44 funiunfv 7250 . . . . . . . 8 (Fun 𝐿 𝑏 ∈ ω (𝐿𝑏) = (𝐿 “ ω))
4543, 44ax-mp 5 . . . . . . 7 𝑏 ∈ ω (𝐿𝑏) = (𝐿 “ ω)
4633, 45eleqtri 2830 . . . . . 6 0s (𝐿 “ ω)
47 addsrid 27794 . . . . . . . . . 10 ( 0s No → ( 0s +s 0s ) = 0s )
4820, 47ax-mp 5 . . . . . . . . 9 ( 0s +s 0s ) = 0s
49 muls01 27925 . . . . . . . . . 10 ( 0s No → ( 0s ·s 0s ) = 0s )
5020, 49ax-mp 5 . . . . . . . . 9 ( 0s ·s 0s ) = 0s
5148, 50oveq12i 7424 . . . . . . . 8 (( 0s +s 0s ) -s ( 0s ·s 0s )) = ( 0s -s 0s )
52 subsid 27890 . . . . . . . . 9 ( 0s No → ( 0s -s 0s ) = 0s )
5320, 52ax-mp 5 . . . . . . . 8 ( 0s -s 0s ) = 0s
5451, 53eqtr2i 2760 . . . . . . 7 0s = (( 0s +s 0s ) -s ( 0s ·s 0s ))
5515scutcld 27649 . . . . . . . . . . 11 (𝜑 → ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No )
5617, 55eqeltrid 2836 . . . . . . . . . 10 (𝜑𝑌 No )
57 muls02 27954 . . . . . . . . . 10 (𝑌 No → ( 0s ·s 𝑌) = 0s )
5856, 57syl 17 . . . . . . . . 9 (𝜑 → ( 0s ·s 𝑌) = 0s )
59 muls01 27925 . . . . . . . . . 10 (𝐴 No → (𝐴 ·s 0s ) = 0s )
602, 59syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ·s 0s ) = 0s )
6158, 60oveq12d 7430 . . . . . . . 8 (𝜑 → (( 0s ·s 𝑌) +s (𝐴 ·s 0s )) = ( 0s +s 0s ))
6261oveq1d 7427 . . . . . . 7 (𝜑 → ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )) = (( 0s +s 0s ) -s ( 0s ·s 0s )))
6354, 62eqtr4id 2790 . . . . . 6 (𝜑 → 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )))
64 oveq1 7419 . . . . . . . . . 10 (𝑐 = 0s → (𝑐 ·s 𝑌) = ( 0s ·s 𝑌))
6564oveq1d 7427 . . . . . . . . 9 (𝑐 = 0s → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)))
66 oveq1 7419 . . . . . . . . 9 (𝑐 = 0s → (𝑐 ·s 𝑑) = ( 0s ·s 𝑑))
6765, 66oveq12d 7430 . . . . . . . 8 (𝑐 = 0s → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))
6867eqeq2d 2742 . . . . . . 7 (𝑐 = 0s → ( 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
69 oveq2 7420 . . . . . . . . . 10 (𝑑 = 0s → (𝐴 ·s 𝑑) = (𝐴 ·s 0s ))
7069oveq2d 7428 . . . . . . . . 9 (𝑑 = 0s → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s 𝑌) +s (𝐴 ·s 0s )))
71 oveq2 7420 . . . . . . . . 9 (𝑑 = 0s → ( 0s ·s 𝑑) = ( 0s ·s 0s ))
7270, 71oveq12d 7430 . . . . . . . 8 (𝑑 = 0s → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )))
7372eqeq2d 2742 . . . . . . 7 (𝑑 = 0s → ( 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) ↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s ))))
7468, 73rspc2ev 3624 . . . . . 6 (( 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 0s (𝐿 “ ω) ∧ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s ))) → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
7524, 46, 63, 74mp3an12i 1464 . . . . 5 (𝜑 → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
76 eqeq1 2735 . . . . . . 7 (𝑏 = 0s → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
77762rexbidv 3218 . . . . . 6 (𝑏 = 0s → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
7821, 77elab 3668 . . . . 5 ( 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
7975, 78sylibr 233 . . . 4 (𝜑 → 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})
80 elun1 4176 . . . 4 ( 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
8179, 80syl 17 . . 3 (𝜑 → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
82 eqid 2731 . . . . . . 7 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
8382rnmpo 7545 . . . . . 6 ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
84 ssltex1 27632 . . . . . . . . 9 (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V)
8510, 84syl 17 . . . . . . . 8 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V)
86 ssltex1 27632 . . . . . . . . 9 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝐿 “ ω) ∈ V)
8715, 86syl 17 . . . . . . . 8 (𝜑 (𝐿 “ ω) ∈ V)
88 mpoexga 8068 . . . . . . . 8 ((({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V ∧ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
8985, 87, 88syl2anc 583 . . . . . . 7 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
90 rnexg 7899 . . . . . . 7 ((𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9189, 90syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9283, 91eqeltrrid 2837 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
93 eqid 2731 . . . . . . 7 (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
9493rnmpo 7545 . . . . . 6 ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
95 fvex 6904 . . . . . . . 8 ( R ‘𝐴) ∈ V
96 ssltex2 27633 . . . . . . . . 9 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝑅 “ ω) ∈ V)
9715, 96syl 17 . . . . . . . 8 (𝜑 (𝑅 “ ω) ∈ V)
98 mpoexga 8068 . . . . . . . 8 ((( R ‘𝐴) ∈ V ∧ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9995, 97, 98sylancr 586 . . . . . . 7 (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
100 rnexg 7899 . . . . . . 7 ((𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
10199, 100syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
10294, 101eqeltrrid 2837 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
10392, 102unexd 7745 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V)
104 snex 5431 . . . . 5 { 1s } ∈ V
105104a1i 11 . . . 4 (𝜑 → { 1s } ∈ V)
106 ssltss1 27634 . . . . . . . . . . . . . 14 (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ No )
10710, 106syl 17 . . . . . . . . . . . . 13 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ No )
108107sselda 3982 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})) → 𝑐 No )
109108adantrr 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
11056adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
111109, 110mulscld 27948 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
1122adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
113 ssltss1 27634 . . . . . . . . . . . . . 14 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝐿 “ ω) ⊆ No )
11415, 113syl 17 . . . . . . . . . . . . 13 (𝜑 (𝐿 “ ω) ⊆ No )
115114sselda 3982 . . . . . . . . . . . 12 ((𝜑𝑑 (𝐿 “ ω)) → 𝑑 No )
116115adantrl 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
117112, 116mulscld 27948 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
118111, 117addscld 27810 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
119109, 116mulscld 27948 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
120118, 119subscld 27886 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
121 eleq1 2820 . . . . . . . 8 (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑏 No ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No ))
122120, 121syl5ibrcom 246 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
123122rexlimdvva 3210 . . . . . 6 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
124123abssdv 4065 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
125 rightssno 27721 . . . . . . . . . . . . . 14 ( R ‘𝐴) ⊆ No
126125a1i 11 . . . . . . . . . . . . 13 (𝜑 → ( R ‘𝐴) ⊆ No )
127126sselda 3982 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝑐 No )
128127adantrr 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
12956adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
130128, 129mulscld 27948 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
1312adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
132 ssltss2 27635 . . . . . . . . . . . . . 14 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝑅 “ ω) ⊆ No )
13315, 132syl 17 . . . . . . . . . . . . 13 (𝜑 (𝑅 “ ω) ⊆ No )
134133sselda 3982 . . . . . . . . . . . 12 ((𝜑𝑑 (𝑅 “ ω)) → 𝑑 No )
135134adantrl 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
136131, 135mulscld 27948 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
137130, 136addscld 27810 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
138128, 135mulscld 27948 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
139137, 138subscld 27886 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
140139, 121syl5ibrcom 246 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
141140rexlimdvva 3210 . . . . . 6 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
142141abssdv 4065 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
143124, 142unssd 4186 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No )
144 1sno 27673 . . . . 5 1s No
145 snssi 4811 . . . . 5 ( 1s No → { 1s } ⊆ No )
146144, 145mp1i 13 . . . 4 (𝜑 → { 1s } ⊆ No )
147 elun 4148 . . . . . . . . 9 (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
148 vex 3477 . . . . . . . . . . 11 𝑒 ∈ V
149 eqeq1 2735 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
1501492rexbidv 3218 . . . . . . . . . . 11 (𝑏 = 𝑒 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
151148, 150elab 3668 . . . . . . . . . 10 (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
1521492rexbidv 3218 . . . . . . . . . . 11 (𝑏 = 𝑒 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
153148, 152elab 3668 . . . . . . . . . 10 (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
154151, 153orbi12i 912 . . . . . . . . 9 ((𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
155147, 154bitri 275 . . . . . . . 8 (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
156 elun 4148 . . . . . . . . . . . . . 14 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 ∈ { 0s } ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
157 velsn 4644 . . . . . . . . . . . . . . 15 (𝑐 ∈ { 0s } ↔ 𝑐 = 0s )
158157orbi1i 911 . . . . . . . . . . . . . 14 ((𝑐 ∈ { 0s } ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
159156, 158bitri 275 . . . . . . . . . . . . 13 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
16058adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s ·s 𝑌) = 0s )
161160oveq1d 7427 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
162 muls02 27954 . . . . . . . . . . . . . . . . . . . 20 (𝑑 No → ( 0s ·s 𝑑) = 0s )
163115, 162syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s ·s 𝑑) = 0s )
164161, 163oveq12d 7430 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (( 0s +s (𝐴 ·s 𝑑)) -s 0s ))
1652adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 (𝐿 “ ω)) → 𝐴 No )
166165, 115mulscld 27948 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝐿 “ ω)) → (𝐴 ·s 𝑑) ∈ No )
167 addslid 27798 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ·s 𝑑) ∈ No → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
168166, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
169168oveq1d 7427 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → (( 0s +s (𝐴 ·s 𝑑)) -s 0s ) = ((𝐴 ·s 𝑑) -s 0s ))
170 subsid1 27889 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ·s 𝑑) ∈ No → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
171166, 170syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
172164, 169, 1713eqtrd 2775 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (𝐴 ·s 𝑑))
173 eliun 5001 . . . . . . . . . . . . . . . . . . . 20 (𝑑 𝑖 ∈ ω (𝐿𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖))
174 funiunfv 7250 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐿 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω))
17543, 174ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω)
176175eleq2i 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑑 𝑖 ∈ ω (𝐿𝑖) ↔ 𝑑 (𝐿 “ ω))
177173, 176bitr3i 277 . . . . . . . . . . . . . . . . . . 19 (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) ↔ 𝑑 (𝐿 “ ω))
17811, 12, 13, 2, 3, 14precsexlem9 28026 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ ω) → (∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)))
179178simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ ω) → ∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s )
180 rsp 3243 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s → (𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
181179, 180syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ ω) → (𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
182181rexlimdva 3154 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
183177, 182biimtrrid 242 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑑 (𝐿 “ ω) → (𝐴 ·s 𝑑) <s 1s ))
184183imp 406 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝐿 “ ω)) → (𝐴 ·s 𝑑) <s 1s )
185172, 184eqbrtrd 5170 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s )
186185ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑑 (𝐿 “ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s ))
18767breq1d 5158 . . . . . . . . . . . . . . . 16 (𝑐 = 0s → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s ))
188187imbi2d 340 . . . . . . . . . . . . . . 15 (𝑐 = 0s → ((𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ) ↔ (𝑑 (𝐿 “ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s )))
189186, 188syl5ibrcom 246 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 = 0s → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
190 scutcut 27647 . . . . . . . . . . . . . . . . . . . . . 22 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))} ∧ {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω)))
19115, 190syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))} ∧ {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω)))
192191simp3d 1143 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
193192adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
194 ovex 7445 . . . . . . . . . . . . . . . . . . . . . 22 ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ V
195194snid 4664 . . . . . . . . . . . . . . . . . . . . 21 ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))}
19617, 195eqeltri 2828 . . . . . . . . . . . . . . . . . . . 20 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))}
197196a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
198 peano2 7885 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
199198ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → suc 𝑖 ∈ ω)
200 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)
201 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥𝐿 = 𝑐 → (𝑥𝐿 -s 𝐴) = (𝑐 -s 𝐴))
202201oveq1d 7427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿))
203202oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐 → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)))
204 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐𝑥𝐿 = 𝑐)
205203, 204oveq12d 7430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥𝐿 = 𝑐 → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐))
206205eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝐿 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐)))
207 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦𝐿 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑑))
208207oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦𝐿 = 𝑑 → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
209208oveq1d 7427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦𝐿 = 𝑑 → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
210209eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐿 = 𝑑 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
211206, 210rspc2ev 3624 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
212200, 211mp3an3 1449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
213212ad2ant2l 743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
214 ovex 7445 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ V
215 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
2162152rexbidv 3218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
217214, 216elab 3668 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
218213, 217sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)})
219 elun1 4176 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
220 elun2 4177 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
221218, 219, 2203syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
22211, 12, 13precsexlem5 28022 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ ω → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
223222ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
224221, 223eleqtrrd 2835 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))
225 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = suc 𝑖 → (𝑅𝑗) = (𝑅‘suc 𝑖))
226225eleq2d 2818 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = suc 𝑖 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)))
227226rspcev 3612 . . . . . . . . . . . . . . . . . . . . . . 23 ((suc 𝑖 ∈ ω ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
228199, 224, 227syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
229228rexlimdvaa 3155 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗)))
230 eliun 5001 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
231 fo2nd 8000 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2nd :V–onto→V
232 fofun 6806 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2nd :V–onto→V → Fun 2nd )
233231, 232ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fun 2nd
234 funco 6588 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
235233, 39, 234mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . . 25 Fun (2nd𝐹)
23613funeqi 6569 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Fun 𝑅 ↔ Fun (2nd𝐹))
237235, 236mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . 24 Fun 𝑅
238 funiunfv 7250 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑅 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω))
239237, 238ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω)
240239eleq2i 2824 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
241230, 240bitr3i 277 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
242229, 177, 2413imtr3g 295 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω)))
243242impr 454 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
244193, 197, 243ssltsepcd 27640 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
24556adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
246144a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 1s No )
247 leftssno 27720 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( L ‘𝐴) ⊆ No
2486, 247sstri 3991 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ No
249248sseli 3978 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 No )
250249adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 No )
2512adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 No )
252250, 251subscld 27886 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 -s 𝐴) ∈ No )
253252adantrr 714 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 -s 𝐴) ∈ No )
254115adantrl 713 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
255253, 254mulscld 27948 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
256246, 255addscld 27810 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
257249ad2antrl 725 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
258 breq2 5152 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → ( 0s <s 𝑥 ↔ 0s <s 𝑐))
259258elrab 3683 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑐 ∈ ( L ‘𝐴) ∧ 0s <s 𝑐))
260259simprbi 496 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑐)
261260ad2antrl 725 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 0s <s 𝑐)
262260adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s 𝑐)
263 breq2 5152 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑂 = 𝑐 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑐))
264 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑂 = 𝑐 → (𝑥𝑂 ·s 𝑦) = (𝑐 ·s 𝑦))
265264eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑂 = 𝑐 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑐 ·s 𝑦) = 1s ))
266265rexbidv 3177 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑂 = 𝑐 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
267263, 266imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑂 = 𝑐 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )))
26814adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
269 ssun1 4172 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
2706, 269sstri 3991 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
271270sseli 3978 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
272271adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
273267, 268, 272rspcdva 3613 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
274262, 273mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
275274adantrr 714 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
276245, 256, 257, 261, 275sltmuldiv2wd 28014 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ↔ 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
277244, 276mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
278257, 254mulscld 27948 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
279166adantrl 713 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
280246, 278, 279addsubsassd 27902 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
2812adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
282257, 281, 254subsdird 27972 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
283282oveq2d 7428 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
284280, 283eqtr4d 2774 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
285277, 284breqtrrd 5176 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))
28656adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑌 No )
287250, 286mulscld 27948 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 ·s 𝑌) ∈ No )
288287adantrr 714 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
289288, 279addscld 27810 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
290289, 278, 246sltsubaddd 27910 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑))))
291246, 278addscld 27810 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
292288, 279, 291sltaddsubd 27912 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑)) ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
293290, 292bitrd 279 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
294285, 293mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
295294exp32 420 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
296189, 295jaod 856 . . . . . . . . . . . . 13 (𝜑 → ((𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
297159, 296biimtrid 241 . . . . . . . . . . . 12 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
298297imp32 418 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
299 breq1 5151 . . . . . . . . . . 11 (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑒 <s 1s ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ))
300298, 299syl5ibrcom 246 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
301300rexlimdvva 3210 . . . . . . . . 9 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
302192adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
303196a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
304198ad2antrl 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → suc 𝑖 ∈ ω)
305 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝑅 = 𝑐 → (𝑥𝑅 -s 𝐴) = (𝑐 -s 𝐴))
306305oveq1d 7427 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅))
307306oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐 → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)))
308 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐𝑥𝑅 = 𝑐)
309307, 308oveq12d 7430 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑅 = 𝑐 → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐))
310309eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑅 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐)))
311 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦𝑅 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑑))
312311oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝑅 = 𝑑 → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
313312oveq1d 7427 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝑅 = 𝑑 → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
314313eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑅 = 𝑑 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
315310, 314rspc2ev 3624 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
316200, 315mp3an3 1449 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
317316ad2ant2l 743 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
318 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
3193182rexbidv 3218 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
320214, 319elab 3668 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
321317, 320sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})
322 elun2 4177 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
323321, 322, 2203syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
324222ad2antrl 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
325323, 324eleqtrrd 2835 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))
326304, 325, 227syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
327326rexlimdvaa 3155 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗)))
328 eliun 5001 . . . . . . . . . . . . . . . . . 18 (𝑑 𝑖 ∈ ω (𝑅𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖))
329 funiunfv 7250 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑅 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω))
330237, 329ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω)
331330eleq2i 2824 . . . . . . . . . . . . . . . . . 18 (𝑑 𝑖 ∈ ω (𝑅𝑖) ↔ 𝑑 (𝑅 “ ω))
332328, 331bitr3i 277 . . . . . . . . . . . . . . . . 17 (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) ↔ 𝑑 (𝑅 “ ω))
333327, 332, 2413imtr3g 295 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑑 (𝑅 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω)))
334333impr 454 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
335302, 303, 334ssltsepcd 27640 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
336144a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 1s No )
3372adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝐴 No )
338127, 337subscld 27886 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑐 -s 𝐴) ∈ No )
339338adantrr 714 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 -s 𝐴) ∈ No )
340339, 135mulscld 27948 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
341336, 340addscld 27810 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
34220a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s No )
3433adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝐴)
344 breq2 5152 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑐 → (𝐴 <s 𝑥𝑂𝐴 <s 𝑐))
345 rightval 27704 . . . . . . . . . . . . . . . . . . . 20 ( R ‘𝐴) = {𝑥𝑂 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥𝑂}
346344, 345elrab2 3686 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ( R ‘𝐴) ↔ (𝑐 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑐))
347346simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ( R ‘𝐴) → 𝐴 <s 𝑐)
348347adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑐)
349342, 337, 127, 343, 348slttrd 27605 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝑐)
350349adantrr 714 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 0s <s 𝑐)
35114adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
352 elun2 4177 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ( R ‘𝐴) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
353352adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
354267, 351, 353rspcdva 3613 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
355349, 354mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
356355adantrr 714 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
357129, 341, 128, 350, 356sltmuldiv2wd 28014 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ↔ 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
358335, 357mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
359336, 138, 136addsubsassd 27902 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
360128, 131, 135subsdird 27972 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
361360oveq2d 7428 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
362359, 361eqtr4d 2774 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
363358, 362breqtrrd 5176 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))
364137, 138, 336sltsubaddd 27910 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑))))
365336, 138addscld 27810 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
366130, 136, 365sltaddsubd 27912 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑)) ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
367364, 366bitrd 279 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
368363, 367mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
369368, 299syl5ibrcom 246 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
370369rexlimdvva 3210 . . . . . . . . 9 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
371301, 370jaod 856 . . . . . . . 8 (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 𝑒 <s 1s ))
372155, 371biimtrid 241 . . . . . . 7 (𝜑 → (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 1s ))
373372imp 406 . . . . . 6 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 1s )
374 velsn 4644 . . . . . . 7 (𝑓 ∈ { 1s } ↔ 𝑓 = 1s )
375 breq2 5152 . . . . . . 7 (𝑓 = 1s → (𝑒 <s 𝑓𝑒 <s 1s ))
376374, 375sylbi 216 . . . . . 6 (𝑓 ∈ { 1s } → (𝑒 <s 𝑓𝑒 <s 1s ))
377373, 376syl5ibrcom 246 . . . . 5 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → (𝑓 ∈ { 1s } → 𝑒 <s 𝑓))
3783773impia 1116 . . . 4 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∧ 𝑓 ∈ { 1s }) → 𝑒 <s 𝑓)
379103, 105, 143, 146, 378ssltd 27637 . . 3 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) <<s { 1s })
380 eqid 2731 . . . . . . 7 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
381380rnmpo 7545 . . . . . 6 ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
382 mpoexga 8068 . . . . . . . 8 ((({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V ∧ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
38385, 97, 382syl2anc 583 . . . . . . 7 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
384 rnexg 7899 . . . . . . 7 ((𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
385383, 384syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
386381, 385eqeltrrid 2837 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
387 eqid 2731 . . . . . . 7 (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
388387rnmpo 7545 . . . . . 6 ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
389 mpoexga 8068 . . . . . . . 8 ((( R ‘𝐴) ∈ V ∧ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
39095, 87, 389sylancr 586 . . . . . . 7 (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
391 rnexg 7899 . . . . . . 7 ((𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
392390, 391syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
393388, 392eqeltrrid 2837 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
394386, 393unexd 7745 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V)
395108adantrr 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
39656adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
397395, 396mulscld 27948 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
3982adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
399134adantrl 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
400398, 399mulscld 27948 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
401397, 400addscld 27810 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
402395, 399mulscld 27948 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
403401, 402subscld 27886 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
404403, 121syl5ibrcom 246 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
405404rexlimdvva 3210 . . . . . 6 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
406405abssdv 4065 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
407127adantrr 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
40856adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
409407, 408mulscld 27948 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
4102adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
411115adantrl 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
412410, 411mulscld 27948 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
413409, 412addscld 27810 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
414407, 411mulscld 27948 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
415413, 414subscld 27886 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
416415, 121syl5ibrcom 246 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
417416rexlimdvva 3210 . . . . . 6 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
418417abssdv 4065 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
419406, 418unssd 4186 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No )
420 elun 4148 . . . . . . . 8 (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
421 vex 3477 . . . . . . . . . 10 𝑓 ∈ V
422 eqeq1 2735 . . . . . . . . . . 11 (𝑏 = 𝑓 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
4234222rexbidv 3218 . . . . . . . . . 10 (𝑏 = 𝑓 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
424421, 423elab 3668 . . . . . . . . 9 (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
4254222rexbidv 3218 . . . . . . . . . 10 (𝑏 = 𝑓 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
426421, 425elab 3668 . . . . . . . . 9 (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
427424, 426orbi12i 912 . . . . . . . 8 ((𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
428420, 427bitri 275 . . . . . . 7 (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
429 eliun 5001 . . . . . . . . . . . . . . . . . . 19 (𝑑 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗))
430239eleq2i 2824 . . . . . . . . . . . . . . . . . . 19 (𝑑 𝑗 ∈ ω (𝑅𝑗) ↔ 𝑑 (𝑅 “ ω))
431429, 430bitr3i 277 . . . . . . . . . . . . . . . . . 18 (∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗) ↔ 𝑑 (𝑅 “ ω))
43211, 12, 13, 2, 3, 14precsexlem9 28026 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (∀𝑐 ∈ (𝐿𝑗)(𝐴 ·s 𝑐) <s 1s ∧ ∀𝑑 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑑)))
433 rsp 3243 . . . . . . . . . . . . . . . . . . . 20 (∀𝑑 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑑) → (𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
434432, 433simpl2im 503 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω) → (𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
435434rexlimdva 3154 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
436431, 435biimtrrid 242 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑 (𝑅 “ ω) → 1s <s (𝐴 ·s 𝑑)))
437436imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝑅 “ ω)) → 1s <s (𝐴 ·s 𝑑))
43856adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝑅 “ ω)) → 𝑌 No )
43957oveq1d 7427 . . . . . . . . . . . . . . . . . . . 20 (𝑌 No → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
440438, 439syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝑅 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
4412adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 (𝑅 “ ω)) → 𝐴 No )
442441, 134mulscld 27948 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝑅 “ ω)) → (𝐴 ·s 𝑑) ∈ No )
443442, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝑅 “ ω)) → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
444440, 443eqtrd 2771 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝑅 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
445134, 162syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝑅 “ ω)) → ( 0s ·s 𝑑) = 0s )
446444, 445oveq12d 7430 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝑅 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = ((𝐴 ·s 𝑑) -s 0s ))
447442, 170syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝑅 “ ω)) → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
448446, 447eqtrd 2771 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝑅 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (𝐴 ·s 𝑑))
449437, 448breqtrrd 5176 . . . . . . . . . . . . . . 15 ((𝜑𝑑 (𝑅 “ ω)) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))
450449ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑑 (𝑅 “ ω) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
45167breq2d 5160 . . . . . . . . . . . . . . 15 (𝑐 = 0s → ( 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
452451imbi2d 340 . . . . . . . . . . . . . 14 (𝑐 = 0s → ((𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ↔ (𝑑 (𝑅 “ ω) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))))
453450, 452syl5ibrcom 246 . . . . . . . . . . . . 13 (𝜑 → (𝑐 = 0s → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
454144a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 1s No )
455249ad2antrl 725 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
456134adantrl 713 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
457455, 456mulscld 27948 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
458442adantrl 713 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
459454, 457, 458addsubsassd 27902 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
4602adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
461455, 460, 456subsdird 27972 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
462461oveq2d 7428 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
463459, 462eqtr4d 2774 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
464191simp2d 1142 . . . . . . . . . . . . . . . . . . 19 (𝜑 (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
465464adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
466198ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → suc 𝑖 ∈ ω)
467201oveq1d 7427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅))
468467oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥𝐿 = 𝑐 → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)))
469468, 204oveq12d 7430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝐿 = 𝑐 → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐))
470469eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝐿 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐)))
471470, 314rspc2ev 3624 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
472200, 471mp3an3 1449 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
473472ad2ant2l 743 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
474 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
4754742rexbidv 3218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
476214, 475elab 3668 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
477473, 476sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})
478 elun2 4177 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
479 elun2 4177 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
480477, 478, 4793syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
48111, 12, 13precsexlem4 28021 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ω → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
482481ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
483480, 482eleqtrrd 2835 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))
484 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = suc 𝑖 → (𝐿𝑗) = (𝐿‘suc 𝑖))
485484eleq2d 2818 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = suc 𝑖 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)))
486485rspcev 3612 . . . . . . . . . . . . . . . . . . . . . 22 ((suc 𝑖 ∈ ω ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
487466, 483, 486syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
488487rexlimdvaa 3155 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗)))
489 eliun 5001 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝐿𝑗) ↔ ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
490 funiunfv 7250 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐿 𝑗 ∈ ω (𝐿𝑗) = (𝐿 “ ω))
49143, 490ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 ∈ ω (𝐿𝑗) = (𝐿 “ ω)
492491eleq2i 2824 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
493489, 492bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 (∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
494488, 332, 4933imtr3g 295 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω)))
495494impr 454 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
496196a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
497465, 495, 496ssltsepcd 27640 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌)
498252adantrr 714 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 -s 𝐴) ∈ No )
499498, 456mulscld 27948 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
500454, 499addscld 27810 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
50156adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
502260ad2antrl 725 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 0s <s 𝑐)
503274adantrr 714 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
504500, 501, 455, 502, 503sltdivmulwd 28011 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)))
505497, 504mpbid 231 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))
506463, 505eqbrtrd 5170 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌))
507454, 457addscld 27810 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
508287adantrr 714 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
509507, 458, 508sltsubaddd 27910 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑))))
510508, 458addscld 27810 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
511454, 457, 510sltaddsubd 27912 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
512509, 511bitrd 279 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
513506, 512mpbid 231 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
514513exp32 420 . . . . . . . . . . . . 13 (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
515453, 514jaod 856 . . . . . . . . . . . 12 (𝜑 → ((𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
516159, 515biimtrid 241 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
517516imp32 418 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
518 breq2 5152 . . . . . . . . . 10 (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → ( 1s <s 𝑓 ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
519517, 518syl5ibrcom 246 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
520519rexlimdvva 3210 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
521144a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 1s No )
522521, 414, 412addsubsassd 27902 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
523407, 410, 411subsdird 27972 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
524523oveq2d 7428 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
525522, 524eqtr4d 2774 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
526464adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
527198ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → suc 𝑖 ∈ ω)
528305oveq1d 7427 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿))
529528oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑅 = 𝑐 → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)))
530529, 308oveq12d 7430 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑅 = 𝑐 → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐))
531530eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑅 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐)))
532531, 210rspc2ev 3624 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
533200, 532mp3an3 1449 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
534533ad2ant2l 743 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
535 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
5365352rexbidv 3218 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
537214, 536elab 3668 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
538534, 537sylibr 233 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)})
539 elun1 4176 . . . . . . . . . . . . . . . . . . . 20 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
540538, 539, 4793syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
541481ad2antrl 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
542540, 541eleqtrrd 2835 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))
543527, 542, 486syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
544543rexlimdvaa 3155 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗)))
545544, 177, 4933imtr3g 295 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑑 (𝐿 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω)))
546545impr 454 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
547196a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
548526, 546, 547ssltsepcd 27640 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌)
549338adantrr 714 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 -s 𝐴) ∈ No )
550549, 411mulscld 27948 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
551521, 550addscld 27810 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
552349adantrr 714 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 0s <s 𝑐)
553355adantrr 714 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
554551, 408, 407, 552, 553sltdivmulwd 28011 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)))
555548, 554mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))
556525, 555eqbrtrd 5170 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌))
557521, 414addscld 27810 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
558557, 412, 409sltsubaddd 27910 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑))))
559521, 414, 413sltaddsubd 27912 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
560558, 559bitrd 279 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
561556, 560mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
562561, 518syl5ibrcom 246 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
563562rexlimdvva 3210 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
564520, 563jaod 856 . . . . . . 7 (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 1s <s 𝑓))
565428, 564biimtrid 241 . . . . . 6 (𝜑 → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓))
566 velsn 4644 . . . . . . 7 (𝑒 ∈ { 1s } ↔ 𝑒 = 1s )
567 breq1 5151 . . . . . . . 8 (𝑒 = 1s → (𝑒 <s 𝑓 ↔ 1s <s 𝑓))
568567imbi2d 340 . . . . . . 7 (𝑒 = 1s → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)))
569566, 568sylbi 216 . . . . . 6 (𝑒 ∈ { 1s } → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)))
570565, 569syl5ibrcom 246 . . . . 5 (𝜑 → (𝑒 ∈ { 1s } → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓)))
5715703imp 1110 . . . 4 ((𝜑𝑒 ∈ { 1s } ∧ 𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 𝑓)
572105, 394, 146, 419, 571ssltd 27637 . . 3 (𝜑 → { 1s } <<s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
57381, 379, 572cuteq1 27679 . 2 (𝜑 → (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) = 1s )
57419, 573eqtrd 2771 1 (𝜑 → (𝐴 ·s 𝑌) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  {cab 2708  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  csb 3893  cun 3946  wss 3948  c0 4322  {csn 4628  cop 4634   cuni 4908   ciun 4997   class class class wbr 5148  cmpt 5231  ran crn 5677  cima 5679  ccom 5680  suc csuc 6366  Fun wfun 6537  ontowfo 6541  cfv 6543  (class class class)co 7412  cmpo 7414  ωcom 7859  1st c1st 7977  2nd c2nd 7978  reccrdg 8415   No csur 27486   <s cslt 27487   bday cbday 27488   <<s csslt 27626   |s cscut 27628   0s c0s 27668   1s c1s 27669   O cold 27683   L cleft 27685   R cright 27686   +s cadds 27789   -s csubs 27846   ·s cmuls 27919   /su cdivs 28000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-dc 10447
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-nadd 8671  df-no 27489  df-slt 27490  df-bday 27491  df-sle 27591  df-sslt 27627  df-scut 27629  df-0s 27670  df-1s 27671  df-made 27687  df-old 27688  df-left 27690  df-right 27691  df-norec 27768  df-norec2 27779  df-adds 27790  df-negs 27847  df-subs 27848  df-muls 27920  df-divs 28001
This theorem is referenced by:  precsex  28029
  Copyright terms: Public domain W3C validator