MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem11 Structured version   Visualization version   GIF version

Theorem precsexlem11 28155
Description: Lemma for surreal reciprocal. Show that the cut of the left and right sets is a multiplicative inverse for 𝐴. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
precsexlem.7 𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω))
Assertion
Ref Expression
precsexlem11 (𝜑 → (𝐴 ·s 𝑌) = 1s )
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑟   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑥𝑂)   𝑌(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)

Proof of Theorem precsexlem11
Dummy variables 𝑖 𝑗 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27817 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
2 precsexlem.4 . . . . . . 7 (𝜑𝐴 No )
3 precsexlem.5 . . . . . . 7 (𝜑 → 0s <s 𝐴)
42, 30elleft 27856 . . . . . 6 (𝜑 → 0s ∈ ( L ‘𝐴))
54snssd 4758 . . . . 5 (𝜑 → { 0s } ⊆ ( L ‘𝐴))
6 ssrab2 4027 . . . . . 6 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)
76a1i 11 . . . . 5 (𝜑 → {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴))
85, 7unssd 4139 . . . 4 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴))
9 sssslt1 27736 . . . 4 ((( L ‘𝐴) <<s ( R ‘𝐴) ∧ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴)) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴))
101, 8, 9sylancr 587 . . 3 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴))
11 precsexlem.1 . . . 4 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
12 precsexlem.2 . . . 4 𝐿 = (1st𝐹)
13 precsexlem.3 . . . 4 𝑅 = (2nd𝐹)
14 precsexlem.6 . . . 4 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
1511, 12, 13, 2, 3, 14precsexlem10 28154 . . 3 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
162, 3cutpos 27877 . . 3 (𝜑𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |s ( R ‘𝐴)))
17 precsexlem.7 . . . 4 𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω))
1817a1i 11 . . 3 (𝜑𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω)))
1910, 15, 16, 18mulsunif 28089 . 2 (𝜑 → (𝐴 ·s 𝑌) = (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})))
20 0sno 27770 . . . . . . . . 9 0s No
2120elexi 3459 . . . . . . . 8 0s ∈ V
2221snid 4612 . . . . . . 7 0s ∈ { 0s }
23 elun1 4129 . . . . . . 7 ( 0s ∈ { 0s } → 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
2422, 23ax-mp 5 . . . . . 6 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
25 peano1 7819 . . . . . . . . 9 ∅ ∈ ω
2611, 12, 13precsexlem1 28145 . . . . . . . . . 10 (𝐿‘∅) = { 0s }
2722, 26eleqtrri 2830 . . . . . . . . 9 0s ∈ (𝐿‘∅)
28 fveq2 6822 . . . . . . . . . . 11 (𝑏 = ∅ → (𝐿𝑏) = (𝐿‘∅))
2928eleq2d 2817 . . . . . . . . . 10 (𝑏 = ∅ → ( 0s ∈ (𝐿𝑏) ↔ 0s ∈ (𝐿‘∅)))
3029rspcev 3572 . . . . . . . . 9 ((∅ ∈ ω ∧ 0s ∈ (𝐿‘∅)) → ∃𝑏 ∈ ω 0s ∈ (𝐿𝑏))
3125, 27, 30mp2an 692 . . . . . . . 8 𝑏 ∈ ω 0s ∈ (𝐿𝑏)
32 eliun 4943 . . . . . . . 8 ( 0s 𝑏 ∈ ω (𝐿𝑏) ↔ ∃𝑏 ∈ ω 0s ∈ (𝐿𝑏))
3331, 32mpbir 231 . . . . . . 7 0s 𝑏 ∈ ω (𝐿𝑏)
34 fo1st 7941 . . . . . . . . . . 11 1st :V–onto→V
35 fofun 6736 . . . . . . . . . . 11 (1st :V–onto→V → Fun 1st )
3634, 35ax-mp 5 . . . . . . . . . 10 Fun 1st
37 rdgfun 8335 . . . . . . . . . . 11 Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
3811funeqi 6502 . . . . . . . . . . 11 (Fun 𝐹 ↔ Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
3937, 38mpbir 231 . . . . . . . . . 10 Fun 𝐹
40 funco 6521 . . . . . . . . . 10 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
4136, 39, 40mp2an 692 . . . . . . . . 9 Fun (1st𝐹)
4212funeqi 6502 . . . . . . . . 9 (Fun 𝐿 ↔ Fun (1st𝐹))
4341, 42mpbir 231 . . . . . . . 8 Fun 𝐿
44 funiunfv 7182 . . . . . . . 8 (Fun 𝐿 𝑏 ∈ ω (𝐿𝑏) = (𝐿 “ ω))
4543, 44ax-mp 5 . . . . . . 7 𝑏 ∈ ω (𝐿𝑏) = (𝐿 “ ω)
4633, 45eleqtri 2829 . . . . . 6 0s (𝐿 “ ω)
47 addsrid 27907 . . . . . . . . . 10 ( 0s No → ( 0s +s 0s ) = 0s )
4820, 47ax-mp 5 . . . . . . . . 9 ( 0s +s 0s ) = 0s
49 muls01 28051 . . . . . . . . . 10 ( 0s No → ( 0s ·s 0s ) = 0s )
5020, 49ax-mp 5 . . . . . . . . 9 ( 0s ·s 0s ) = 0s
5148, 50oveq12i 7358 . . . . . . . 8 (( 0s +s 0s ) -s ( 0s ·s 0s )) = ( 0s -s 0s )
52 subsid 28009 . . . . . . . . 9 ( 0s No → ( 0s -s 0s ) = 0s )
5320, 52ax-mp 5 . . . . . . . 8 ( 0s -s 0s ) = 0s
5451, 53eqtr2i 2755 . . . . . . 7 0s = (( 0s +s 0s ) -s ( 0s ·s 0s ))
5515scutcld 27744 . . . . . . . . . . 11 (𝜑 → ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No )
5617, 55eqeltrid 2835 . . . . . . . . . 10 (𝜑𝑌 No )
57 muls02 28080 . . . . . . . . . 10 (𝑌 No → ( 0s ·s 𝑌) = 0s )
5856, 57syl 17 . . . . . . . . 9 (𝜑 → ( 0s ·s 𝑌) = 0s )
59 muls01 28051 . . . . . . . . . 10 (𝐴 No → (𝐴 ·s 0s ) = 0s )
602, 59syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ·s 0s ) = 0s )
6158, 60oveq12d 7364 . . . . . . . 8 (𝜑 → (( 0s ·s 𝑌) +s (𝐴 ·s 0s )) = ( 0s +s 0s ))
6261oveq1d 7361 . . . . . . 7 (𝜑 → ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )) = (( 0s +s 0s ) -s ( 0s ·s 0s )))
6354, 62eqtr4id 2785 . . . . . 6 (𝜑 → 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )))
64 oveq1 7353 . . . . . . . . . 10 (𝑐 = 0s → (𝑐 ·s 𝑌) = ( 0s ·s 𝑌))
6564oveq1d 7361 . . . . . . . . 9 (𝑐 = 0s → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)))
66 oveq1 7353 . . . . . . . . 9 (𝑐 = 0s → (𝑐 ·s 𝑑) = ( 0s ·s 𝑑))
6765, 66oveq12d 7364 . . . . . . . 8 (𝑐 = 0s → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))
6867eqeq2d 2742 . . . . . . 7 (𝑐 = 0s → ( 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
69 oveq2 7354 . . . . . . . . . 10 (𝑑 = 0s → (𝐴 ·s 𝑑) = (𝐴 ·s 0s ))
7069oveq2d 7362 . . . . . . . . 9 (𝑑 = 0s → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s 𝑌) +s (𝐴 ·s 0s )))
71 oveq2 7354 . . . . . . . . 9 (𝑑 = 0s → ( 0s ·s 𝑑) = ( 0s ·s 0s ))
7270, 71oveq12d 7364 . . . . . . . 8 (𝑑 = 0s → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )))
7372eqeq2d 2742 . . . . . . 7 (𝑑 = 0s → ( 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) ↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s ))))
7468, 73rspc2ev 3585 . . . . . 6 (( 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 0s (𝐿 “ ω) ∧ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s ))) → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
7524, 46, 63, 74mp3an12i 1467 . . . . 5 (𝜑 → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
76 eqeq1 2735 . . . . . . 7 (𝑏 = 0s → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
77762rexbidv 3197 . . . . . 6 (𝑏 = 0s → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
7821, 77elab 3630 . . . . 5 ( 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
7975, 78sylibr 234 . . . 4 (𝜑 → 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})
80 elun1 4129 . . . 4 ( 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
8179, 80syl 17 . . 3 (𝜑 → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
82 eqid 2731 . . . . . . 7 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
8382rnmpo 7479 . . . . . 6 ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
84 ssltex1 27726 . . . . . . . . 9 (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V)
8510, 84syl 17 . . . . . . . 8 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V)
86 ssltex1 27726 . . . . . . . . 9 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝐿 “ ω) ∈ V)
8715, 86syl 17 . . . . . . . 8 (𝜑 (𝐿 “ ω) ∈ V)
88 mpoexga 8009 . . . . . . . 8 ((({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V ∧ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
8985, 87, 88syl2anc 584 . . . . . . 7 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
90 rnexg 7832 . . . . . . 7 ((𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9189, 90syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9283, 91eqeltrrid 2836 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
93 eqid 2731 . . . . . . 7 (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
9493rnmpo 7479 . . . . . 6 ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
95 fvex 6835 . . . . . . . 8 ( R ‘𝐴) ∈ V
96 ssltex2 27727 . . . . . . . . 9 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝑅 “ ω) ∈ V)
9715, 96syl 17 . . . . . . . 8 (𝜑 (𝑅 “ ω) ∈ V)
98 mpoexga 8009 . . . . . . . 8 ((( R ‘𝐴) ∈ V ∧ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9995, 97, 98sylancr 587 . . . . . . 7 (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
100 rnexg 7832 . . . . . . 7 ((𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
10199, 100syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
10294, 101eqeltrrid 2836 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
10392, 102unexd 7687 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V)
104 snex 5372 . . . . 5 { 1s } ∈ V
105104a1i 11 . . . 4 (𝜑 → { 1s } ∈ V)
106 ssltss1 27728 . . . . . . . . . . . . . 14 (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ No )
10710, 106syl 17 . . . . . . . . . . . . 13 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ No )
108107sselda 3929 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})) → 𝑐 No )
109108adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
11056adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
111109, 110mulscld 28074 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
1122adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
113 ssltss1 27728 . . . . . . . . . . . . . 14 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝐿 “ ω) ⊆ No )
11415, 113syl 17 . . . . . . . . . . . . 13 (𝜑 (𝐿 “ ω) ⊆ No )
115114sselda 3929 . . . . . . . . . . . 12 ((𝜑𝑑 (𝐿 “ ω)) → 𝑑 No )
116115adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
117112, 116mulscld 28074 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
118111, 117addscld 27923 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
119109, 116mulscld 28074 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
120118, 119subscld 28003 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
121 eleq1 2819 . . . . . . . 8 (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑏 No ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No ))
122120, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
123122rexlimdvva 3189 . . . . . 6 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
124123abssdv 4014 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
125 rightssno 27827 . . . . . . . . . . . . . 14 ( R ‘𝐴) ⊆ No
126125a1i 11 . . . . . . . . . . . . 13 (𝜑 → ( R ‘𝐴) ⊆ No )
127126sselda 3929 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝑐 No )
128127adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
12956adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
130128, 129mulscld 28074 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
1312adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
132 ssltss2 27729 . . . . . . . . . . . . . 14 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝑅 “ ω) ⊆ No )
13315, 132syl 17 . . . . . . . . . . . . 13 (𝜑 (𝑅 “ ω) ⊆ No )
134133sselda 3929 . . . . . . . . . . . 12 ((𝜑𝑑 (𝑅 “ ω)) → 𝑑 No )
135134adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
136131, 135mulscld 28074 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
137130, 136addscld 27923 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
138128, 135mulscld 28074 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
139137, 138subscld 28003 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
140139, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
141140rexlimdvva 3189 . . . . . 6 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
142141abssdv 4014 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
143124, 142unssd 4139 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No )
144 1sno 27771 . . . . 5 1s No
145 snssi 4757 . . . . 5 ( 1s No → { 1s } ⊆ No )
146144, 145mp1i 13 . . . 4 (𝜑 → { 1s } ⊆ No )
147 elun 4100 . . . . . . . . 9 (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
148 vex 3440 . . . . . . . . . . 11 𝑒 ∈ V
149 eqeq1 2735 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
1501492rexbidv 3197 . . . . . . . . . . 11 (𝑏 = 𝑒 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
151148, 150elab 3630 . . . . . . . . . 10 (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
1521492rexbidv 3197 . . . . . . . . . . 11 (𝑏 = 𝑒 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
153148, 152elab 3630 . . . . . . . . . 10 (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
154151, 153orbi12i 914 . . . . . . . . 9 ((𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
155147, 154bitri 275 . . . . . . . 8 (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
156 elun 4100 . . . . . . . . . . . . . 14 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 ∈ { 0s } ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
157 velsn 4589 . . . . . . . . . . . . . . 15 (𝑐 ∈ { 0s } ↔ 𝑐 = 0s )
158157orbi1i 913 . . . . . . . . . . . . . 14 ((𝑐 ∈ { 0s } ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
159156, 158bitri 275 . . . . . . . . . . . . 13 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
16058adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s ·s 𝑌) = 0s )
161160oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
162 muls02 28080 . . . . . . . . . . . . . . . . . . . 20 (𝑑 No → ( 0s ·s 𝑑) = 0s )
163115, 162syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s ·s 𝑑) = 0s )
164161, 163oveq12d 7364 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (( 0s +s (𝐴 ·s 𝑑)) -s 0s ))
1652adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 (𝐿 “ ω)) → 𝐴 No )
166165, 115mulscld 28074 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝐿 “ ω)) → (𝐴 ·s 𝑑) ∈ No )
167 addslid 27911 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ·s 𝑑) ∈ No → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
168166, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
169168oveq1d 7361 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → (( 0s +s (𝐴 ·s 𝑑)) -s 0s ) = ((𝐴 ·s 𝑑) -s 0s ))
170 subsid1 28008 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ·s 𝑑) ∈ No → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
171166, 170syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
172164, 169, 1713eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (𝐴 ·s 𝑑))
173 eliun 4943 . . . . . . . . . . . . . . . . . . . 20 (𝑑 𝑖 ∈ ω (𝐿𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖))
174 funiunfv 7182 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐿 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω))
17543, 174ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω)
176175eleq2i 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑑 𝑖 ∈ ω (𝐿𝑖) ↔ 𝑑 (𝐿 “ ω))
177173, 176bitr3i 277 . . . . . . . . . . . . . . . . . . 19 (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) ↔ 𝑑 (𝐿 “ ω))
17811, 12, 13, 2, 3, 14precsexlem9 28153 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ ω) → (∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)))
179178simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ ω) → ∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s )
180 rsp 3220 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s → (𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
181179, 180syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ ω) → (𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
182181rexlimdva 3133 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
183177, 182biimtrrid 243 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑑 (𝐿 “ ω) → (𝐴 ·s 𝑑) <s 1s ))
184183imp 406 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝐿 “ ω)) → (𝐴 ·s 𝑑) <s 1s )
185172, 184eqbrtrd 5111 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s )
186185ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑑 (𝐿 “ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s ))
18767breq1d 5099 . . . . . . . . . . . . . . . 16 (𝑐 = 0s → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s ))
188187imbi2d 340 . . . . . . . . . . . . . . 15 (𝑐 = 0s → ((𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ) ↔ (𝑑 (𝐿 “ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s )))
189186, 188syl5ibrcom 247 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 = 0s → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
190 scutcut 27742 . . . . . . . . . . . . . . . . . . . . . 22 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))} ∧ {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω)))
19115, 190syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))} ∧ {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω)))
192191simp3d 1144 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
193192adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
194 ovex 7379 . . . . . . . . . . . . . . . . . . . . . 22 ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ V
195194snid 4612 . . . . . . . . . . . . . . . . . . . . 21 ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))}
19617, 195eqeltri 2827 . . . . . . . . . . . . . . . . . . . 20 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))}
197196a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
198 peano2 7820 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
199198ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → suc 𝑖 ∈ ω)
200 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)
201 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥𝐿 = 𝑐 → (𝑥𝐿 -s 𝐴) = (𝑐 -s 𝐴))
202201oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿))
203202oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐 → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)))
204 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐𝑥𝐿 = 𝑐)
205203, 204oveq12d 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥𝐿 = 𝑐 → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐))
206205eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝐿 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐)))
207 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦𝐿 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑑))
208207oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦𝐿 = 𝑑 → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
209208oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦𝐿 = 𝑑 → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
210209eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐿 = 𝑑 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
211206, 210rspc2ev 3585 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
212200, 211mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
213212ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
214 ovex 7379 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ V
215 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
2162152rexbidv 3197 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
217214, 216elab 3630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
218213, 217sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)})
219 elun1 4129 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
220 elun2 4130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
221218, 219, 2203syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
22211, 12, 13precsexlem5 28149 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ ω → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
223222ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
224221, 223eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))
225 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = suc 𝑖 → (𝑅𝑗) = (𝑅‘suc 𝑖))
226225eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = suc 𝑖 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)))
227226rspcev 3572 . . . . . . . . . . . . . . . . . . . . . . 23 ((suc 𝑖 ∈ ω ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
228199, 224, 227syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
229228rexlimdvaa 3134 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗)))
230 eliun 4943 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
231 fo2nd 7942 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2nd :V–onto→V
232 fofun 6736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2nd :V–onto→V → Fun 2nd )
233231, 232ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fun 2nd
234 funco 6521 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
235233, 39, 234mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 Fun (2nd𝐹)
23613funeqi 6502 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Fun 𝑅 ↔ Fun (2nd𝐹))
237235, 236mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . 24 Fun 𝑅
238 funiunfv 7182 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑅 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω))
239237, 238ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω)
240239eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
241230, 240bitr3i 277 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
242229, 177, 2413imtr3g 295 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω)))
243242impr 454 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
244193, 197, 243ssltsepcd 27735 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
24556adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
246144a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 1s No )
247 leftssno 27826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( L ‘𝐴) ⊆ No
2486, 247sstri 3939 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ No
249248sseli 3925 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 No )
250249adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 No )
2512adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 No )
252250, 251subscld 28003 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 -s 𝐴) ∈ No )
253252adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 -s 𝐴) ∈ No )
254115adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
255253, 254mulscld 28074 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
256246, 255addscld 27923 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
257249ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
258 breq2 5093 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → ( 0s <s 𝑥 ↔ 0s <s 𝑐))
259258elrab 3642 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑐 ∈ ( L ‘𝐴) ∧ 0s <s 𝑐))
260259simprbi 496 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑐)
261260ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 0s <s 𝑐)
262260adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s 𝑐)
263 breq2 5093 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑂 = 𝑐 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑐))
264 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑂 = 𝑐 → (𝑥𝑂 ·s 𝑦) = (𝑐 ·s 𝑦))
265264eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑂 = 𝑐 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑐 ·s 𝑦) = 1s ))
266265rexbidv 3156 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑂 = 𝑐 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
267263, 266imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑂 = 𝑐 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )))
26814adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
269 ssun1 4125 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
2706, 269sstri 3939 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
271270sseli 3925 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
272271adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
273267, 268, 272rspcdva 3573 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
274262, 273mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
275274adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
276245, 256, 257, 261, 275sltmuldiv2wd 28141 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ↔ 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
277244, 276mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
278257, 254mulscld 28074 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
279166adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
280246, 278, 279addsubsassd 28021 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
2812adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
282257, 281, 254subsdird 28098 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
283282oveq2d 7362 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
284280, 283eqtr4d 2769 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
285277, 284breqtrrd 5117 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))
28656adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑌 No )
287250, 286mulscld 28074 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 ·s 𝑌) ∈ No )
288287adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
289288, 279addscld 27923 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
290289, 278, 246sltsubaddd 28029 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑))))
291246, 278addscld 27923 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
292288, 279, 291sltaddsubd 28031 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑)) ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
293290, 292bitrd 279 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
294285, 293mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
295294exp32 420 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
296189, 295jaod 859 . . . . . . . . . . . . 13 (𝜑 → ((𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
297159, 296biimtrid 242 . . . . . . . . . . . 12 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
298297imp32 418 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
299 breq1 5092 . . . . . . . . . . 11 (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑒 <s 1s ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ))
300298, 299syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
301300rexlimdvva 3189 . . . . . . . . 9 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
302192adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
303196a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
304198ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → suc 𝑖 ∈ ω)
305 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝑅 = 𝑐 → (𝑥𝑅 -s 𝐴) = (𝑐 -s 𝐴))
306305oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅))
307306oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐 → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)))
308 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐𝑥𝑅 = 𝑐)
309307, 308oveq12d 7364 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑅 = 𝑐 → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐))
310309eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑅 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐)))
311 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦𝑅 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑑))
312311oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝑅 = 𝑑 → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
313312oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝑅 = 𝑑 → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
314313eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑅 = 𝑑 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
315310, 314rspc2ev 3585 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
316200, 315mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
317316ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
318 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
3193182rexbidv 3197 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
320214, 319elab 3630 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
321317, 320sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})
322 elun2 4130 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
323321, 322, 2203syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
324222ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
325323, 324eleqtrrd 2834 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))
326304, 325, 227syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
327326rexlimdvaa 3134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗)))
328 eliun 4943 . . . . . . . . . . . . . . . . . 18 (𝑑 𝑖 ∈ ω (𝑅𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖))
329 funiunfv 7182 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑅 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω))
330237, 329ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω)
331330eleq2i 2823 . . . . . . . . . . . . . . . . . 18 (𝑑 𝑖 ∈ ω (𝑅𝑖) ↔ 𝑑 (𝑅 “ ω))
332328, 331bitr3i 277 . . . . . . . . . . . . . . . . 17 (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) ↔ 𝑑 (𝑅 “ ω))
333327, 332, 2413imtr3g 295 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑑 (𝑅 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω)))
334333impr 454 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
335302, 303, 334ssltsepcd 27735 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
336144a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 1s No )
3372adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝐴 No )
338127, 337subscld 28003 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑐 -s 𝐴) ∈ No )
339338adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 -s 𝐴) ∈ No )
340339, 135mulscld 28074 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
341336, 340addscld 27923 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
34220a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s No )
3433adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝐴)
344 rightgt 27809 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ( R ‘𝐴) → 𝐴 <s 𝑐)
345344adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑐)
346342, 337, 127, 343, 345slttrd 27698 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝑐)
347346adantrr 717 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 0s <s 𝑐)
34814adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
349 elun2 4130 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ( R ‘𝐴) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
350349adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
351267, 348, 350rspcdva 3573 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
352346, 351mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
353352adantrr 717 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
354129, 341, 128, 347, 353sltmuldiv2wd 28141 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ↔ 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
355335, 354mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
356336, 138, 136addsubsassd 28021 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
357128, 131, 135subsdird 28098 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
358357oveq2d 7362 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
359356, 358eqtr4d 2769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
360355, 359breqtrrd 5117 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))
361137, 138, 336sltsubaddd 28029 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑))))
362336, 138addscld 27923 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
363130, 136, 362sltaddsubd 28031 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑)) ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
364361, 363bitrd 279 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
365360, 364mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
366365, 299syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
367366rexlimdvva 3189 . . . . . . . . 9 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
368301, 367jaod 859 . . . . . . . 8 (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 𝑒 <s 1s ))
369155, 368biimtrid 242 . . . . . . 7 (𝜑 → (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 1s ))
370369imp 406 . . . . . 6 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 1s )
371 velsn 4589 . . . . . . 7 (𝑓 ∈ { 1s } ↔ 𝑓 = 1s )
372 breq2 5093 . . . . . . 7 (𝑓 = 1s → (𝑒 <s 𝑓𝑒 <s 1s ))
373371, 372sylbi 217 . . . . . 6 (𝑓 ∈ { 1s } → (𝑒 <s 𝑓𝑒 <s 1s ))
374370, 373syl5ibrcom 247 . . . . 5 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → (𝑓 ∈ { 1s } → 𝑒 <s 𝑓))
3753743impia 1117 . . . 4 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∧ 𝑓 ∈ { 1s }) → 𝑒 <s 𝑓)
376103, 105, 143, 146, 375ssltd 27731 . . 3 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) <<s { 1s })
377 eqid 2731 . . . . . . 7 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
378377rnmpo 7479 . . . . . 6 ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
379 mpoexga 8009 . . . . . . . 8 ((({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V ∧ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
38085, 97, 379syl2anc 584 . . . . . . 7 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
381 rnexg 7832 . . . . . . 7 ((𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
382380, 381syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
383378, 382eqeltrrid 2836 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
384 eqid 2731 . . . . . . 7 (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
385384rnmpo 7479 . . . . . 6 ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
386 mpoexga 8009 . . . . . . . 8 ((( R ‘𝐴) ∈ V ∧ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
38795, 87, 386sylancr 587 . . . . . . 7 (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
388 rnexg 7832 . . . . . . 7 ((𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
389387, 388syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
390385, 389eqeltrrid 2836 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
391383, 390unexd 7687 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V)
392108adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
39356adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
394392, 393mulscld 28074 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
3952adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
396134adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
397395, 396mulscld 28074 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
398394, 397addscld 27923 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
399392, 396mulscld 28074 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
400398, 399subscld 28003 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
401400, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
402401rexlimdvva 3189 . . . . . 6 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
403402abssdv 4014 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
404127adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
40556adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
406404, 405mulscld 28074 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
4072adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
408115adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
409407, 408mulscld 28074 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
410406, 409addscld 27923 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
411404, 408mulscld 28074 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
412410, 411subscld 28003 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
413412, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
414413rexlimdvva 3189 . . . . . 6 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
415414abssdv 4014 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
416403, 415unssd 4139 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No )
417 elun 4100 . . . . . . . 8 (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
418 vex 3440 . . . . . . . . . 10 𝑓 ∈ V
419 eqeq1 2735 . . . . . . . . . . 11 (𝑏 = 𝑓 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
4204192rexbidv 3197 . . . . . . . . . 10 (𝑏 = 𝑓 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
421418, 420elab 3630 . . . . . . . . 9 (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
4224192rexbidv 3197 . . . . . . . . . 10 (𝑏 = 𝑓 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
423418, 422elab 3630 . . . . . . . . 9 (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
424421, 423orbi12i 914 . . . . . . . 8 ((𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
425417, 424bitri 275 . . . . . . 7 (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
426 eliun 4943 . . . . . . . . . . . . . . . . . . 19 (𝑑 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗))
427239eleq2i 2823 . . . . . . . . . . . . . . . . . . 19 (𝑑 𝑗 ∈ ω (𝑅𝑗) ↔ 𝑑 (𝑅 “ ω))
428426, 427bitr3i 277 . . . . . . . . . . . . . . . . . 18 (∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗) ↔ 𝑑 (𝑅 “ ω))
42911, 12, 13, 2, 3, 14precsexlem9 28153 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (∀𝑐 ∈ (𝐿𝑗)(𝐴 ·s 𝑐) <s 1s ∧ ∀𝑑 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑑)))
430 rsp 3220 . . . . . . . . . . . . . . . . . . . 20 (∀𝑑 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑑) → (𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
431429, 430simpl2im 503 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω) → (𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
432431rexlimdva 3133 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
433428, 432biimtrrid 243 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑 (𝑅 “ ω) → 1s <s (𝐴 ·s 𝑑)))
434433imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝑅 “ ω)) → 1s <s (𝐴 ·s 𝑑))
43556adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝑅 “ ω)) → 𝑌 No )
43657oveq1d 7361 . . . . . . . . . . . . . . . . . . . 20 (𝑌 No → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
437435, 436syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝑅 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
4382adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 (𝑅 “ ω)) → 𝐴 No )
439438, 134mulscld 28074 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝑅 “ ω)) → (𝐴 ·s 𝑑) ∈ No )
440439, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝑅 “ ω)) → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
441437, 440eqtrd 2766 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝑅 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
442134, 162syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝑅 “ ω)) → ( 0s ·s 𝑑) = 0s )
443441, 442oveq12d 7364 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝑅 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = ((𝐴 ·s 𝑑) -s 0s ))
444439, 170syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝑅 “ ω)) → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
445443, 444eqtrd 2766 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝑅 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (𝐴 ·s 𝑑))
446434, 445breqtrrd 5117 . . . . . . . . . . . . . . 15 ((𝜑𝑑 (𝑅 “ ω)) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))
447446ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑑 (𝑅 “ ω) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
44867breq2d 5101 . . . . . . . . . . . . . . 15 (𝑐 = 0s → ( 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
449448imbi2d 340 . . . . . . . . . . . . . 14 (𝑐 = 0s → ((𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ↔ (𝑑 (𝑅 “ ω) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))))
450447, 449syl5ibrcom 247 . . . . . . . . . . . . 13 (𝜑 → (𝑐 = 0s → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
451144a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 1s No )
452249ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
453134adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
454452, 453mulscld 28074 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
455439adantrl 716 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
456451, 454, 455addsubsassd 28021 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
4572adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
458452, 457, 453subsdird 28098 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
459458oveq2d 7362 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
460456, 459eqtr4d 2769 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
461191simp2d 1143 . . . . . . . . . . . . . . . . . . 19 (𝜑 (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
462461adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
463198ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → suc 𝑖 ∈ ω)
464201oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅))
465464oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥𝐿 = 𝑐 → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)))
466465, 204oveq12d 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝐿 = 𝑐 → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐))
467466eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝐿 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐)))
468467, 314rspc2ev 3585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
469200, 468mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
470469ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
471 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
4724712rexbidv 3197 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
473214, 472elab 3630 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
474470, 473sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})
475 elun2 4130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
476 elun2 4130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
477474, 475, 4763syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
47811, 12, 13precsexlem4 28148 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ω → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
479478ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
480477, 479eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))
481 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = suc 𝑖 → (𝐿𝑗) = (𝐿‘suc 𝑖))
482481eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = suc 𝑖 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)))
483482rspcev 3572 . . . . . . . . . . . . . . . . . . . . . 22 ((suc 𝑖 ∈ ω ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
484463, 480, 483syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
485484rexlimdvaa 3134 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗)))
486 eliun 4943 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝐿𝑗) ↔ ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
487 funiunfv 7182 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐿 𝑗 ∈ ω (𝐿𝑗) = (𝐿 “ ω))
48843, 487ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 ∈ ω (𝐿𝑗) = (𝐿 “ ω)
489488eleq2i 2823 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
490486, 489bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 (∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
491485, 332, 4903imtr3g 295 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω)))
492491impr 454 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
493196a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
494462, 492, 493ssltsepcd 27735 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌)
495252adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 -s 𝐴) ∈ No )
496495, 453mulscld 28074 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
497451, 496addscld 27923 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
49856adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
499260ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 0s <s 𝑐)
500274adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
501497, 498, 452, 499, 500sltdivmulwd 28138 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)))
502494, 501mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))
503460, 502eqbrtrd 5111 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌))
504451, 454addscld 27923 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
505287adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
506504, 455, 505sltsubaddd 28029 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑))))
507505, 455addscld 27923 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
508451, 454, 507sltaddsubd 28031 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
509506, 508bitrd 279 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
510503, 509mpbid 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
511510exp32 420 . . . . . . . . . . . . 13 (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
512450, 511jaod 859 . . . . . . . . . . . 12 (𝜑 → ((𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
513159, 512biimtrid 242 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
514513imp32 418 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
515 breq2 5093 . . . . . . . . . 10 (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → ( 1s <s 𝑓 ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
516514, 515syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
517516rexlimdvva 3189 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
518144a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 1s No )
519518, 411, 409addsubsassd 28021 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
520404, 407, 408subsdird 28098 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
521520oveq2d 7362 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
522519, 521eqtr4d 2769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
523461adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
524198ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → suc 𝑖 ∈ ω)
525305oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿))
526525oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑅 = 𝑐 → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)))
527526, 308oveq12d 7364 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑅 = 𝑐 → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐))
528527eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑅 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐)))
529528, 210rspc2ev 3585 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
530200, 529mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
531530ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
532 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
5335322rexbidv 3197 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
534214, 533elab 3630 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
535531, 534sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)})
536 elun1 4129 . . . . . . . . . . . . . . . . . . . 20 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
537535, 536, 4763syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
538478ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
539537, 538eleqtrrd 2834 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))
540524, 539, 483syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
541540rexlimdvaa 3134 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗)))
542541, 177, 4903imtr3g 295 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑑 (𝐿 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω)))
543542impr 454 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
544196a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
545523, 543, 544ssltsepcd 27735 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌)
546338adantrr 717 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 -s 𝐴) ∈ No )
547546, 408mulscld 28074 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
548518, 547addscld 27923 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
549346adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 0s <s 𝑐)
550352adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
551548, 405, 404, 549, 550sltdivmulwd 28138 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)))
552545, 551mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))
553522, 552eqbrtrd 5111 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌))
554518, 411addscld 27923 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
555554, 409, 406sltsubaddd 28029 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑))))
556518, 411, 410sltaddsubd 28031 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
557555, 556bitrd 279 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
558553, 557mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
559558, 515syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
560559rexlimdvva 3189 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
561517, 560jaod 859 . . . . . . 7 (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 1s <s 𝑓))
562425, 561biimtrid 242 . . . . . 6 (𝜑 → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓))
563 velsn 4589 . . . . . . 7 (𝑒 ∈ { 1s } ↔ 𝑒 = 1s )
564 breq1 5092 . . . . . . . 8 (𝑒 = 1s → (𝑒 <s 𝑓 ↔ 1s <s 𝑓))
565564imbi2d 340 . . . . . . 7 (𝑒 = 1s → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)))
566563, 565sylbi 217 . . . . . 6 (𝑒 ∈ { 1s } → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)))
567562, 566syl5ibrcom 247 . . . . 5 (𝜑 → (𝑒 ∈ { 1s } → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓)))
5685673imp 1110 . . . 4 ((𝜑𝑒 ∈ { 1s } ∧ 𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 𝑓)
569105, 391, 146, 416, 568ssltd 27731 . . 3 (𝜑 → { 1s } <<s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
57081, 376, 569cuteq1 27778 . 2 (𝜑 → (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) = 1s )
57119, 570eqtrd 2766 1 (𝜑 → (𝐴 ·s 𝑌) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  csb 3845  cun 3895  wss 3897  c0 4280  {csn 4573  cop 4579   cuni 4856   ciun 4939   class class class wbr 5089  cmpt 5170  ran crn 5615  cima 5617  ccom 5618  suc csuc 6308  Fun wfun 6475  ontowfo 6479  cfv 6481  (class class class)co 7346  cmpo 7348  ωcom 7796  1st c1st 7919  2nd c2nd 7920  reccrdg 8328   No csur 27578   <s cslt 27579   <<s csslt 27720   |s cscut 27722   0s c0s 27766   1s c1s 27767   L cleft 27786   R cright 27787   +s cadds 27902   -s csubs 27962   ·s cmuls 28045   /su cdivs 28126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-dc 10337
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046  df-divs 28127
This theorem is referenced by:  precsex  28156
  Copyright terms: Public domain W3C validator