MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem11 Structured version   Visualization version   GIF version

Theorem precsexlem11 28241
Description: Lemma for surreal reciprocal. Show that the cut of the left and right sets is a multiplicative inverse for 𝐴. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
precsexlem.7 𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω))
Assertion
Ref Expression
precsexlem11 (𝜑 → (𝐴 ·s 𝑌) = 1s )
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑟   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑥𝑂)   𝑌(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)

Proof of Theorem precsexlem11
Dummy variables 𝑖 𝑗 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27911 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
2 precsexlem.4 . . . . . . 7 (𝜑𝐴 No )
3 precsexlem.5 . . . . . . 7 (𝜑 → 0s <s 𝐴)
42, 30elleft 27948 . . . . . 6 (𝜑 → 0s ∈ ( L ‘𝐴))
54snssd 4809 . . . . 5 (𝜑 → { 0s } ⊆ ( L ‘𝐴))
6 ssrab2 4080 . . . . . 6 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)
76a1i 11 . . . . 5 (𝜑 → {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴))
85, 7unssd 4192 . . . 4 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴))
9 sssslt1 27840 . . . 4 ((( L ‘𝐴) <<s ( R ‘𝐴) ∧ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴)) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴))
101, 8, 9sylancr 587 . . 3 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴))
11 precsexlem.1 . . . 4 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
12 precsexlem.2 . . . 4 𝐿 = (1st𝐹)
13 precsexlem.3 . . . 4 𝑅 = (2nd𝐹)
14 precsexlem.6 . . . 4 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
1511, 12, 13, 2, 3, 14precsexlem10 28240 . . 3 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
162, 3cutpos 27967 . . 3 (𝜑𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |s ( R ‘𝐴)))
17 precsexlem.7 . . . 4 𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω))
1817a1i 11 . . 3 (𝜑𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω)))
1910, 15, 16, 18mulsunif 28176 . 2 (𝜑 → (𝐴 ·s 𝑌) = (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})))
20 0sno 27871 . . . . . . . . 9 0s No
2120elexi 3503 . . . . . . . 8 0s ∈ V
2221snid 4662 . . . . . . 7 0s ∈ { 0s }
23 elun1 4182 . . . . . . 7 ( 0s ∈ { 0s } → 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
2422, 23ax-mp 5 . . . . . 6 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
25 peano1 7910 . . . . . . . . 9 ∅ ∈ ω
2611, 12, 13precsexlem1 28231 . . . . . . . . . 10 (𝐿‘∅) = { 0s }
2722, 26eleqtrri 2840 . . . . . . . . 9 0s ∈ (𝐿‘∅)
28 fveq2 6906 . . . . . . . . . . 11 (𝑏 = ∅ → (𝐿𝑏) = (𝐿‘∅))
2928eleq2d 2827 . . . . . . . . . 10 (𝑏 = ∅ → ( 0s ∈ (𝐿𝑏) ↔ 0s ∈ (𝐿‘∅)))
3029rspcev 3622 . . . . . . . . 9 ((∅ ∈ ω ∧ 0s ∈ (𝐿‘∅)) → ∃𝑏 ∈ ω 0s ∈ (𝐿𝑏))
3125, 27, 30mp2an 692 . . . . . . . 8 𝑏 ∈ ω 0s ∈ (𝐿𝑏)
32 eliun 4995 . . . . . . . 8 ( 0s 𝑏 ∈ ω (𝐿𝑏) ↔ ∃𝑏 ∈ ω 0s ∈ (𝐿𝑏))
3331, 32mpbir 231 . . . . . . 7 0s 𝑏 ∈ ω (𝐿𝑏)
34 fo1st 8034 . . . . . . . . . . 11 1st :V–onto→V
35 fofun 6821 . . . . . . . . . . 11 (1st :V–onto→V → Fun 1st )
3634, 35ax-mp 5 . . . . . . . . . 10 Fun 1st
37 rdgfun 8456 . . . . . . . . . . 11 Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
3811funeqi 6587 . . . . . . . . . . 11 (Fun 𝐹 ↔ Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
3937, 38mpbir 231 . . . . . . . . . 10 Fun 𝐹
40 funco 6606 . . . . . . . . . 10 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
4136, 39, 40mp2an 692 . . . . . . . . 9 Fun (1st𝐹)
4212funeqi 6587 . . . . . . . . 9 (Fun 𝐿 ↔ Fun (1st𝐹))
4341, 42mpbir 231 . . . . . . . 8 Fun 𝐿
44 funiunfv 7268 . . . . . . . 8 (Fun 𝐿 𝑏 ∈ ω (𝐿𝑏) = (𝐿 “ ω))
4543, 44ax-mp 5 . . . . . . 7 𝑏 ∈ ω (𝐿𝑏) = (𝐿 “ ω)
4633, 45eleqtri 2839 . . . . . 6 0s (𝐿 “ ω)
47 addsrid 27997 . . . . . . . . . 10 ( 0s No → ( 0s +s 0s ) = 0s )
4820, 47ax-mp 5 . . . . . . . . 9 ( 0s +s 0s ) = 0s
49 muls01 28138 . . . . . . . . . 10 ( 0s No → ( 0s ·s 0s ) = 0s )
5020, 49ax-mp 5 . . . . . . . . 9 ( 0s ·s 0s ) = 0s
5148, 50oveq12i 7443 . . . . . . . 8 (( 0s +s 0s ) -s ( 0s ·s 0s )) = ( 0s -s 0s )
52 subsid 28099 . . . . . . . . 9 ( 0s No → ( 0s -s 0s ) = 0s )
5320, 52ax-mp 5 . . . . . . . 8 ( 0s -s 0s ) = 0s
5451, 53eqtr2i 2766 . . . . . . 7 0s = (( 0s +s 0s ) -s ( 0s ·s 0s ))
5515scutcld 27848 . . . . . . . . . . 11 (𝜑 → ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No )
5617, 55eqeltrid 2845 . . . . . . . . . 10 (𝜑𝑌 No )
57 muls02 28167 . . . . . . . . . 10 (𝑌 No → ( 0s ·s 𝑌) = 0s )
5856, 57syl 17 . . . . . . . . 9 (𝜑 → ( 0s ·s 𝑌) = 0s )
59 muls01 28138 . . . . . . . . . 10 (𝐴 No → (𝐴 ·s 0s ) = 0s )
602, 59syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ·s 0s ) = 0s )
6158, 60oveq12d 7449 . . . . . . . 8 (𝜑 → (( 0s ·s 𝑌) +s (𝐴 ·s 0s )) = ( 0s +s 0s ))
6261oveq1d 7446 . . . . . . 7 (𝜑 → ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )) = (( 0s +s 0s ) -s ( 0s ·s 0s )))
6354, 62eqtr4id 2796 . . . . . 6 (𝜑 → 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )))
64 oveq1 7438 . . . . . . . . . 10 (𝑐 = 0s → (𝑐 ·s 𝑌) = ( 0s ·s 𝑌))
6564oveq1d 7446 . . . . . . . . 9 (𝑐 = 0s → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)))
66 oveq1 7438 . . . . . . . . 9 (𝑐 = 0s → (𝑐 ·s 𝑑) = ( 0s ·s 𝑑))
6765, 66oveq12d 7449 . . . . . . . 8 (𝑐 = 0s → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))
6867eqeq2d 2748 . . . . . . 7 (𝑐 = 0s → ( 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
69 oveq2 7439 . . . . . . . . . 10 (𝑑 = 0s → (𝐴 ·s 𝑑) = (𝐴 ·s 0s ))
7069oveq2d 7447 . . . . . . . . 9 (𝑑 = 0s → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s 𝑌) +s (𝐴 ·s 0s )))
71 oveq2 7439 . . . . . . . . 9 (𝑑 = 0s → ( 0s ·s 𝑑) = ( 0s ·s 0s ))
7270, 71oveq12d 7449 . . . . . . . 8 (𝑑 = 0s → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )))
7372eqeq2d 2748 . . . . . . 7 (𝑑 = 0s → ( 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) ↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s ))))
7468, 73rspc2ev 3635 . . . . . 6 (( 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 0s (𝐿 “ ω) ∧ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s ))) → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
7524, 46, 63, 74mp3an12i 1467 . . . . 5 (𝜑 → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
76 eqeq1 2741 . . . . . . 7 (𝑏 = 0s → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
77762rexbidv 3222 . . . . . 6 (𝑏 = 0s → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
7821, 77elab 3679 . . . . 5 ( 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
7975, 78sylibr 234 . . . 4 (𝜑 → 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})
80 elun1 4182 . . . 4 ( 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
8179, 80syl 17 . . 3 (𝜑 → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
82 eqid 2737 . . . . . . 7 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
8382rnmpo 7566 . . . . . 6 ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
84 ssltex1 27831 . . . . . . . . 9 (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V)
8510, 84syl 17 . . . . . . . 8 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V)
86 ssltex1 27831 . . . . . . . . 9 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝐿 “ ω) ∈ V)
8715, 86syl 17 . . . . . . . 8 (𝜑 (𝐿 “ ω) ∈ V)
88 mpoexga 8102 . . . . . . . 8 ((({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V ∧ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
8985, 87, 88syl2anc 584 . . . . . . 7 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
90 rnexg 7924 . . . . . . 7 ((𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9189, 90syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9283, 91eqeltrrid 2846 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
93 eqid 2737 . . . . . . 7 (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
9493rnmpo 7566 . . . . . 6 ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
95 fvex 6919 . . . . . . . 8 ( R ‘𝐴) ∈ V
96 ssltex2 27832 . . . . . . . . 9 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝑅 “ ω) ∈ V)
9715, 96syl 17 . . . . . . . 8 (𝜑 (𝑅 “ ω) ∈ V)
98 mpoexga 8102 . . . . . . . 8 ((( R ‘𝐴) ∈ V ∧ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9995, 97, 98sylancr 587 . . . . . . 7 (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
100 rnexg 7924 . . . . . . 7 ((𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
10199, 100syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
10294, 101eqeltrrid 2846 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
10392, 102unexd 7774 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V)
104 snex 5436 . . . . 5 { 1s } ∈ V
105104a1i 11 . . . 4 (𝜑 → { 1s } ∈ V)
106 ssltss1 27833 . . . . . . . . . . . . . 14 (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ No )
10710, 106syl 17 . . . . . . . . . . . . 13 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ No )
108107sselda 3983 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})) → 𝑐 No )
109108adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
11056adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
111109, 110mulscld 28161 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
1122adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
113 ssltss1 27833 . . . . . . . . . . . . . 14 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝐿 “ ω) ⊆ No )
11415, 113syl 17 . . . . . . . . . . . . 13 (𝜑 (𝐿 “ ω) ⊆ No )
115114sselda 3983 . . . . . . . . . . . 12 ((𝜑𝑑 (𝐿 “ ω)) → 𝑑 No )
116115adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
117112, 116mulscld 28161 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
118111, 117addscld 28013 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
119109, 116mulscld 28161 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
120118, 119subscld 28093 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
121 eleq1 2829 . . . . . . . 8 (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑏 No ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No ))
122120, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
123122rexlimdvva 3213 . . . . . 6 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
124123abssdv 4068 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
125 rightssno 27920 . . . . . . . . . . . . . 14 ( R ‘𝐴) ⊆ No
126125a1i 11 . . . . . . . . . . . . 13 (𝜑 → ( R ‘𝐴) ⊆ No )
127126sselda 3983 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝑐 No )
128127adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
12956adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
130128, 129mulscld 28161 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
1312adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
132 ssltss2 27834 . . . . . . . . . . . . . 14 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝑅 “ ω) ⊆ No )
13315, 132syl 17 . . . . . . . . . . . . 13 (𝜑 (𝑅 “ ω) ⊆ No )
134133sselda 3983 . . . . . . . . . . . 12 ((𝜑𝑑 (𝑅 “ ω)) → 𝑑 No )
135134adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
136131, 135mulscld 28161 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
137130, 136addscld 28013 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
138128, 135mulscld 28161 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
139137, 138subscld 28093 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
140139, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
141140rexlimdvva 3213 . . . . . 6 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
142141abssdv 4068 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
143124, 142unssd 4192 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No )
144 1sno 27872 . . . . 5 1s No
145 snssi 4808 . . . . 5 ( 1s No → { 1s } ⊆ No )
146144, 145mp1i 13 . . . 4 (𝜑 → { 1s } ⊆ No )
147 elun 4153 . . . . . . . . 9 (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
148 vex 3484 . . . . . . . . . . 11 𝑒 ∈ V
149 eqeq1 2741 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
1501492rexbidv 3222 . . . . . . . . . . 11 (𝑏 = 𝑒 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
151148, 150elab 3679 . . . . . . . . . 10 (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
1521492rexbidv 3222 . . . . . . . . . . 11 (𝑏 = 𝑒 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
153148, 152elab 3679 . . . . . . . . . 10 (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
154151, 153orbi12i 915 . . . . . . . . 9 ((𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
155147, 154bitri 275 . . . . . . . 8 (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
156 elun 4153 . . . . . . . . . . . . . 14 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 ∈ { 0s } ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
157 velsn 4642 . . . . . . . . . . . . . . 15 (𝑐 ∈ { 0s } ↔ 𝑐 = 0s )
158157orbi1i 914 . . . . . . . . . . . . . 14 ((𝑐 ∈ { 0s } ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
159156, 158bitri 275 . . . . . . . . . . . . 13 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
16058adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s ·s 𝑌) = 0s )
161160oveq1d 7446 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
162 muls02 28167 . . . . . . . . . . . . . . . . . . . 20 (𝑑 No → ( 0s ·s 𝑑) = 0s )
163115, 162syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s ·s 𝑑) = 0s )
164161, 163oveq12d 7449 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (( 0s +s (𝐴 ·s 𝑑)) -s 0s ))
1652adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 (𝐿 “ ω)) → 𝐴 No )
166165, 115mulscld 28161 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝐿 “ ω)) → (𝐴 ·s 𝑑) ∈ No )
167 addslid 28001 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ·s 𝑑) ∈ No → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
168166, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
169168oveq1d 7446 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → (( 0s +s (𝐴 ·s 𝑑)) -s 0s ) = ((𝐴 ·s 𝑑) -s 0s ))
170 subsid1 28098 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ·s 𝑑) ∈ No → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
171166, 170syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
172164, 169, 1713eqtrd 2781 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (𝐴 ·s 𝑑))
173 eliun 4995 . . . . . . . . . . . . . . . . . . . 20 (𝑑 𝑖 ∈ ω (𝐿𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖))
174 funiunfv 7268 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐿 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω))
17543, 174ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω)
176175eleq2i 2833 . . . . . . . . . . . . . . . . . . . 20 (𝑑 𝑖 ∈ ω (𝐿𝑖) ↔ 𝑑 (𝐿 “ ω))
177173, 176bitr3i 277 . . . . . . . . . . . . . . . . . . 19 (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) ↔ 𝑑 (𝐿 “ ω))
17811, 12, 13, 2, 3, 14precsexlem9 28239 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ ω) → (∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)))
179178simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ ω) → ∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s )
180 rsp 3247 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s → (𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
181179, 180syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ ω) → (𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
182181rexlimdva 3155 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
183177, 182biimtrrid 243 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑑 (𝐿 “ ω) → (𝐴 ·s 𝑑) <s 1s ))
184183imp 406 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝐿 “ ω)) → (𝐴 ·s 𝑑) <s 1s )
185172, 184eqbrtrd 5165 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s )
186185ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑑 (𝐿 “ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s ))
18767breq1d 5153 . . . . . . . . . . . . . . . 16 (𝑐 = 0s → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s ))
188187imbi2d 340 . . . . . . . . . . . . . . 15 (𝑐 = 0s → ((𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ) ↔ (𝑑 (𝐿 “ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s )))
189186, 188syl5ibrcom 247 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 = 0s → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
190 scutcut 27846 . . . . . . . . . . . . . . . . . . . . . 22 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))} ∧ {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω)))
19115, 190syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))} ∧ {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω)))
192191simp3d 1145 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
193192adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
194 ovex 7464 . . . . . . . . . . . . . . . . . . . . . 22 ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ V
195194snid 4662 . . . . . . . . . . . . . . . . . . . . 21 ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))}
19617, 195eqeltri 2837 . . . . . . . . . . . . . . . . . . . 20 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))}
197196a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
198 peano2 7912 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
199198ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → suc 𝑖 ∈ ω)
200 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)
201 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥𝐿 = 𝑐 → (𝑥𝐿 -s 𝐴) = (𝑐 -s 𝐴))
202201oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿))
203202oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐 → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)))
204 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐𝑥𝐿 = 𝑐)
205203, 204oveq12d 7449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥𝐿 = 𝑐 → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐))
206205eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝐿 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐)))
207 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦𝐿 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑑))
208207oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦𝐿 = 𝑑 → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
209208oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦𝐿 = 𝑑 → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
210209eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐿 = 𝑑 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
211206, 210rspc2ev 3635 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
212200, 211mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
213212ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
214 ovex 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ V
215 eqeq1 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
2162152rexbidv 3222 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
217214, 216elab 3679 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
218213, 217sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)})
219 elun1 4182 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
220 elun2 4183 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
221218, 219, 2203syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
22211, 12, 13precsexlem5 28235 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ ω → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
223222ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
224221, 223eleqtrrd 2844 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))
225 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = suc 𝑖 → (𝑅𝑗) = (𝑅‘suc 𝑖))
226225eleq2d 2827 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = suc 𝑖 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)))
227226rspcev 3622 . . . . . . . . . . . . . . . . . . . . . . 23 ((suc 𝑖 ∈ ω ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
228199, 224, 227syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
229228rexlimdvaa 3156 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗)))
230 eliun 4995 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
231 fo2nd 8035 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2nd :V–onto→V
232 fofun 6821 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2nd :V–onto→V → Fun 2nd )
233231, 232ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fun 2nd
234 funco 6606 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
235233, 39, 234mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 Fun (2nd𝐹)
23613funeqi 6587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Fun 𝑅 ↔ Fun (2nd𝐹))
237235, 236mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . 24 Fun 𝑅
238 funiunfv 7268 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑅 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω))
239237, 238ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω)
240239eleq2i 2833 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
241230, 240bitr3i 277 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
242229, 177, 2413imtr3g 295 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω)))
243242impr 454 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
244193, 197, 243ssltsepcd 27839 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
24556adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
246144a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 1s No )
247 leftssno 27919 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( L ‘𝐴) ⊆ No
2486, 247sstri 3993 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ No
249248sseli 3979 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 No )
250249adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 No )
2512adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 No )
252250, 251subscld 28093 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 -s 𝐴) ∈ No )
253252adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 -s 𝐴) ∈ No )
254115adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
255253, 254mulscld 28161 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
256246, 255addscld 28013 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
257249ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
258 breq2 5147 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → ( 0s <s 𝑥 ↔ 0s <s 𝑐))
259258elrab 3692 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑐 ∈ ( L ‘𝐴) ∧ 0s <s 𝑐))
260259simprbi 496 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑐)
261260ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 0s <s 𝑐)
262260adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s 𝑐)
263 breq2 5147 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑂 = 𝑐 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑐))
264 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑂 = 𝑐 → (𝑥𝑂 ·s 𝑦) = (𝑐 ·s 𝑦))
265264eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑂 = 𝑐 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑐 ·s 𝑦) = 1s ))
266265rexbidv 3179 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑂 = 𝑐 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
267263, 266imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑂 = 𝑐 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )))
26814adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
269 ssun1 4178 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
2706, 269sstri 3993 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
271270sseli 3979 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
272271adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
273267, 268, 272rspcdva 3623 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
274262, 273mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
275274adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
276245, 256, 257, 261, 275sltmuldiv2wd 28227 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ↔ 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
277244, 276mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
278257, 254mulscld 28161 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
279166adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
280246, 278, 279addsubsassd 28111 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
2812adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
282257, 281, 254subsdird 28185 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
283282oveq2d 7447 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
284280, 283eqtr4d 2780 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
285277, 284breqtrrd 5171 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))
28656adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑌 No )
287250, 286mulscld 28161 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 ·s 𝑌) ∈ No )
288287adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
289288, 279addscld 28013 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
290289, 278, 246sltsubaddd 28119 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑))))
291246, 278addscld 28013 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
292288, 279, 291sltaddsubd 28121 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑)) ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
293290, 292bitrd 279 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
294285, 293mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
295294exp32 420 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
296189, 295jaod 860 . . . . . . . . . . . . 13 (𝜑 → ((𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
297159, 296biimtrid 242 . . . . . . . . . . . 12 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
298297imp32 418 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
299 breq1 5146 . . . . . . . . . . 11 (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑒 <s 1s ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ))
300298, 299syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
301300rexlimdvva 3213 . . . . . . . . 9 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
302192adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
303196a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
304198ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → suc 𝑖 ∈ ω)
305 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝑅 = 𝑐 → (𝑥𝑅 -s 𝐴) = (𝑐 -s 𝐴))
306305oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅))
307306oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐 → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)))
308 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐𝑥𝑅 = 𝑐)
309307, 308oveq12d 7449 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑅 = 𝑐 → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐))
310309eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑅 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐)))
311 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦𝑅 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑑))
312311oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝑅 = 𝑑 → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
313312oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝑅 = 𝑑 → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
314313eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑅 = 𝑑 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
315310, 314rspc2ev 3635 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
316200, 315mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
317316ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
318 eqeq1 2741 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
3193182rexbidv 3222 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
320214, 319elab 3679 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
321317, 320sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})
322 elun2 4183 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
323321, 322, 2203syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
324222ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
325323, 324eleqtrrd 2844 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))
326304, 325, 227syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
327326rexlimdvaa 3156 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗)))
328 eliun 4995 . . . . . . . . . . . . . . . . . 18 (𝑑 𝑖 ∈ ω (𝑅𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖))
329 funiunfv 7268 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑅 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω))
330237, 329ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω)
331330eleq2i 2833 . . . . . . . . . . . . . . . . . 18 (𝑑 𝑖 ∈ ω (𝑅𝑖) ↔ 𝑑 (𝑅 “ ω))
332328, 331bitr3i 277 . . . . . . . . . . . . . . . . 17 (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) ↔ 𝑑 (𝑅 “ ω))
333327, 332, 2413imtr3g 295 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑑 (𝑅 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω)))
334333impr 454 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
335302, 303, 334ssltsepcd 27839 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
336144a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 1s No )
3372adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝐴 No )
338127, 337subscld 28093 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑐 -s 𝐴) ∈ No )
339338adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 -s 𝐴) ∈ No )
340339, 135mulscld 28161 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
341336, 340addscld 28013 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
34220a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s No )
3433adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝐴)
344 breq2 5147 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑐 → (𝐴 <s 𝑥𝑂𝐴 <s 𝑐))
345 rightval 27903 . . . . . . . . . . . . . . . . . . . 20 ( R ‘𝐴) = {𝑥𝑂 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥𝑂}
346344, 345elrab2 3695 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ( R ‘𝐴) ↔ (𝑐 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑐))
347346simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ( R ‘𝐴) → 𝐴 <s 𝑐)
348347adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑐)
349342, 337, 127, 343, 348slttrd 27804 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝑐)
350349adantrr 717 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 0s <s 𝑐)
35114adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
352 elun2 4183 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ( R ‘𝐴) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
353352adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
354267, 351, 353rspcdva 3623 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
355349, 354mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
356355adantrr 717 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
357129, 341, 128, 350, 356sltmuldiv2wd 28227 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ↔ 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
358335, 357mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
359336, 138, 136addsubsassd 28111 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
360128, 131, 135subsdird 28185 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
361360oveq2d 7447 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
362359, 361eqtr4d 2780 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
363358, 362breqtrrd 5171 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))
364137, 138, 336sltsubaddd 28119 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑))))
365336, 138addscld 28013 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
366130, 136, 365sltaddsubd 28121 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑)) ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
367364, 366bitrd 279 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
368363, 367mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
369368, 299syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
370369rexlimdvva 3213 . . . . . . . . 9 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
371301, 370jaod 860 . . . . . . . 8 (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 𝑒 <s 1s ))
372155, 371biimtrid 242 . . . . . . 7 (𝜑 → (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 1s ))
373372imp 406 . . . . . 6 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 1s )
374 velsn 4642 . . . . . . 7 (𝑓 ∈ { 1s } ↔ 𝑓 = 1s )
375 breq2 5147 . . . . . . 7 (𝑓 = 1s → (𝑒 <s 𝑓𝑒 <s 1s ))
376374, 375sylbi 217 . . . . . 6 (𝑓 ∈ { 1s } → (𝑒 <s 𝑓𝑒 <s 1s ))
377373, 376syl5ibrcom 247 . . . . 5 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → (𝑓 ∈ { 1s } → 𝑒 <s 𝑓))
3783773impia 1118 . . . 4 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∧ 𝑓 ∈ { 1s }) → 𝑒 <s 𝑓)
379103, 105, 143, 146, 378ssltd 27836 . . 3 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) <<s { 1s })
380 eqid 2737 . . . . . . 7 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
381380rnmpo 7566 . . . . . 6 ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
382 mpoexga 8102 . . . . . . . 8 ((({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V ∧ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
38385, 97, 382syl2anc 584 . . . . . . 7 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
384 rnexg 7924 . . . . . . 7 ((𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
385383, 384syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
386381, 385eqeltrrid 2846 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
387 eqid 2737 . . . . . . 7 (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
388387rnmpo 7566 . . . . . 6 ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
389 mpoexga 8102 . . . . . . . 8 ((( R ‘𝐴) ∈ V ∧ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
39095, 87, 389sylancr 587 . . . . . . 7 (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
391 rnexg 7924 . . . . . . 7 ((𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
392390, 391syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
393388, 392eqeltrrid 2846 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
394386, 393unexd 7774 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V)
395108adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
39656adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
397395, 396mulscld 28161 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
3982adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
399134adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
400398, 399mulscld 28161 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
401397, 400addscld 28013 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
402395, 399mulscld 28161 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
403401, 402subscld 28093 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
404403, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
405404rexlimdvva 3213 . . . . . 6 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
406405abssdv 4068 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
407127adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
40856adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
409407, 408mulscld 28161 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
4102adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
411115adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
412410, 411mulscld 28161 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
413409, 412addscld 28013 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
414407, 411mulscld 28161 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
415413, 414subscld 28093 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
416415, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
417416rexlimdvva 3213 . . . . . 6 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
418417abssdv 4068 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
419406, 418unssd 4192 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No )
420 elun 4153 . . . . . . . 8 (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
421 vex 3484 . . . . . . . . . 10 𝑓 ∈ V
422 eqeq1 2741 . . . . . . . . . . 11 (𝑏 = 𝑓 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
4234222rexbidv 3222 . . . . . . . . . 10 (𝑏 = 𝑓 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
424421, 423elab 3679 . . . . . . . . 9 (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
4254222rexbidv 3222 . . . . . . . . . 10 (𝑏 = 𝑓 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
426421, 425elab 3679 . . . . . . . . 9 (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
427424, 426orbi12i 915 . . . . . . . 8 ((𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
428420, 427bitri 275 . . . . . . 7 (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
429 eliun 4995 . . . . . . . . . . . . . . . . . . 19 (𝑑 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗))
430239eleq2i 2833 . . . . . . . . . . . . . . . . . . 19 (𝑑 𝑗 ∈ ω (𝑅𝑗) ↔ 𝑑 (𝑅 “ ω))
431429, 430bitr3i 277 . . . . . . . . . . . . . . . . . 18 (∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗) ↔ 𝑑 (𝑅 “ ω))
43211, 12, 13, 2, 3, 14precsexlem9 28239 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (∀𝑐 ∈ (𝐿𝑗)(𝐴 ·s 𝑐) <s 1s ∧ ∀𝑑 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑑)))
433 rsp 3247 . . . . . . . . . . . . . . . . . . . 20 (∀𝑑 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑑) → (𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
434432, 433simpl2im 503 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω) → (𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
435434rexlimdva 3155 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
436431, 435biimtrrid 243 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑 (𝑅 “ ω) → 1s <s (𝐴 ·s 𝑑)))
437436imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝑅 “ ω)) → 1s <s (𝐴 ·s 𝑑))
43856adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝑅 “ ω)) → 𝑌 No )
43957oveq1d 7446 . . . . . . . . . . . . . . . . . . . 20 (𝑌 No → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
440438, 439syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝑅 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
4412adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 (𝑅 “ ω)) → 𝐴 No )
442441, 134mulscld 28161 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝑅 “ ω)) → (𝐴 ·s 𝑑) ∈ No )
443442, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝑅 “ ω)) → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
444440, 443eqtrd 2777 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝑅 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
445134, 162syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝑅 “ ω)) → ( 0s ·s 𝑑) = 0s )
446444, 445oveq12d 7449 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝑅 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = ((𝐴 ·s 𝑑) -s 0s ))
447442, 170syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝑅 “ ω)) → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
448446, 447eqtrd 2777 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝑅 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (𝐴 ·s 𝑑))
449437, 448breqtrrd 5171 . . . . . . . . . . . . . . 15 ((𝜑𝑑 (𝑅 “ ω)) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))
450449ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑑 (𝑅 “ ω) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
45167breq2d 5155 . . . . . . . . . . . . . . 15 (𝑐 = 0s → ( 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
452451imbi2d 340 . . . . . . . . . . . . . 14 (𝑐 = 0s → ((𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ↔ (𝑑 (𝑅 “ ω) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))))
453450, 452syl5ibrcom 247 . . . . . . . . . . . . 13 (𝜑 → (𝑐 = 0s → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
454144a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 1s No )
455249ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
456134adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
457455, 456mulscld 28161 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
458442adantrl 716 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
459454, 457, 458addsubsassd 28111 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
4602adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
461455, 460, 456subsdird 28185 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
462461oveq2d 7447 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
463459, 462eqtr4d 2780 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
464191simp2d 1144 . . . . . . . . . . . . . . . . . . 19 (𝜑 (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
465464adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
466198ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → suc 𝑖 ∈ ω)
467201oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅))
468467oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥𝐿 = 𝑐 → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)))
469468, 204oveq12d 7449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝐿 = 𝑐 → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐))
470469eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝐿 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐)))
471470, 314rspc2ev 3635 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
472200, 471mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
473472ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
474 eqeq1 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
4754742rexbidv 3222 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
476214, 475elab 3679 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
477473, 476sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})
478 elun2 4183 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
479 elun2 4183 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
480477, 478, 4793syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
48111, 12, 13precsexlem4 28234 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ω → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
482481ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
483480, 482eleqtrrd 2844 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))
484 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = suc 𝑖 → (𝐿𝑗) = (𝐿‘suc 𝑖))
485484eleq2d 2827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = suc 𝑖 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)))
486485rspcev 3622 . . . . . . . . . . . . . . . . . . . . . 22 ((suc 𝑖 ∈ ω ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
487466, 483, 486syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
488487rexlimdvaa 3156 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗)))
489 eliun 4995 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝐿𝑗) ↔ ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
490 funiunfv 7268 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐿 𝑗 ∈ ω (𝐿𝑗) = (𝐿 “ ω))
49143, 490ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 ∈ ω (𝐿𝑗) = (𝐿 “ ω)
492491eleq2i 2833 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
493489, 492bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 (∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
494488, 332, 4933imtr3g 295 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω)))
495494impr 454 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
496196a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
497465, 495, 496ssltsepcd 27839 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌)
498252adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 -s 𝐴) ∈ No )
499498, 456mulscld 28161 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
500454, 499addscld 28013 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
50156adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
502260ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 0s <s 𝑐)
503274adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
504500, 501, 455, 502, 503sltdivmulwd 28224 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)))
505497, 504mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))
506463, 505eqbrtrd 5165 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌))
507454, 457addscld 28013 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
508287adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
509507, 458, 508sltsubaddd 28119 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑))))
510508, 458addscld 28013 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
511454, 457, 510sltaddsubd 28121 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
512509, 511bitrd 279 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
513506, 512mpbid 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
514513exp32 420 . . . . . . . . . . . . 13 (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
515453, 514jaod 860 . . . . . . . . . . . 12 (𝜑 → ((𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
516159, 515biimtrid 242 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
517516imp32 418 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
518 breq2 5147 . . . . . . . . . 10 (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → ( 1s <s 𝑓 ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
519517, 518syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
520519rexlimdvva 3213 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
521144a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 1s No )
522521, 414, 412addsubsassd 28111 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
523407, 410, 411subsdird 28185 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
524523oveq2d 7447 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
525522, 524eqtr4d 2780 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
526464adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
527198ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → suc 𝑖 ∈ ω)
528305oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿))
529528oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑅 = 𝑐 → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)))
530529, 308oveq12d 7449 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑅 = 𝑐 → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐))
531530eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑅 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐)))
532531, 210rspc2ev 3635 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
533200, 532mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
534533ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
535 eqeq1 2741 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
5365352rexbidv 3222 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
537214, 536elab 3679 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
538534, 537sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)})
539 elun1 4182 . . . . . . . . . . . . . . . . . . . 20 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
540538, 539, 4793syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
541481ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
542540, 541eleqtrrd 2844 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))
543527, 542, 486syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
544543rexlimdvaa 3156 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗)))
545544, 177, 4933imtr3g 295 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑑 (𝐿 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω)))
546545impr 454 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
547196a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
548526, 546, 547ssltsepcd 27839 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌)
549338adantrr 717 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 -s 𝐴) ∈ No )
550549, 411mulscld 28161 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
551521, 550addscld 28013 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
552349adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 0s <s 𝑐)
553355adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
554551, 408, 407, 552, 553sltdivmulwd 28224 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)))
555548, 554mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))
556525, 555eqbrtrd 5165 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌))
557521, 414addscld 28013 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
558557, 412, 409sltsubaddd 28119 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑))))
559521, 414, 413sltaddsubd 28121 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
560558, 559bitrd 279 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
561556, 560mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
562561, 518syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
563562rexlimdvva 3213 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
564520, 563jaod 860 . . . . . . 7 (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 1s <s 𝑓))
565428, 564biimtrid 242 . . . . . 6 (𝜑 → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓))
566 velsn 4642 . . . . . . 7 (𝑒 ∈ { 1s } ↔ 𝑒 = 1s )
567 breq1 5146 . . . . . . . 8 (𝑒 = 1s → (𝑒 <s 𝑓 ↔ 1s <s 𝑓))
568567imbi2d 340 . . . . . . 7 (𝑒 = 1s → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)))
569566, 568sylbi 217 . . . . . 6 (𝑒 ∈ { 1s } → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)))
570565, 569syl5ibrcom 247 . . . . 5 (𝜑 → (𝑒 ∈ { 1s } → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓)))
5715703imp 1111 . . . 4 ((𝜑𝑒 ∈ { 1s } ∧ 𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 𝑓)
572105, 394, 146, 419, 571ssltd 27836 . . 3 (𝜑 → { 1s } <<s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
57381, 379, 572cuteq1 27878 . 2 (𝜑 → (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) = 1s )
57419, 573eqtrd 2777 1 (𝜑 → (𝐴 ·s 𝑌) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  csb 3899  cun 3949  wss 3951  c0 4333  {csn 4626  cop 4632   cuni 4907   ciun 4991   class class class wbr 5143  cmpt 5225  ran crn 5686  cima 5688  ccom 5689  suc csuc 6386  Fun wfun 6555  ontowfo 6559  cfv 6561  (class class class)co 7431  cmpo 7433  ωcom 7887  1st c1st 8012  2nd c2nd 8013  reccrdg 8449   No csur 27684   <s cslt 27685   bday cbday 27686   <<s csslt 27825   |s cscut 27827   0s c0s 27867   1s c1s 27868   O cold 27882   L cleft 27884   R cright 27885   +s cadds 27992   -s csubs 28052   ·s cmuls 28132   /su cdivs 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-dc 10486
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-nadd 8704  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-0s 27869  df-1s 27870  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec 27971  df-norec2 27982  df-adds 27993  df-negs 28053  df-subs 28054  df-muls 28133  df-divs 28214
This theorem is referenced by:  precsex  28242
  Copyright terms: Public domain W3C validator