Step | Hyp | Ref
| Expression |
1 | | lltropt 27712 |
. . . 4
⊢ ( L
‘𝐴) <<s ( R
‘𝐴) |
2 | | precsexlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ No
) |
3 | | precsexlem.5 |
. . . . . . 7
⊢ (𝜑 → 0s <s 𝐴) |
4 | 2, 3 | 0elleft 27749 |
. . . . . 6
⊢ (𝜑 → 0s ∈ ( L
‘𝐴)) |
5 | 4 | snssd 4812 |
. . . . 5
⊢ (𝜑 → { 0s } ⊆
( L ‘𝐴)) |
6 | | ssrab2 4077 |
. . . . . 6
⊢ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ⊆ ( L ‘𝐴) |
7 | 6 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)) |
8 | 5, 7 | unssd 4186 |
. . . 4
⊢ (𝜑 → ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ⊆ ( L
‘𝐴)) |
9 | | sssslt1 27641 |
. . . 4
⊢ ((( L
‘𝐴) <<s ( R
‘𝐴) ∧ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴)) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) <<s ( R
‘𝐴)) |
10 | 1, 8, 9 | sylancr 586 |
. . 3
⊢ (𝜑 → ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) <<s ( R
‘𝐴)) |
11 | | precsexlem.1 |
. . . 4
⊢ 𝐹 = rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
12 | | precsexlem.2 |
. . . 4
⊢ 𝐿 = (1st ∘ 𝐹) |
13 | | precsexlem.3 |
. . . 4
⊢ 𝑅 = (2nd ∘ 𝐹) |
14 | | precsexlem.6 |
. . . 4
⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
15 | 11, 12, 13, 2, 3, 14 | precsexlem10 28027 |
. . 3
⊢ (𝜑 → ∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω)) |
16 | 2, 3 | cutpos 27766 |
. . 3
⊢ (𝜑 → 𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) |s ( R ‘𝐴))) |
17 | | precsexlem.7 |
. . . 4
⊢ 𝑌 = (∪
(𝐿 “ ω) |s
∪ (𝑅 “ ω)) |
18 | 17 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑌 = (∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))) |
19 | 10, 15, 16, 18 | mulsunif 27963 |
. 2
⊢ (𝜑 → (𝐴 ·s 𝑌) = (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))) |
20 | | 0sno 27672 |
. . . . . . . . 9
⊢
0s ∈ No |
21 | 20 | elexi 3493 |
. . . . . . . 8
⊢
0s ∈ V |
22 | 21 | snid 4664 |
. . . . . . 7
⊢
0s ∈ { 0s } |
23 | | elun1 4176 |
. . . . . . 7
⊢ (
0s ∈ { 0s } → 0s ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})) |
24 | 22, 23 | ax-mp 5 |
. . . . . 6
⊢
0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |
25 | | peano1 7883 |
. . . . . . . . 9
⊢ ∅
∈ ω |
26 | 11, 12, 13 | precsexlem1 28018 |
. . . . . . . . . 10
⊢ (𝐿‘∅) = {
0s } |
27 | 22, 26 | eleqtrri 2831 |
. . . . . . . . 9
⊢
0s ∈ (𝐿‘∅) |
28 | | fveq2 6891 |
. . . . . . . . . . 11
⊢ (𝑏 = ∅ → (𝐿‘𝑏) = (𝐿‘∅)) |
29 | 28 | eleq2d 2818 |
. . . . . . . . . 10
⊢ (𝑏 = ∅ → (
0s ∈ (𝐿‘𝑏) ↔ 0s ∈ (𝐿‘∅))) |
30 | 29 | rspcev 3612 |
. . . . . . . . 9
⊢ ((∅
∈ ω ∧ 0s ∈ (𝐿‘∅)) → ∃𝑏 ∈ ω 0s
∈ (𝐿‘𝑏)) |
31 | 25, 27, 30 | mp2an 689 |
. . . . . . . 8
⊢
∃𝑏 ∈
ω 0s ∈ (𝐿‘𝑏) |
32 | | eliun 5001 |
. . . . . . . 8
⊢ (
0s ∈ ∪ 𝑏 ∈ ω (𝐿‘𝑏) ↔ ∃𝑏 ∈ ω 0s ∈ (𝐿‘𝑏)) |
33 | 31, 32 | mpbir 230 |
. . . . . . 7
⊢
0s ∈ ∪ 𝑏 ∈ ω (𝐿‘𝑏) |
34 | | fo1st 7999 |
. . . . . . . . . . 11
⊢
1st :V–onto→V |
35 | | fofun 6806 |
. . . . . . . . . . 11
⊢
(1st :V–onto→V → Fun 1st ) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . . . 10
⊢ Fun
1st |
37 | | rdgfun 8422 |
. . . . . . . . . . 11
⊢ Fun
rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
38 | 11 | funeqi 6569 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 ↔ Fun rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉)) |
39 | 37, 38 | mpbir 230 |
. . . . . . . . . 10
⊢ Fun 𝐹 |
40 | | funco 6588 |
. . . . . . . . . 10
⊢ ((Fun
1st ∧ Fun 𝐹)
→ Fun (1st ∘ 𝐹)) |
41 | 36, 39, 40 | mp2an 689 |
. . . . . . . . 9
⊢ Fun
(1st ∘ 𝐹) |
42 | 12 | funeqi 6569 |
. . . . . . . . 9
⊢ (Fun
𝐿 ↔ Fun
(1st ∘ 𝐹)) |
43 | 41, 42 | mpbir 230 |
. . . . . . . 8
⊢ Fun 𝐿 |
44 | | funiunfv 7250 |
. . . . . . . 8
⊢ (Fun
𝐿 → ∪ 𝑏 ∈ ω (𝐿‘𝑏) = ∪ (𝐿 “
ω)) |
45 | 43, 44 | ax-mp 5 |
. . . . . . 7
⊢ ∪ 𝑏 ∈ ω (𝐿‘𝑏) = ∪ (𝐿 “
ω) |
46 | 33, 45 | eleqtri 2830 |
. . . . . 6
⊢
0s ∈ ∪ (𝐿 “ ω) |
47 | | addsrid 27794 |
. . . . . . . . . 10
⊢ (
0s ∈ No → ( 0s
+s 0s ) = 0s ) |
48 | 20, 47 | ax-mp 5 |
. . . . . . . . 9
⊢ (
0s +s 0s ) = 0s |
49 | | muls01 27925 |
. . . . . . . . . 10
⊢ (
0s ∈ No → ( 0s
·s 0s ) = 0s ) |
50 | 20, 49 | ax-mp 5 |
. . . . . . . . 9
⊢ (
0s ·s 0s ) =
0s |
51 | 48, 50 | oveq12i 7424 |
. . . . . . . 8
⊢ ((
0s +s 0s ) -s ( 0s
·s 0s )) = ( 0s -s
0s ) |
52 | | subsid 27890 |
. . . . . . . . 9
⊢ (
0s ∈ No → ( 0s
-s 0s ) = 0s ) |
53 | 20, 52 | ax-mp 5 |
. . . . . . . 8
⊢ (
0s -s 0s ) = 0s |
54 | 51, 53 | eqtr2i 2760 |
. . . . . . 7
⊢
0s = (( 0s +s 0s ) -s (
0s ·s 0s )) |
55 | 15 | scutcld 27649 |
. . . . . . . . . . 11
⊢ (𝜑 → (∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω)) ∈ No ) |
56 | 17, 55 | eqeltrid 2836 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ No
) |
57 | | muls02 27954 |
. . . . . . . . . 10
⊢ (𝑌 ∈
No → ( 0s ·s 𝑌) = 0s ) |
58 | 56, 57 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ( 0s
·s 𝑌) =
0s ) |
59 | | muls01 27925 |
. . . . . . . . . 10
⊢ (𝐴 ∈
No → (𝐴
·s 0s ) = 0s ) |
60 | 2, 59 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ·s 0s ) =
0s ) |
61 | 58, 60 | oveq12d 7430 |
. . . . . . . 8
⊢ (𝜑 → (( 0s
·s 𝑌)
+s (𝐴
·s 0s )) = ( 0s +s
0s )) |
62 | 61 | oveq1d 7427 |
. . . . . . 7
⊢ (𝜑 → ((( 0s
·s 𝑌)
+s (𝐴
·s 0s )) -s ( 0s
·s 0s )) = (( 0s +s
0s ) -s ( 0s ·s
0s ))) |
63 | 54, 62 | eqtr4id 2790 |
. . . . . 6
⊢ (𝜑 → 0s = (((
0s ·s 𝑌) +s (𝐴 ·s 0s ))
-s ( 0s ·s 0s
))) |
64 | | oveq1 7419 |
. . . . . . . . . 10
⊢ (𝑐 = 0s → (𝑐 ·s 𝑌) = ( 0s
·s 𝑌)) |
65 | 64 | oveq1d 7427 |
. . . . . . . . 9
⊢ (𝑐 = 0s → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s
·s 𝑌)
+s (𝐴
·s 𝑑))) |
66 | | oveq1 7419 |
. . . . . . . . 9
⊢ (𝑐 = 0s → (𝑐 ·s 𝑑) = ( 0s
·s 𝑑)) |
67 | 65, 66 | oveq12d 7430 |
. . . . . . . 8
⊢ (𝑐 = 0s → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) = ((( 0s
·s 𝑌)
+s (𝐴
·s 𝑑))
-s ( 0s ·s 𝑑))) |
68 | 67 | eqeq2d 2742 |
. . . . . . 7
⊢ (𝑐 = 0s → (
0s = (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))
↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)))) |
69 | | oveq2 7420 |
. . . . . . . . . 10
⊢ (𝑑 = 0s → (𝐴 ·s 𝑑) = (𝐴 ·s 0s
)) |
70 | 69 | oveq2d 7428 |
. . . . . . . . 9
⊢ (𝑑 = 0s → ((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s
𝑌) +s (𝐴 ·s
0s ))) |
71 | | oveq2 7420 |
. . . . . . . . 9
⊢ (𝑑 = 0s → (
0s ·s 𝑑) = ( 0s ·s
0s )) |
72 | 70, 71 | oveq12d 7430 |
. . . . . . . 8
⊢ (𝑑 = 0s → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)) =
((( 0s ·s 𝑌) +s (𝐴 ·s 0s ))
-s ( 0s ·s 0s
))) |
73 | 72 | eqeq2d 2742 |
. . . . . . 7
⊢ (𝑑 = 0s → (
0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))
↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s ))
-s ( 0s ·s 0s
)))) |
74 | 68, 73 | rspc2ev 3624 |
. . . . . 6
⊢ ((
0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 0s ∈
∪ (𝐿 “ ω) ∧ 0s = (((
0s ·s 𝑌) +s (𝐴 ·s 0s ))
-s ( 0s ·s 0s ))) →
∃𝑐 ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})∃𝑑 ∈ ∪ (𝐿 “ ω) 0s
= (((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
75 | 24, 46, 63, 74 | mp3an12i 1464 |
. . . . 5
⊢ (𝜑 → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
76 | | eqeq1 2735 |
. . . . . . 7
⊢ (𝑏 = 0s → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
77 | 76 | 2rexbidv 3218 |
. . . . . 6
⊢ (𝑏 = 0s →
(∃𝑐 ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
78 | 21, 77 | elab 3668 |
. . . . 5
⊢ (
0s ∈ {𝑏
∣ ∃𝑐 ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
79 | 75, 78 | sylibr 233 |
. . . 4
⊢ (𝜑 → 0s ∈
{𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |
80 | | elun1 4176 |
. . . 4
⊢ (
0s ∈ {𝑏
∣ ∃𝑐 ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) |
81 | 79, 80 | syl 17 |
. . 3
⊢ (𝜑 → 0s ∈
({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) |
82 | | eqid 2731 |
. . . . . . 7
⊢ (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
83 | 82 | rnmpo 7545 |
. . . . . 6
⊢ ran
(𝑐 ∈ ({ 0s
} ∪ {𝑥 ∈ ( L
‘𝐴) ∣
0s <s 𝑥}),
𝑑 ∈ ∪ (𝐿
“ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} |
84 | | ssltex1 27632 |
. . . . . . . . 9
⊢ (({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∈
V) |
85 | 10, 84 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∈
V) |
86 | | ssltex1 27632 |
. . . . . . . . 9
⊢ (∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω) → ∪ (𝐿
“ ω) ∈ V) |
87 | 15, 86 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ (𝐿
“ ω) ∈ V) |
88 | | mpoexga 8068 |
. . . . . . . 8
⊢ ((({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥}) ∈ V ∧ ∪ (𝐿
“ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
89 | 85, 87, 88 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
90 | | rnexg 7899 |
. . . . . . 7
⊢ ((𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
91 | 89, 90 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
92 | 83, 91 | eqeltrrid 2837 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V) |
93 | | eqid 2731 |
. . . . . . 7
⊢ (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
94 | 93 | rnmpo 7545 |
. . . . . 6
⊢ ran
(𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} |
95 | | fvex 6904 |
. . . . . . . 8
⊢ ( R
‘𝐴) ∈
V |
96 | | ssltex2 27633 |
. . . . . . . . 9
⊢ (∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω) → ∪ (𝑅
“ ω) ∈ V) |
97 | 15, 96 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ (𝑅
“ ω) ∈ V) |
98 | | mpoexga 8068 |
. . . . . . . 8
⊢ ((( R
‘𝐴) ∈ V ∧
∪ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
99 | 95, 97, 98 | sylancr 586 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
100 | | rnexg 7899 |
. . . . . . 7
⊢ ((𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
101 | 99, 100 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
102 | 94, 101 | eqeltrrid 2837 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V) |
103 | 92, 102 | unexd 7745 |
. . . 4
⊢ (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V) |
104 | | snex 5431 |
. . . . 5
⊢ {
1s } ∈ V |
105 | 104 | a1i 11 |
. . . 4
⊢ (𝜑 → { 1s } ∈
V) |
106 | | ssltss1 27634 |
. . . . . . . . . . . . . 14
⊢ (({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ⊆ No ) |
107 | 10, 106 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ⊆ No ) |
108 | 107 | sselda 3982 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})) → 𝑐 ∈
No ) |
109 | 108 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → 𝑐
∈ No ) |
110 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → 𝑌
∈ No ) |
111 | 109, 110 | mulscld 27948 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (𝑐 ·s 𝑌) ∈ No
) |
112 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → 𝐴
∈ No ) |
113 | | ssltss1 27634 |
. . . . . . . . . . . . . 14
⊢ (∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω) → ∪ (𝐿
“ ω) ⊆ No ) |
114 | 15, 113 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ (𝐿
“ ω) ⊆ No ) |
115 | 114 | sselda 3982 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → 𝑑 ∈
No ) |
116 | 115 | adantrl 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → 𝑑
∈ No ) |
117 | 112, 116 | mulscld 27948 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (𝐴 ·s 𝑑) ∈ No
) |
118 | 111, 117 | addscld 27810 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No
) |
119 | 109, 116 | mulscld 27948 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (𝑐 ·s 𝑑) ∈ No
) |
120 | 118, 119 | subscld 27886 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No
) |
121 | | eleq1 2820 |
. . . . . . . 8
⊢ (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑏 ∈ No
↔ (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))
∈ No )) |
122 | 120, 121 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
123 | 122 | rexlimdvva 3210 |
. . . . . 6
⊢ (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
124 | 123 | abssdv 4065 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No ) |
125 | | rightssno 27721 |
. . . . . . . . . . . . . 14
⊢ ( R
‘𝐴) ⊆ No |
126 | 125 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ( R ‘𝐴) ⊆
No ) |
127 | 126 | sselda 3982 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 𝑐 ∈ No
) |
128 | 127 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑐 ∈
No ) |
129 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑌 ∈
No ) |
130 | 128, 129 | mulscld 27948 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑌) ∈ No ) |
131 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝐴 ∈
No ) |
132 | | ssltss2 27635 |
. . . . . . . . . . . . . 14
⊢ (∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω) → ∪ (𝑅
“ ω) ⊆ No ) |
133 | 15, 132 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ (𝑅
“ ω) ⊆ No ) |
134 | 133 | sselda 3982 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → 𝑑 ∈
No ) |
135 | 134 | adantrl 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑑 ∈
No ) |
136 | 131, 135 | mulscld 27948 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝐴 ·s
𝑑) ∈ No ) |
137 | 130, 136 | addscld 27810 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) ∈
No ) |
138 | 128, 135 | mulscld 27948 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑑) ∈ No ) |
139 | 137, 138 | subscld 27886 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈
No ) |
140 | 139, 121 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
141 | 140 | rexlimdvva 3210 |
. . . . . 6
⊢ (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
142 | 141 | abssdv 4065 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No
) |
143 | 124, 142 | unssd 4186 |
. . . 4
⊢ (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No
) |
144 | | 1sno 27673 |
. . . . 5
⊢
1s ∈ No |
145 | | snssi 4811 |
. . . . 5
⊢ (
1s ∈ No → { 1s }
⊆ No ) |
146 | 144, 145 | mp1i 13 |
. . . 4
⊢ (𝜑 → { 1s } ⊆
No ) |
147 | | elun 4148 |
. . . . . . . . 9
⊢ (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) |
148 | | vex 3477 |
. . . . . . . . . . 11
⊢ 𝑒 ∈ V |
149 | | eqeq1 2735 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑒 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
150 | 149 | 2rexbidv 3218 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑒 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
151 | 148, 150 | elab 3668 |
. . . . . . . . . 10
⊢ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
152 | 149 | 2rexbidv 3218 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑒 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
153 | 148, 152 | elab 3668 |
. . . . . . . . . 10
⊢ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
154 | 151, 153 | orbi12i 912 |
. . . . . . . . 9
⊢ ((𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
155 | 147, 154 | bitri 275 |
. . . . . . . 8
⊢ (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
156 | | elun 4148 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ↔ (𝑐 ∈ { 0s } ∨
𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})) |
157 | | velsn 4644 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ { 0s } ↔
𝑐 = 0s
) |
158 | 157 | orbi1i 911 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ { 0s } ∨
𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ↔ (𝑐 = 0s ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})) |
159 | 156, 158 | bitri 275 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ↔ (𝑐 = 0s ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})) |
160 | 58 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (
0s ·s 𝑌) = 0s ) |
161 | 160 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → ((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑))) |
162 | | muls02 27954 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈
No → ( 0s ·s 𝑑) = 0s ) |
163 | 115, 162 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (
0s ·s 𝑑) = 0s ) |
164 | 161, 163 | oveq12d 7430 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)) =
(( 0s +s (𝐴 ·s 𝑑)) -s 0s
)) |
165 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → 𝐴 ∈
No ) |
166 | 165, 115 | mulscld 27948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (𝐴 ·s 𝑑) ∈
No ) |
167 | | addslid 27798 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ·s 𝑑) ∈
No → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑)) |
168 | 166, 167 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (
0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑)) |
169 | 168 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → ((
0s +s (𝐴 ·s 𝑑)) -s 0s ) = ((𝐴 ·s 𝑑) -s 0s
)) |
170 | | subsid1 27889 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ·s 𝑑) ∈
No → ((𝐴
·s 𝑑)
-s 0s ) = (𝐴 ·s 𝑑)) |
171 | 166, 170 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) →
((𝐴 ·s
𝑑) -s
0s ) = (𝐴
·s 𝑑)) |
172 | 164, 169,
171 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)) =
(𝐴 ·s
𝑑)) |
173 | | eliun 5001 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ ∪ 𝑖 ∈ ω (𝐿‘𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝐿‘𝑖)) |
174 | | funiunfv 7250 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Fun
𝐿 → ∪ 𝑖 ∈ ω (𝐿‘𝑖) = ∪ (𝐿 “
ω)) |
175 | 43, 174 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ 𝑖 ∈ ω (𝐿‘𝑖) = ∪ (𝐿 “
ω) |
176 | 175 | eleq2i 2824 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ ∪ 𝑖 ∈ ω (𝐿‘𝑖) ↔ 𝑑 ∈ ∪ (𝐿 “
ω)) |
177 | 173, 176 | bitr3i 277 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑖 ∈
ω 𝑑 ∈ (𝐿‘𝑖) ↔ 𝑑 ∈ ∪ (𝐿 “
ω)) |
178 | 11, 12, 13, 2, 3, 14 | precsexlem9 28026 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (∀𝑑 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑑) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐))) |
179 | 178 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ∀𝑑 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑑) <s 1s ) |
180 | | rsp 3243 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑑 ∈
(𝐿‘𝑖)(𝐴 ·s 𝑑) <s 1s → (𝑑 ∈ (𝐿‘𝑖) → (𝐴 ·s 𝑑) <s 1s )) |
181 | 179, 180 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑑 ∈ (𝐿‘𝑖) → (𝐴 ·s 𝑑) <s 1s )) |
182 | 181 | rexlimdva 3154 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿‘𝑖) → (𝐴 ·s 𝑑) <s 1s )) |
183 | 177, 182 | biimtrrid 242 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑑 ∈ ∪ (𝐿 “ ω) → (𝐴 ·s 𝑑) <s 1s
)) |
184 | 183 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (𝐴 ·s 𝑑) <s 1s
) |
185 | 172, 184 | eqbrtrd 5170 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))
<s 1s ) |
186 | 185 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑑 ∈ ∪ (𝐿 “ ω) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))
<s 1s )) |
187 | 67 | breq1d 5158 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 0s →
((((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔
((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))
<s 1s )) |
188 | 187 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 0s → ((𝑑 ∈ ∪ (𝐿
“ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ) ↔ (𝑑 ∈ ∪ (𝐿
“ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))
<s 1s ))) |
189 | 186, 188 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑐 = 0s → (𝑑 ∈ ∪ (𝐿 “ ω) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
))) |
190 | | scutcut 27647 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω) → ((∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω)) ∈ No ∧ ∪ (𝐿 “ ω) <<s
{(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} ∧ {(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} <<s ∪ (𝑅 “ ω))) |
191 | 15, 190 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω)) ∈ No ∧ ∪ (𝐿 “ ω) <<s
{(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} ∧ {(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} <<s ∪ (𝑅 “ ω))) |
192 | 191 | simp3d 1143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))} <<s ∪ (𝑅
“ ω)) |
193 | 192 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
{(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} <<s ∪ (𝑅 “ ω)) |
194 | | ovex 7445 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω)) ∈ V |
195 | 194 | snid 4664 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω)) ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))} |
196 | 17, 195 | eqeltri 2828 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑌 ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))} |
197 | 196 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑌 ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))}) |
198 | | peano2 7885 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ ω → suc 𝑖 ∈
ω) |
199 | 198 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → suc 𝑖 ∈ ω) |
200 | | eqid 2731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) |
201 | | oveq1 7419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥𝐿 = 𝑐 → (𝑥𝐿 -s 𝐴) = (𝑐 -s 𝐴)) |
202 | 201 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿)) |
203 | 202 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥𝐿 = 𝑐 → ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = (
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿))) |
204 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥𝐿 = 𝑐 → 𝑥𝐿 = 𝑐) |
205 | 203, 204 | oveq12d 7430 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥𝐿 = 𝑐 → (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝐿)) /su
𝑐)) |
206 | 205 | eqeq2d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥𝐿 = 𝑐 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su
𝑐))) |
207 | | oveq2 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦𝐿 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑑)) |
208 | 207 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦𝐿 = 𝑑 → ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝐿)) = ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))) |
209 | 208 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦𝐿 = 𝑑 → (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝐿)) /su
𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)) |
210 | 209 | eqeq2d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦𝐿 = 𝑑 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su
𝑐) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))) |
211 | 206, 210 | rspc2ev 3624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿‘𝑖) ∧ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐))
→ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)) |
212 | 200, 211 | mp3an3 1449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿‘𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)) |
213 | 212 | ad2ant2l 743 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)) |
214 | | ovex 7445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ V |
215 | | eqeq1 2735 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (𝑎 = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
216 | 215 | 2rexbidv 3218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿))) |
217 | 214, 216 | elab 3668 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)) |
218 | 213, 217 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}) |
219 | | elun1 4176 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})) |
220 | | elun2 4177 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
221 | 218, 219,
220 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
222 | 11, 12, 13 | precsexlem5 28022 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ ω → (𝑅‘suc 𝑖) = ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
223 | 222 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (𝑅‘suc 𝑖) = ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
224 | 221, 223 | eleqtrrd 2835 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) |
225 | | fveq2 6891 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = suc 𝑖 → (𝑅‘𝑗) = (𝑅‘suc 𝑖)) |
226 | 225 | eleq2d 2818 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = suc 𝑖 → ((( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))) |
227 | 226 | rspcev 3612 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((suc
𝑖 ∈ ω ∧ ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗)) |
228 | 199, 224,
227 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗)) |
229 | 228 | rexlimdvaa 3155 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿‘𝑖) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗))) |
230 | | eliun 5001 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪
𝑗 ∈ ω (𝑅‘𝑗) ↔ ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗)) |
231 | | fo2nd 8000 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
2nd :V–onto→V |
232 | | fofun 6806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(2nd :V–onto→V → Fun 2nd ) |
233 | 231, 232 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ Fun
2nd |
234 | | funco 6588 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Fun
2nd ∧ Fun 𝐹)
→ Fun (2nd ∘ 𝐹)) |
235 | 233, 39, 234 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ Fun
(2nd ∘ 𝐹) |
236 | 13 | funeqi 6569 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Fun
𝑅 ↔ Fun
(2nd ∘ 𝐹)) |
237 | 235, 236 | mpbir 230 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ Fun 𝑅 |
238 | | funiunfv 7250 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Fun
𝑅 → ∪ 𝑗 ∈ ω (𝑅‘𝑗) = ∪ (𝑅 “
ω)) |
239 | 237, 238 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪ 𝑗 ∈ ω (𝑅‘𝑗) = ∪ (𝑅 “
ω) |
240 | 239 | eleq2i 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪
𝑗 ∈ ω (𝑅‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅
“ ω)) |
241 | 230, 240 | bitr3i 277 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑗 ∈
ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅
“ ω)) |
242 | 229, 177,
241 | 3imtr3g 295 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 ∈ ∪ (𝐿 “ ω) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅 “
ω))) |
243 | 242 | impr 454 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅 “
ω)) |
244 | 193, 197,
243 | ssltsepcd 27640 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑌 <s (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)) |
245 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑌 ∈
No ) |
246 | 144 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
1s ∈ No ) |
247 | | leftssno 27720 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ( L
‘𝐴) ⊆ No |
248 | 6, 247 | sstri 3991 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ⊆ No |
249 | 248 | sseli 3978 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 ∈ No
) |
250 | 249 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 ∈ No
) |
251 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 ∈ No
) |
252 | 250, 251 | subscld 27886 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 -s 𝐴) ∈ No
) |
253 | 252 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 -s 𝐴) ∈
No ) |
254 | 115 | adantrl 713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑑 ∈
No ) |
255 | 253, 254 | mulscld 27948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) ∈
No ) |
256 | 246, 255 | addscld 27810 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No
) |
257 | 249 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑐 ∈
No ) |
258 | | breq2 5152 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑐 → ( 0s <s 𝑥 ↔ 0s <s
𝑐)) |
259 | 258 | elrab 3683 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑐 ∈ ( L ‘𝐴) ∧ 0s <s 𝑐)) |
260 | 259 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s
𝑐) |
261 | 260 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
0s <s 𝑐) |
262 | 260 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s
𝑐) |
263 | | breq2 5152 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥𝑂 = 𝑐 → ( 0s <s
𝑥𝑂
↔ 0s <s 𝑐)) |
264 | | oveq1 7419 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥𝑂 = 𝑐 → (𝑥𝑂 ·s
𝑦) = (𝑐 ·s 𝑦)) |
265 | 264 | eqeq1d 2733 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥𝑂 = 𝑐 → ((𝑥𝑂 ·s
𝑦) = 1s ↔
(𝑐 ·s
𝑦) = 1s
)) |
266 | 265 | rexbidv 3177 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥𝑂 = 𝑐 → (∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s ↔
∃𝑦 ∈ No (𝑐 ·s 𝑦) = 1s )) |
267 | 263, 266 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥𝑂 = 𝑐 → (( 0s <s
𝑥𝑂
→ ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s ) ↔
( 0s <s 𝑐
→ ∃𝑦 ∈
No (𝑐 ·s 𝑦) = 1s ))) |
268 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))( 0s
<s 𝑥𝑂
→ ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s
)) |
269 | | ssun1 4172 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ( L
‘𝐴) ⊆ (( L
‘𝐴) ∪ ( R
‘𝐴)) |
270 | 6, 269 | sstri 3991 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ⊆ (( L
‘𝐴) ∪ ( R
‘𝐴)) |
271 | 270 | sseli 3978 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
272 | 271 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
273 | 267, 268,
272 | rspcdva 3613 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s
𝑐 → ∃𝑦 ∈
No (𝑐
·s 𝑦) =
1s )) |
274 | 262, 273 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 ∈
No (𝑐
·s 𝑦) =
1s ) |
275 | 274 | adantrr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
∃𝑦 ∈ No (𝑐 ·s 𝑦) = 1s ) |
276 | 245, 256,
257, 261, 275 | sltmuldiv2wd 28014 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 ·s
𝑌) <s ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
↔ 𝑌 <s ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))) |
277 | 244, 276 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑌) <s ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))) |
278 | 257, 254 | mulscld 27948 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑑) ∈ No ) |
279 | 166 | adantrl 713 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝐴 ·s
𝑑) ∈ No ) |
280 | 246, 278,
279 | addsubsassd 27902 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
281 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝐴 ∈
No ) |
282 | 257, 281,
254 | subsdird 27972 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))) |
283 | 282 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
284 | 280, 283 | eqtr4d 2774 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑))) |
285 | 277, 284 | breqtrrd 5176 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑌) <s (( 1s
+s (𝑐
·s 𝑑))
-s (𝐴
·s 𝑑))) |
286 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑌 ∈ No
) |
287 | 250, 286 | mulscld 27948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 ·s 𝑌) ∈ No
) |
288 | 287 | adantrr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑌) ∈ No ) |
289 | 288, 279 | addscld 27810 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) ∈
No ) |
290 | 289, 278,
246 | sltsubaddd 27910 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s
+s (𝑐
·s 𝑑)))) |
291 | 246, 278 | addscld 27810 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s (𝑐 ·s 𝑑)) ∈ No
) |
292 | 288, 279,
291 | sltaddsubd 27912 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s
+s (𝑐
·s 𝑑))
↔ (𝑐
·s 𝑌)
<s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))) |
293 | 290, 292 | bitrd 279 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔
(𝑐 ·s
𝑌) <s (( 1s
+s (𝑐
·s 𝑑))
-s (𝐴
·s 𝑑)))) |
294 | 285, 293 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
) |
295 | 294 | exp32 420 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 ∈ ∪ (𝐿 “ ω) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
))) |
296 | 189, 295 | jaod 856 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑐 = 0s ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 ∈ ∪ (𝐿 “ ω) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
))) |
297 | 159, 296 | biimtrid 241 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → (𝑑 ∈ ∪ (𝐿
“ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ))) |
298 | 297 | imp32 418 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ) |
299 | | breq1 5151 |
. . . . . . . . . . 11
⊢ (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑒 <s 1s ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
)) |
300 | 298, 299 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s )) |
301 | 300 | rexlimdvva 3210 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s )) |
302 | 192 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
{(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} <<s ∪ (𝑅 “ ω)) |
303 | 196 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑌 ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))}) |
304 | 198 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → suc 𝑖 ∈ ω) |
305 | | oveq1 7419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥𝑅 = 𝑐 → (𝑥𝑅 -s 𝐴) = (𝑐 -s 𝐴)) |
306 | 305 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅)) |
307 | 306 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥𝑅 = 𝑐 → ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = (
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅))) |
308 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥𝑅 = 𝑐 → 𝑥𝑅 = 𝑐) |
309 | 307, 308 | oveq12d 7430 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥𝑅 = 𝑐 → (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝑅)) /su
𝑐)) |
310 | 309 | eqeq2d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥𝑅 = 𝑐 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su
𝑐))) |
311 | | oveq2 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦𝑅 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑑)) |
312 | 311 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦𝑅 = 𝑑 → ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝑅)) = ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))) |
313 | 312 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦𝑅 = 𝑑 → (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝑅)) /su
𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)) |
314 | 313 | eqeq2d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦𝑅 = 𝑑 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su
𝑐) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))) |
315 | 310, 314 | rspc2ev 3624 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅‘𝑖) ∧ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐))
→ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)) |
316 | 200, 315 | mp3an3 1449 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅‘𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)) |
317 | 316 | ad2ant2l 743 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)) |
318 | | eqeq1 2735 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (𝑎 = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
319 | 318 | 2rexbidv 3218 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
320 | 214, 319 | elab 3668 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)) |
321 | 317, 320 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}) |
322 | | elun2 4177 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})) |
323 | 321, 322,
220 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
324 | 222 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (𝑅‘suc 𝑖) = ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
325 | 323, 324 | eleqtrrd 2835 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) |
326 | 304, 325,
227 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗)) |
327 | 326 | rexlimdvaa 3155 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅‘𝑖) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗))) |
328 | | eliun 5001 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 ∈ ∪ 𝑖 ∈ ω (𝑅‘𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝑅‘𝑖)) |
329 | | funiunfv 7250 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Fun
𝑅 → ∪ 𝑖 ∈ ω (𝑅‘𝑖) = ∪ (𝑅 “
ω)) |
330 | 237, 329 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑖 ∈ ω (𝑅‘𝑖) = ∪ (𝑅 “
ω) |
331 | 330 | eleq2i 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 ∈ ∪ 𝑖 ∈ ω (𝑅‘𝑖) ↔ 𝑑 ∈ ∪ (𝑅 “
ω)) |
332 | 328, 331 | bitr3i 277 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑖 ∈
ω 𝑑 ∈ (𝑅‘𝑖) ↔ 𝑑 ∈ ∪ (𝑅 “
ω)) |
333 | 327, 332,
241 | 3imtr3g 295 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (𝑑 ∈ ∪ (𝑅 “ ω) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅 “
ω))) |
334 | 333 | impr 454 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅 “
ω)) |
335 | 302, 303,
334 | ssltsepcd 27640 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑌 <s (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)) |
336 | 144 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
1s ∈ No ) |
337 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 𝐴 ∈ No
) |
338 | 127, 337 | subscld 27886 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (𝑐 -s 𝐴) ∈ No
) |
339 | 338 | adantrr 714 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 -s 𝐴) ∈
No ) |
340 | 339, 135 | mulscld 27948 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) ∈
No ) |
341 | 336, 340 | addscld 27810 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No
) |
342 | 20 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 0s ∈ No ) |
343 | 3 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝐴) |
344 | | breq2 5152 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝑂 = 𝑐 → (𝐴 <s 𝑥𝑂 ↔ 𝐴 <s 𝑐)) |
345 | | rightval 27704 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( R
‘𝐴) = {𝑥𝑂 ∈ ( O
‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥𝑂} |
346 | 344, 345 | elrab2 3686 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ ( R ‘𝐴) ↔ (𝑐 ∈ ( O ‘(
bday ‘𝐴))
∧ 𝐴 <s 𝑐)) |
347 | 346 | simprbi 496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ ( R ‘𝐴) → 𝐴 <s 𝑐) |
348 | 347 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑐) |
349 | 342, 337,
127, 343, 348 | slttrd 27605 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝑐) |
350 | 349 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
0s <s 𝑐) |
351 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
352 | | elun2 4177 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ ( R ‘𝐴) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
353 | 352 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
354 | 267, 351,
353 | rspcdva 3613 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → ( 0s <s 𝑐 → ∃𝑦 ∈
No (𝑐
·s 𝑦) =
1s )) |
355 | 349, 354 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → ∃𝑦 ∈ No
(𝑐 ·s
𝑦) = 1s
) |
356 | 355 | adantrr 714 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
∃𝑦 ∈ No (𝑐 ·s 𝑦) = 1s ) |
357 | 129, 341,
128, 350, 356 | sltmuldiv2wd 28014 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 ·s
𝑌) <s ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
↔ 𝑌 <s ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))) |
358 | 335, 357 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑌) <s ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))) |
359 | 336, 138,
136 | addsubsassd 27902 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
360 | 128, 131,
135 | subsdird 27972 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))) |
361 | 360 | oveq2d 7428 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
362 | 359, 361 | eqtr4d 2774 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑))) |
363 | 358, 362 | breqtrrd 5176 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑌) <s (( 1s
+s (𝑐
·s 𝑑))
-s (𝐴
·s 𝑑))) |
364 | 137, 138,
336 | sltsubaddd 27910 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s
+s (𝑐
·s 𝑑)))) |
365 | 336, 138 | addscld 27810 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s (𝑐 ·s 𝑑)) ∈ No
) |
366 | 130, 136,
365 | sltaddsubd 27912 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s
+s (𝑐
·s 𝑑))
↔ (𝑐
·s 𝑌)
<s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))) |
367 | 364, 366 | bitrd 279 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔
(𝑐 ·s
𝑌) <s (( 1s
+s (𝑐
·s 𝑑))
-s (𝐴
·s 𝑑)))) |
368 | 363, 367 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
) |
369 | 368, 299 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s )) |
370 | 369 | rexlimdvva 3210 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s )) |
371 | 301, 370 | jaod 856 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 𝑒 <s 1s )) |
372 | 155, 371 | biimtrid 241 |
. . . . . . 7
⊢ (𝜑 → (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 1s )) |
373 | 372 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 1s ) |
374 | | velsn 4644 |
. . . . . . 7
⊢ (𝑓 ∈ { 1s } ↔
𝑓 = 1s
) |
375 | | breq2 5152 |
. . . . . . 7
⊢ (𝑓 = 1s → (𝑒 <s 𝑓 ↔ 𝑒 <s 1s )) |
376 | 374, 375 | sylbi 216 |
. . . . . 6
⊢ (𝑓 ∈ { 1s } →
(𝑒 <s 𝑓 ↔ 𝑒 <s 1s )) |
377 | 373, 376 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → (𝑓 ∈ { 1s } → 𝑒 <s 𝑓)) |
378 | 377 | 3impia 1116 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∧ 𝑓 ∈ { 1s }) → 𝑒 <s 𝑓) |
379 | 103, 105,
143, 146, 378 | ssltd 27637 |
. . 3
⊢ (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) <<s { 1s
}) |
380 | | eqid 2731 |
. . . . . . 7
⊢ (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
381 | 380 | rnmpo 7545 |
. . . . . 6
⊢ ran
(𝑐 ∈ ({ 0s
} ∪ {𝑥 ∈ ( L
‘𝐴) ∣
0s <s 𝑥}),
𝑑 ∈ ∪ (𝑅
“ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} |
382 | | mpoexga 8068 |
. . . . . . . 8
⊢ ((({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥}) ∈ V ∧ ∪ (𝑅
“ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
383 | 85, 97, 382 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
384 | | rnexg 7899 |
. . . . . . 7
⊢ ((𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
385 | 383, 384 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
386 | 381, 385 | eqeltrrid 2837 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V) |
387 | | eqid 2731 |
. . . . . . 7
⊢ (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
388 | 387 | rnmpo 7545 |
. . . . . 6
⊢ ran
(𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} |
389 | | mpoexga 8068 |
. . . . . . . 8
⊢ ((( R
‘𝐴) ∈ V ∧
∪ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
390 | 95, 87, 389 | sylancr 586 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
391 | | rnexg 7899 |
. . . . . . 7
⊢ ((𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
392 | 390, 391 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
393 | 388, 392 | eqeltrrid 2837 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V) |
394 | 386, 393 | unexd 7745 |
. . . 4
⊢ (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V) |
395 | 108 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → 𝑐
∈ No ) |
396 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → 𝑌
∈ No ) |
397 | 395, 396 | mulscld 27948 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (𝑐 ·s 𝑌) ∈ No
) |
398 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → 𝐴
∈ No ) |
399 | 134 | adantrl 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → 𝑑
∈ No ) |
400 | 398, 399 | mulscld 27948 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (𝐴 ·s 𝑑) ∈ No
) |
401 | 397, 400 | addscld 27810 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No
) |
402 | 395, 399 | mulscld 27948 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (𝑐 ·s 𝑑) ∈ No
) |
403 | 401, 402 | subscld 27886 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No
) |
404 | 403, 121 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
405 | 404 | rexlimdvva 3210 |
. . . . . 6
⊢ (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
406 | 405 | abssdv 4065 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No ) |
407 | 127 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑐 ∈
No ) |
408 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑌 ∈
No ) |
409 | 407, 408 | mulscld 27948 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑌) ∈ No ) |
410 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝐴 ∈
No ) |
411 | 115 | adantrl 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑑 ∈
No ) |
412 | 410, 411 | mulscld 27948 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝐴 ·s
𝑑) ∈ No ) |
413 | 409, 412 | addscld 27810 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) ∈
No ) |
414 | 407, 411 | mulscld 27948 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑑) ∈ No ) |
415 | 413, 414 | subscld 27886 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈
No ) |
416 | 415, 121 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
417 | 416 | rexlimdvva 3210 |
. . . . . 6
⊢ (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
418 | 417 | abssdv 4065 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No
) |
419 | 406, 418 | unssd 4186 |
. . . 4
⊢ (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No
) |
420 | | elun 4148 |
. . . . . . . 8
⊢ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) |
421 | | vex 3477 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
422 | | eqeq1 2735 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑓 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
423 | 422 | 2rexbidv 3218 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑓 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
424 | 421, 423 | elab 3668 |
. . . . . . . . 9
⊢ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
425 | 422 | 2rexbidv 3218 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑓 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
426 | 421, 425 | elab 3668 |
. . . . . . . . 9
⊢ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
427 | 424, 426 | orbi12i 912 |
. . . . . . . 8
⊢ ((𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
428 | 420, 427 | bitri 275 |
. . . . . . 7
⊢ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
429 | | eliun 5001 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 ∈ ∪ 𝑗 ∈ ω (𝑅‘𝑗) ↔ ∃𝑗 ∈ ω 𝑑 ∈ (𝑅‘𝑗)) |
430 | 239 | eleq2i 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 ∈ ∪ 𝑗 ∈ ω (𝑅‘𝑗) ↔ 𝑑 ∈ ∪ (𝑅 “
ω)) |
431 | 429, 430 | bitr3i 277 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑗 ∈
ω 𝑑 ∈ (𝑅‘𝑗) ↔ 𝑑 ∈ ∪ (𝑅 “
ω)) |
432 | 11, 12, 13, 2, 3, 14 | precsexlem9 28026 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (∀𝑐 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑐) <s 1s ∧ ∀𝑑 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑑))) |
433 | | rsp 3243 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑑 ∈
(𝑅‘𝑗) 1s <s (𝐴 ·s 𝑑) → (𝑑 ∈ (𝑅‘𝑗) → 1s <s (𝐴 ·s 𝑑))) |
434 | 432, 433 | simpl2im 503 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝑑 ∈ (𝑅‘𝑗) → 1s <s (𝐴 ·s 𝑑))) |
435 | 434 | rexlimdva 3154 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (∃𝑗 ∈ ω 𝑑 ∈ (𝑅‘𝑗) → 1s <s (𝐴 ·s 𝑑))) |
436 | 431, 435 | biimtrrid 242 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s (𝐴
·s 𝑑))) |
437 | 436 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) →
1s <s (𝐴
·s 𝑑)) |
438 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → 𝑌 ∈
No ) |
439 | 57 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑌 ∈
No → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑))) |
440 | 438, 439 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → ((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑))) |
441 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → 𝐴 ∈
No ) |
442 | 441, 134 | mulscld 27948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → (𝐴 ·s 𝑑) ∈
No ) |
443 | 442, 167 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → (
0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑)) |
444 | 440, 443 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → ((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑)) |
445 | 134, 162 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → (
0s ·s 𝑑) = 0s ) |
446 | 444, 445 | oveq12d 7430 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)) =
((𝐴 ·s
𝑑) -s
0s )) |
447 | 442, 170 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) →
((𝐴 ·s
𝑑) -s
0s ) = (𝐴
·s 𝑑)) |
448 | 446, 447 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)) =
(𝐴 ·s
𝑑)) |
449 | 437, 448 | breqtrrd 5176 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) →
1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))) |
450 | 449 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)))) |
451 | 67 | breq2d 5160 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 0s → (
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))
↔ 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)))) |
452 | 451 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 0s → ((𝑑 ∈ ∪ (𝑅
“ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ↔ (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))))) |
453 | 450, 452 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑐 = 0s → (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))))) |
454 | 144 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
1s ∈ No ) |
455 | 249 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑐 ∈
No ) |
456 | 134 | adantrl 713 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑑 ∈
No ) |
457 | 455, 456 | mulscld 27948 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑑) ∈ No ) |
458 | 442 | adantrl 713 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝐴 ·s
𝑑) ∈ No ) |
459 | 454, 457,
458 | addsubsassd 27902 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
460 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝐴 ∈
No ) |
461 | 455, 460,
456 | subsdird 27972 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))) |
462 | 461 | oveq2d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
463 | 459, 462 | eqtr4d 2774 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑))) |
464 | 191 | simp2d 1142 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∪ (𝐿
“ ω) <<s {(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))}) |
465 | 464 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ∪ (𝐿
“ ω) <<s {(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))}) |
466 | 198 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → suc 𝑖 ∈ ω) |
467 | 201 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅)) |
468 | 467 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥𝐿 = 𝑐 → ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = (
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅))) |
469 | 468, 204 | oveq12d 7430 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥𝐿 = 𝑐 → (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝑅)) /su
𝑐)) |
470 | 469 | eqeq2d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥𝐿 = 𝑐 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su
𝑐))) |
471 | 470, 314 | rspc2ev 3624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅‘𝑖) ∧ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐))
→ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)) |
472 | 200, 471 | mp3an3 1449 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅‘𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)) |
473 | 472 | ad2ant2l 743 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)) |
474 | | eqeq1 2735 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (𝑎 = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿))) |
475 | 474 | 2rexbidv 3218 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
476 | 214, 475 | elab 3668 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)) |
477 | 473, 476 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}) |
478 | | elun2 4177 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})) |
479 | | elun2 4177 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
480 | 477, 478,
479 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
481 | 11, 12, 13 | precsexlem4 28021 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ ω → (𝐿‘suc 𝑖) = ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
482 | 481 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (𝐿‘suc 𝑖) = ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
483 | 480, 482 | eleqtrrd 2835 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) |
484 | | fveq2 6891 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = suc 𝑖 → (𝐿‘𝑗) = (𝐿‘suc 𝑖)) |
485 | 484 | eleq2d 2818 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = suc 𝑖 → ((( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))) |
486 | 485 | rspcev 3612 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((suc
𝑖 ∈ ω ∧ ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗)) |
487 | 466, 483,
486 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗)) |
488 | 487 | rexlimdvaa 3155 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅‘𝑖) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗))) |
489 | | eliun 5001 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪
𝑗 ∈ ω (𝐿‘𝑗) ↔ ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗)) |
490 | | funiunfv 7250 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (Fun
𝐿 → ∪ 𝑗 ∈ ω (𝐿‘𝑗) = ∪ (𝐿 “
ω)) |
491 | 43, 490 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ∪ 𝑗 ∈ ω (𝐿‘𝑗) = ∪ (𝐿 “
ω) |
492 | 491 | eleq2i 2824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪
𝑗 ∈ ω (𝐿‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿
“ ω)) |
493 | 489, 492 | bitr3i 277 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑗 ∈
ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿
“ ω)) |
494 | 488, 332,
493 | 3imtr3g 295 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 ∈ ∪ (𝑅 “ ω) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿 “
ω))) |
495 | 494 | impr 454 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿 “
ω)) |
496 | 196 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑌 ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))}) |
497 | 465, 495,
496 | ssltsepcd 27640 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌) |
498 | 252 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 -s 𝐴) ∈
No ) |
499 | 498, 456 | mulscld 27948 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) ∈
No ) |
500 | 454, 499 | addscld 27810 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No
) |
501 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑌 ∈
No ) |
502 | 260 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
0s <s 𝑐) |
503 | 274 | adantrr 714 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
∃𝑦 ∈ No (𝑐 ·s 𝑦) = 1s ) |
504 | 500, 501,
455, 502, 503 | sltdivmulwd 28011 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))) |
505 | 497, 504 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)) |
506 | 463, 505 | eqbrtrd 5170 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌)) |
507 | 454, 457 | addscld 27810 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s (𝑐 ·s 𝑑)) ∈ No
) |
508 | 287 | adantrr 714 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑌) ∈ No ) |
509 | 507, 458,
508 | sltsubaddd 27910 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s
(𝑐 ·s
𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)))) |
510 | 508, 458 | addscld 27810 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) ∈
No ) |
511 | 454, 457,
510 | sltaddsubd 27912 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
512 | 509, 511 | bitrd 279 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
513 | 506, 512 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))) |
514 | 513 | exp32 420 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))))) |
515 | 453, 514 | jaod 856 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑐 = 0s ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))))) |
516 | 159, 515 | biimtrid 241 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → (𝑑 ∈ ∪ (𝑅
“ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))) |
517 | 516 | imp32 418 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
518 | | breq2 5152 |
. . . . . . . . . 10
⊢ (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → ( 1s <s 𝑓 ↔ 1s <s
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
519 | 517, 518 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓)) |
520 | 519 | rexlimdvva 3210 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s
𝑓)) |
521 | 144 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
1s ∈ No ) |
522 | 521, 414,
412 | addsubsassd 27902 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
523 | 407, 410,
411 | subsdird 27972 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))) |
524 | 523 | oveq2d 7428 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
525 | 522, 524 | eqtr4d 2774 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑))) |
526 | 464 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ∪ (𝐿
“ ω) <<s {(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))}) |
527 | 198 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → suc 𝑖 ∈ ω) |
528 | 305 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿)) |
529 | 528 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥𝑅 = 𝑐 → ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = (
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿))) |
530 | 529, 308 | oveq12d 7430 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥𝑅 = 𝑐 → (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝐿)) /su
𝑐)) |
531 | 530 | eqeq2d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥𝑅 = 𝑐 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su
𝑐))) |
532 | 531, 210 | rspc2ev 3624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿‘𝑖) ∧ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐))
→ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)) |
533 | 200, 532 | mp3an3 1449 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿‘𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)) |
534 | 533 | ad2ant2l 743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)) |
535 | | eqeq1 2735 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (𝑎 = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅))) |
536 | 535 | 2rexbidv 3218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅))) |
537 | 214, 536 | elab 3668 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)) |
538 | 534, 537 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}) |
539 | | elun1 4176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})) |
540 | 538, 539,
479 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
541 | 481 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (𝐿‘suc 𝑖) = ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
542 | 540, 541 | eleqtrrd 2835 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) |
543 | 527, 542,
486 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗)) |
544 | 543 | rexlimdvaa 3155 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿‘𝑖) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗))) |
545 | 544, 177,
493 | 3imtr3g 295 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (𝑑 ∈ ∪ (𝐿 “ ω) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿 “
ω))) |
546 | 545 | impr 454 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿 “
ω)) |
547 | 196 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑌 ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))}) |
548 | 526, 546,
547 | ssltsepcd 27640 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌) |
549 | 338 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 -s 𝐴) ∈
No ) |
550 | 549, 411 | mulscld 27948 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) ∈
No ) |
551 | 521, 550 | addscld 27810 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No
) |
552 | 349 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
0s <s 𝑐) |
553 | 355 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
∃𝑦 ∈ No (𝑐 ·s 𝑦) = 1s ) |
554 | 551, 408,
407, 552, 553 | sltdivmulwd 28011 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))) |
555 | 548, 554 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)) |
556 | 525, 555 | eqbrtrd 5170 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌)) |
557 | 521, 414 | addscld 27810 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s (𝑐 ·s 𝑑)) ∈ No
) |
558 | 557, 412,
409 | sltsubaddd 27910 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s
(𝑐 ·s
𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)))) |
559 | 521, 414,
413 | sltaddsubd 27912 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
560 | 558, 559 | bitrd 279 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
561 | 556, 560 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))) |
562 | 561, 518 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓)) |
563 | 562 | rexlimdvva 3210 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓)) |
564 | 520, 563 | jaod 856 |
. . . . . . 7
⊢ (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 1s <s 𝑓)) |
565 | 428, 564 | biimtrid 241 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)) |
566 | | velsn 4644 |
. . . . . . 7
⊢ (𝑒 ∈ { 1s } ↔
𝑒 = 1s
) |
567 | | breq1 5151 |
. . . . . . . 8
⊢ (𝑒 = 1s → (𝑒 <s 𝑓 ↔ 1s <s 𝑓)) |
568 | 567 | imbi2d 340 |
. . . . . . 7
⊢ (𝑒 = 1s → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓))) |
569 | 566, 568 | sylbi 216 |
. . . . . 6
⊢ (𝑒 ∈ { 1s } →
((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓))) |
570 | 565, 569 | syl5ibrcom 246 |
. . . . 5
⊢ (𝜑 → (𝑒 ∈ { 1s } → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓))) |
571 | 570 | 3imp 1110 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ { 1s } ∧ 𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 𝑓) |
572 | 105, 394,
146, 419, 571 | ssltd 27637 |
. . 3
⊢ (𝜑 → { 1s }
<<s ({𝑏 ∣
∃𝑐 ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) |
573 | 81, 379, 572 | cuteq1 27679 |
. 2
⊢ (𝜑 → (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) = 1s ) |
574 | 19, 573 | eqtrd 2771 |
1
⊢ (𝜑 → (𝐴 ·s 𝑌) = 1s ) |