| Step | Hyp | Ref
| Expression |
| 1 | | lltropt 27791 |
. . . 4
⊢ ( L
‘𝐴) <<s ( R
‘𝐴) |
| 2 | | precsexlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ No
) |
| 3 | | precsexlem.5 |
. . . . . . 7
⊢ (𝜑 → 0s <s 𝐴) |
| 4 | 2, 3 | 0elleft 27829 |
. . . . . 6
⊢ (𝜑 → 0s ∈ ( L
‘𝐴)) |
| 5 | 4 | snssd 4776 |
. . . . 5
⊢ (𝜑 → { 0s } ⊆
( L ‘𝐴)) |
| 6 | | ssrab2 4046 |
. . . . . 6
⊢ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ⊆ ( L ‘𝐴) |
| 7 | 6 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)) |
| 8 | 5, 7 | unssd 4158 |
. . . 4
⊢ (𝜑 → ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ⊆ ( L
‘𝐴)) |
| 9 | | sssslt1 27714 |
. . . 4
⊢ ((( L
‘𝐴) <<s ( R
‘𝐴) ∧ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴)) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) <<s ( R
‘𝐴)) |
| 10 | 1, 8, 9 | sylancr 587 |
. . 3
⊢ (𝜑 → ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) <<s ( R
‘𝐴)) |
| 11 | | precsexlem.1 |
. . . 4
⊢ 𝐹 = rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
| 12 | | precsexlem.2 |
. . . 4
⊢ 𝐿 = (1st ∘ 𝐹) |
| 13 | | precsexlem.3 |
. . . 4
⊢ 𝑅 = (2nd ∘ 𝐹) |
| 14 | | precsexlem.6 |
. . . 4
⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
| 15 | 11, 12, 13, 2, 3, 14 | precsexlem10 28125 |
. . 3
⊢ (𝜑 → ∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω)) |
| 16 | 2, 3 | cutpos 27848 |
. . 3
⊢ (𝜑 → 𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) |s ( R ‘𝐴))) |
| 17 | | precsexlem.7 |
. . . 4
⊢ 𝑌 = (∪
(𝐿 “ ω) |s
∪ (𝑅 “ ω)) |
| 18 | 17 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑌 = (∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))) |
| 19 | 10, 15, 16, 18 | mulsunif 28060 |
. 2
⊢ (𝜑 → (𝐴 ·s 𝑌) = (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))) |
| 20 | | 0sno 27745 |
. . . . . . . . 9
⊢
0s ∈ No |
| 21 | 20 | elexi 3473 |
. . . . . . . 8
⊢
0s ∈ V |
| 22 | 21 | snid 4629 |
. . . . . . 7
⊢
0s ∈ { 0s } |
| 23 | | elun1 4148 |
. . . . . . 7
⊢ (
0s ∈ { 0s } → 0s ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})) |
| 24 | 22, 23 | ax-mp 5 |
. . . . . 6
⊢
0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |
| 25 | | peano1 7868 |
. . . . . . . . 9
⊢ ∅
∈ ω |
| 26 | 11, 12, 13 | precsexlem1 28116 |
. . . . . . . . . 10
⊢ (𝐿‘∅) = {
0s } |
| 27 | 22, 26 | eleqtrri 2828 |
. . . . . . . . 9
⊢
0s ∈ (𝐿‘∅) |
| 28 | | fveq2 6861 |
. . . . . . . . . . 11
⊢ (𝑏 = ∅ → (𝐿‘𝑏) = (𝐿‘∅)) |
| 29 | 28 | eleq2d 2815 |
. . . . . . . . . 10
⊢ (𝑏 = ∅ → (
0s ∈ (𝐿‘𝑏) ↔ 0s ∈ (𝐿‘∅))) |
| 30 | 29 | rspcev 3591 |
. . . . . . . . 9
⊢ ((∅
∈ ω ∧ 0s ∈ (𝐿‘∅)) → ∃𝑏 ∈ ω 0s
∈ (𝐿‘𝑏)) |
| 31 | 25, 27, 30 | mp2an 692 |
. . . . . . . 8
⊢
∃𝑏 ∈
ω 0s ∈ (𝐿‘𝑏) |
| 32 | | eliun 4962 |
. . . . . . . 8
⊢ (
0s ∈ ∪ 𝑏 ∈ ω (𝐿‘𝑏) ↔ ∃𝑏 ∈ ω 0s ∈ (𝐿‘𝑏)) |
| 33 | 31, 32 | mpbir 231 |
. . . . . . 7
⊢
0s ∈ ∪ 𝑏 ∈ ω (𝐿‘𝑏) |
| 34 | | fo1st 7991 |
. . . . . . . . . . 11
⊢
1st :V–onto→V |
| 35 | | fofun 6776 |
. . . . . . . . . . 11
⊢
(1st :V–onto→V → Fun 1st ) |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . . . 10
⊢ Fun
1st |
| 37 | | rdgfun 8387 |
. . . . . . . . . . 11
⊢ Fun
rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
| 38 | 11 | funeqi 6540 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 ↔ Fun rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉)) |
| 39 | 37, 38 | mpbir 231 |
. . . . . . . . . 10
⊢ Fun 𝐹 |
| 40 | | funco 6559 |
. . . . . . . . . 10
⊢ ((Fun
1st ∧ Fun 𝐹)
→ Fun (1st ∘ 𝐹)) |
| 41 | 36, 39, 40 | mp2an 692 |
. . . . . . . . 9
⊢ Fun
(1st ∘ 𝐹) |
| 42 | 12 | funeqi 6540 |
. . . . . . . . 9
⊢ (Fun
𝐿 ↔ Fun
(1st ∘ 𝐹)) |
| 43 | 41, 42 | mpbir 231 |
. . . . . . . 8
⊢ Fun 𝐿 |
| 44 | | funiunfv 7225 |
. . . . . . . 8
⊢ (Fun
𝐿 → ∪ 𝑏 ∈ ω (𝐿‘𝑏) = ∪ (𝐿 “
ω)) |
| 45 | 43, 44 | ax-mp 5 |
. . . . . . 7
⊢ ∪ 𝑏 ∈ ω (𝐿‘𝑏) = ∪ (𝐿 “
ω) |
| 46 | 33, 45 | eleqtri 2827 |
. . . . . 6
⊢
0s ∈ ∪ (𝐿 “ ω) |
| 47 | | addsrid 27878 |
. . . . . . . . . 10
⊢ (
0s ∈ No → ( 0s
+s 0s ) = 0s ) |
| 48 | 20, 47 | ax-mp 5 |
. . . . . . . . 9
⊢ (
0s +s 0s ) = 0s |
| 49 | | muls01 28022 |
. . . . . . . . . 10
⊢ (
0s ∈ No → ( 0s
·s 0s ) = 0s ) |
| 50 | 20, 49 | ax-mp 5 |
. . . . . . . . 9
⊢ (
0s ·s 0s ) =
0s |
| 51 | 48, 50 | oveq12i 7402 |
. . . . . . . 8
⊢ ((
0s +s 0s ) -s ( 0s
·s 0s )) = ( 0s -s
0s ) |
| 52 | | subsid 27980 |
. . . . . . . . 9
⊢ (
0s ∈ No → ( 0s
-s 0s ) = 0s ) |
| 53 | 20, 52 | ax-mp 5 |
. . . . . . . 8
⊢ (
0s -s 0s ) = 0s |
| 54 | 51, 53 | eqtr2i 2754 |
. . . . . . 7
⊢
0s = (( 0s +s 0s ) -s (
0s ·s 0s )) |
| 55 | 15 | scutcld 27722 |
. . . . . . . . . . 11
⊢ (𝜑 → (∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω)) ∈ No ) |
| 56 | 17, 55 | eqeltrid 2833 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ No
) |
| 57 | | muls02 28051 |
. . . . . . . . . 10
⊢ (𝑌 ∈
No → ( 0s ·s 𝑌) = 0s ) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ( 0s
·s 𝑌) =
0s ) |
| 59 | | muls01 28022 |
. . . . . . . . . 10
⊢ (𝐴 ∈
No → (𝐴
·s 0s ) = 0s ) |
| 60 | 2, 59 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ·s 0s ) =
0s ) |
| 61 | 58, 60 | oveq12d 7408 |
. . . . . . . 8
⊢ (𝜑 → (( 0s
·s 𝑌)
+s (𝐴
·s 0s )) = ( 0s +s
0s )) |
| 62 | 61 | oveq1d 7405 |
. . . . . . 7
⊢ (𝜑 → ((( 0s
·s 𝑌)
+s (𝐴
·s 0s )) -s ( 0s
·s 0s )) = (( 0s +s
0s ) -s ( 0s ·s
0s ))) |
| 63 | 54, 62 | eqtr4id 2784 |
. . . . . 6
⊢ (𝜑 → 0s = (((
0s ·s 𝑌) +s (𝐴 ·s 0s ))
-s ( 0s ·s 0s
))) |
| 64 | | oveq1 7397 |
. . . . . . . . . 10
⊢ (𝑐 = 0s → (𝑐 ·s 𝑌) = ( 0s
·s 𝑌)) |
| 65 | 64 | oveq1d 7405 |
. . . . . . . . 9
⊢ (𝑐 = 0s → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s
·s 𝑌)
+s (𝐴
·s 𝑑))) |
| 66 | | oveq1 7397 |
. . . . . . . . 9
⊢ (𝑐 = 0s → (𝑐 ·s 𝑑) = ( 0s
·s 𝑑)) |
| 67 | 65, 66 | oveq12d 7408 |
. . . . . . . 8
⊢ (𝑐 = 0s → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) = ((( 0s
·s 𝑌)
+s (𝐴
·s 𝑑))
-s ( 0s ·s 𝑑))) |
| 68 | 67 | eqeq2d 2741 |
. . . . . . 7
⊢ (𝑐 = 0s → (
0s = (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))
↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)))) |
| 69 | | oveq2 7398 |
. . . . . . . . . 10
⊢ (𝑑 = 0s → (𝐴 ·s 𝑑) = (𝐴 ·s 0s
)) |
| 70 | 69 | oveq2d 7406 |
. . . . . . . . 9
⊢ (𝑑 = 0s → ((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s
𝑌) +s (𝐴 ·s
0s ))) |
| 71 | | oveq2 7398 |
. . . . . . . . 9
⊢ (𝑑 = 0s → (
0s ·s 𝑑) = ( 0s ·s
0s )) |
| 72 | 70, 71 | oveq12d 7408 |
. . . . . . . 8
⊢ (𝑑 = 0s → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)) =
((( 0s ·s 𝑌) +s (𝐴 ·s 0s ))
-s ( 0s ·s 0s
))) |
| 73 | 72 | eqeq2d 2741 |
. . . . . . 7
⊢ (𝑑 = 0s → (
0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))
↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s ))
-s ( 0s ·s 0s
)))) |
| 74 | 68, 73 | rspc2ev 3604 |
. . . . . 6
⊢ ((
0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 0s ∈
∪ (𝐿 “ ω) ∧ 0s = (((
0s ·s 𝑌) +s (𝐴 ·s 0s ))
-s ( 0s ·s 0s ))) →
∃𝑐 ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})∃𝑑 ∈ ∪ (𝐿 “ ω) 0s
= (((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 75 | 24, 46, 63, 74 | mp3an12i 1467 |
. . . . 5
⊢ (𝜑 → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 76 | | eqeq1 2734 |
. . . . . . 7
⊢ (𝑏 = 0s → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 77 | 76 | 2rexbidv 3203 |
. . . . . 6
⊢ (𝑏 = 0s →
(∃𝑐 ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 78 | 21, 77 | elab 3649 |
. . . . 5
⊢ (
0s ∈ {𝑏
∣ ∃𝑐 ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 79 | 75, 78 | sylibr 234 |
. . . 4
⊢ (𝜑 → 0s ∈
{𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |
| 80 | | elun1 4148 |
. . . 4
⊢ (
0s ∈ {𝑏
∣ ∃𝑐 ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) |
| 81 | 79, 80 | syl 17 |
. . 3
⊢ (𝜑 → 0s ∈
({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) |
| 82 | | eqid 2730 |
. . . . . . 7
⊢ (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 83 | 82 | rnmpo 7525 |
. . . . . 6
⊢ ran
(𝑐 ∈ ({ 0s
} ∪ {𝑥 ∈ ( L
‘𝐴) ∣
0s <s 𝑥}),
𝑑 ∈ ∪ (𝐿
“ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} |
| 84 | | ssltex1 27705 |
. . . . . . . . 9
⊢ (({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∈
V) |
| 85 | 10, 84 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∈
V) |
| 86 | | ssltex1 27705 |
. . . . . . . . 9
⊢ (∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω) → ∪ (𝐿
“ ω) ∈ V) |
| 87 | 15, 86 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ (𝐿
“ ω) ∈ V) |
| 88 | | mpoexga 8059 |
. . . . . . . 8
⊢ ((({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥}) ∈ V ∧ ∪ (𝐿
“ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 89 | 85, 87, 88 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 90 | | rnexg 7881 |
. . . . . . 7
⊢ ((𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 91 | 89, 90 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 92 | 83, 91 | eqeltrrid 2834 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V) |
| 93 | | eqid 2730 |
. . . . . . 7
⊢ (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 94 | 93 | rnmpo 7525 |
. . . . . 6
⊢ ran
(𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} |
| 95 | | fvex 6874 |
. . . . . . . 8
⊢ ( R
‘𝐴) ∈
V |
| 96 | | ssltex2 27706 |
. . . . . . . . 9
⊢ (∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω) → ∪ (𝑅
“ ω) ∈ V) |
| 97 | 15, 96 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ (𝑅
“ ω) ∈ V) |
| 98 | | mpoexga 8059 |
. . . . . . . 8
⊢ ((( R
‘𝐴) ∈ V ∧
∪ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 99 | 95, 97, 98 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 100 | | rnexg 7881 |
. . . . . . 7
⊢ ((𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 101 | 99, 100 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 102 | 94, 101 | eqeltrrid 2834 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V) |
| 103 | 92, 102 | unexd 7733 |
. . . 4
⊢ (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V) |
| 104 | | snex 5394 |
. . . . 5
⊢ {
1s } ∈ V |
| 105 | 104 | a1i 11 |
. . . 4
⊢ (𝜑 → { 1s } ∈
V) |
| 106 | | ssltss1 27707 |
. . . . . . . . . . . . . 14
⊢ (({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ⊆ No ) |
| 107 | 10, 106 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ⊆ No ) |
| 108 | 107 | sselda 3949 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})) → 𝑐 ∈
No ) |
| 109 | 108 | adantrr 717 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → 𝑐
∈ No ) |
| 110 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → 𝑌
∈ No ) |
| 111 | 109, 110 | mulscld 28045 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (𝑐 ·s 𝑌) ∈ No
) |
| 112 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → 𝐴
∈ No ) |
| 113 | | ssltss1 27707 |
. . . . . . . . . . . . . 14
⊢ (∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω) → ∪ (𝐿
“ ω) ⊆ No ) |
| 114 | 15, 113 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ (𝐿
“ ω) ⊆ No ) |
| 115 | 114 | sselda 3949 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → 𝑑 ∈
No ) |
| 116 | 115 | adantrl 716 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → 𝑑
∈ No ) |
| 117 | 112, 116 | mulscld 28045 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (𝐴 ·s 𝑑) ∈ No
) |
| 118 | 111, 117 | addscld 27894 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No
) |
| 119 | 109, 116 | mulscld 28045 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (𝑐 ·s 𝑑) ∈ No
) |
| 120 | 118, 119 | subscld 27974 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No
) |
| 121 | | eleq1 2817 |
. . . . . . . 8
⊢ (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑏 ∈ No
↔ (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))
∈ No )) |
| 122 | 120, 121 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
| 123 | 122 | rexlimdvva 3195 |
. . . . . 6
⊢ (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
| 124 | 123 | abssdv 4034 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No ) |
| 125 | | rightssno 27800 |
. . . . . . . . . . . . . 14
⊢ ( R
‘𝐴) ⊆ No |
| 126 | 125 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ( R ‘𝐴) ⊆
No ) |
| 127 | 126 | sselda 3949 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 𝑐 ∈ No
) |
| 128 | 127 | adantrr 717 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑐 ∈
No ) |
| 129 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑌 ∈
No ) |
| 130 | 128, 129 | mulscld 28045 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑌) ∈ No ) |
| 131 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝐴 ∈
No ) |
| 132 | | ssltss2 27708 |
. . . . . . . . . . . . . 14
⊢ (∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω) → ∪ (𝑅
“ ω) ⊆ No ) |
| 133 | 15, 132 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ (𝑅
“ ω) ⊆ No ) |
| 134 | 133 | sselda 3949 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → 𝑑 ∈
No ) |
| 135 | 134 | adantrl 716 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑑 ∈
No ) |
| 136 | 131, 135 | mulscld 28045 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝐴 ·s
𝑑) ∈ No ) |
| 137 | 130, 136 | addscld 27894 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) ∈
No ) |
| 138 | 128, 135 | mulscld 28045 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑑) ∈ No ) |
| 139 | 137, 138 | subscld 27974 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈
No ) |
| 140 | 139, 121 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
| 141 | 140 | rexlimdvva 3195 |
. . . . . 6
⊢ (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
| 142 | 141 | abssdv 4034 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No
) |
| 143 | 124, 142 | unssd 4158 |
. . . 4
⊢ (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No
) |
| 144 | | 1sno 27746 |
. . . . 5
⊢
1s ∈ No |
| 145 | | snssi 4775 |
. . . . 5
⊢ (
1s ∈ No → { 1s }
⊆ No ) |
| 146 | 144, 145 | mp1i 13 |
. . . 4
⊢ (𝜑 → { 1s } ⊆
No ) |
| 147 | | elun 4119 |
. . . . . . . . 9
⊢ (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) |
| 148 | | vex 3454 |
. . . . . . . . . . 11
⊢ 𝑒 ∈ V |
| 149 | | eqeq1 2734 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑒 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 150 | 149 | 2rexbidv 3203 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑒 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 151 | 148, 150 | elab 3649 |
. . . . . . . . . 10
⊢ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 152 | 149 | 2rexbidv 3203 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑒 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 153 | 148, 152 | elab 3649 |
. . . . . . . . . 10
⊢ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 154 | 151, 153 | orbi12i 914 |
. . . . . . . . 9
⊢ ((𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 155 | 147, 154 | bitri 275 |
. . . . . . . 8
⊢ (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 156 | | elun 4119 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ↔ (𝑐 ∈ { 0s } ∨
𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})) |
| 157 | | velsn 4608 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ { 0s } ↔
𝑐 = 0s
) |
| 158 | 157 | orbi1i 913 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ { 0s } ∨
𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ↔ (𝑐 = 0s ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})) |
| 159 | 156, 158 | bitri 275 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ↔ (𝑐 = 0s ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})) |
| 160 | 58 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (
0s ·s 𝑌) = 0s ) |
| 161 | 160 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → ((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑))) |
| 162 | | muls02 28051 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈
No → ( 0s ·s 𝑑) = 0s ) |
| 163 | 115, 162 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (
0s ·s 𝑑) = 0s ) |
| 164 | 161, 163 | oveq12d 7408 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)) =
(( 0s +s (𝐴 ·s 𝑑)) -s 0s
)) |
| 165 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → 𝐴 ∈
No ) |
| 166 | 165, 115 | mulscld 28045 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (𝐴 ·s 𝑑) ∈
No ) |
| 167 | | addslid 27882 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ·s 𝑑) ∈
No → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑)) |
| 168 | 166, 167 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (
0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑)) |
| 169 | 168 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → ((
0s +s (𝐴 ·s 𝑑)) -s 0s ) = ((𝐴 ·s 𝑑) -s 0s
)) |
| 170 | | subsid1 27979 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ·s 𝑑) ∈
No → ((𝐴
·s 𝑑)
-s 0s ) = (𝐴 ·s 𝑑)) |
| 171 | 166, 170 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) →
((𝐴 ·s
𝑑) -s
0s ) = (𝐴
·s 𝑑)) |
| 172 | 164, 169,
171 | 3eqtrd 2769 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)) =
(𝐴 ·s
𝑑)) |
| 173 | | eliun 4962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ ∪ 𝑖 ∈ ω (𝐿‘𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝐿‘𝑖)) |
| 174 | | funiunfv 7225 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Fun
𝐿 → ∪ 𝑖 ∈ ω (𝐿‘𝑖) = ∪ (𝐿 “
ω)) |
| 175 | 43, 174 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ 𝑖 ∈ ω (𝐿‘𝑖) = ∪ (𝐿 “
ω) |
| 176 | 175 | eleq2i 2821 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ ∪ 𝑖 ∈ ω (𝐿‘𝑖) ↔ 𝑑 ∈ ∪ (𝐿 “
ω)) |
| 177 | 173, 176 | bitr3i 277 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑖 ∈
ω 𝑑 ∈ (𝐿‘𝑖) ↔ 𝑑 ∈ ∪ (𝐿 “
ω)) |
| 178 | 11, 12, 13, 2, 3, 14 | precsexlem9 28124 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (∀𝑑 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑑) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝑖) 1s <s (𝐴 ·s 𝑐))) |
| 179 | 178 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ∀𝑑 ∈ (𝐿‘𝑖)(𝐴 ·s 𝑑) <s 1s ) |
| 180 | | rsp 3226 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑑 ∈
(𝐿‘𝑖)(𝐴 ·s 𝑑) <s 1s → (𝑑 ∈ (𝐿‘𝑖) → (𝐴 ·s 𝑑) <s 1s )) |
| 181 | 179, 180 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑑 ∈ (𝐿‘𝑖) → (𝐴 ·s 𝑑) <s 1s )) |
| 182 | 181 | rexlimdva 3135 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿‘𝑖) → (𝐴 ·s 𝑑) <s 1s )) |
| 183 | 177, 182 | biimtrrid 243 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑑 ∈ ∪ (𝐿 “ ω) → (𝐴 ·s 𝑑) <s 1s
)) |
| 184 | 183 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (𝐴 ·s 𝑑) <s 1s
) |
| 185 | 172, 184 | eqbrtrd 5132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝐿 “ ω)) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))
<s 1s ) |
| 186 | 185 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑑 ∈ ∪ (𝐿 “ ω) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))
<s 1s )) |
| 187 | 67 | breq1d 5120 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 0s →
((((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔
((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))
<s 1s )) |
| 188 | 187 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 0s → ((𝑑 ∈ ∪ (𝐿
“ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ) ↔ (𝑑 ∈ ∪ (𝐿
“ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))
<s 1s ))) |
| 189 | 186, 188 | syl5ibrcom 247 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑐 = 0s → (𝑑 ∈ ∪ (𝐿 “ ω) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
))) |
| 190 | | scutcut 27720 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω) → ((∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω)) ∈ No ∧ ∪ (𝐿 “ ω) <<s
{(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} ∧ {(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} <<s ∪ (𝑅 “ ω))) |
| 191 | 15, 190 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω)) ∈ No ∧ ∪ (𝐿 “ ω) <<s
{(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} ∧ {(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} <<s ∪ (𝑅 “ ω))) |
| 192 | 191 | simp3d 1144 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))} <<s ∪ (𝑅
“ ω)) |
| 193 | 192 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
{(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} <<s ∪ (𝑅 “ ω)) |
| 194 | | ovex 7423 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω)) ∈ V |
| 195 | 194 | snid 4629 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω)) ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))} |
| 196 | 17, 195 | eqeltri 2825 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑌 ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))} |
| 197 | 196 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑌 ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))}) |
| 198 | | peano2 7869 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ ω → suc 𝑖 ∈
ω) |
| 199 | 198 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → suc 𝑖 ∈ ω) |
| 200 | | eqid 2730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) |
| 201 | | oveq1 7397 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥𝐿 = 𝑐 → (𝑥𝐿 -s 𝐴) = (𝑐 -s 𝐴)) |
| 202 | 201 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿)) |
| 203 | 202 | oveq2d 7406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥𝐿 = 𝑐 → ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = (
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿))) |
| 204 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥𝐿 = 𝑐 → 𝑥𝐿 = 𝑐) |
| 205 | 203, 204 | oveq12d 7408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥𝐿 = 𝑐 → (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝐿)) /su
𝑐)) |
| 206 | 205 | eqeq2d 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥𝐿 = 𝑐 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su
𝑐))) |
| 207 | | oveq2 7398 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦𝐿 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑑)) |
| 208 | 207 | oveq2d 7406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦𝐿 = 𝑑 → ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝐿)) = ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))) |
| 209 | 208 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦𝐿 = 𝑑 → (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝐿)) /su
𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)) |
| 210 | 209 | eqeq2d 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦𝐿 = 𝑑 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su
𝑐) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))) |
| 211 | 206, 210 | rspc2ev 3604 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿‘𝑖) ∧ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐))
→ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)) |
| 212 | 200, 211 | mp3an3 1452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿‘𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)) |
| 213 | 212 | ad2ant2l 746 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)) |
| 214 | | ovex 7423 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ V |
| 215 | | eqeq1 2734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (𝑎 = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
| 216 | 215 | 2rexbidv 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿))) |
| 217 | 214, 216 | elab 3649 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)) |
| 218 | 213, 217 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}) |
| 219 | | elun1 4148 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})) |
| 220 | | elun2 4149 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
| 221 | 218, 219,
220 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
| 222 | 11, 12, 13 | precsexlem5 28120 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ ω → (𝑅‘suc 𝑖) = ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
| 223 | 222 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (𝑅‘suc 𝑖) = ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
| 224 | 221, 223 | eleqtrrd 2832 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) |
| 225 | | fveq2 6861 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = suc 𝑖 → (𝑅‘𝑗) = (𝑅‘suc 𝑖)) |
| 226 | 225 | eleq2d 2815 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = suc 𝑖 → ((( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))) |
| 227 | 226 | rspcev 3591 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((suc
𝑖 ∈ ω ∧ ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗)) |
| 228 | 199, 224,
227 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗)) |
| 229 | 228 | rexlimdvaa 3136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿‘𝑖) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗))) |
| 230 | | eliun 4962 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪
𝑗 ∈ ω (𝑅‘𝑗) ↔ ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗)) |
| 231 | | fo2nd 7992 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
2nd :V–onto→V |
| 232 | | fofun 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(2nd :V–onto→V → Fun 2nd ) |
| 233 | 231, 232 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ Fun
2nd |
| 234 | | funco 6559 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Fun
2nd ∧ Fun 𝐹)
→ Fun (2nd ∘ 𝐹)) |
| 235 | 233, 39, 234 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ Fun
(2nd ∘ 𝐹) |
| 236 | 13 | funeqi 6540 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Fun
𝑅 ↔ Fun
(2nd ∘ 𝐹)) |
| 237 | 235, 236 | mpbir 231 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ Fun 𝑅 |
| 238 | | funiunfv 7225 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Fun
𝑅 → ∪ 𝑗 ∈ ω (𝑅‘𝑗) = ∪ (𝑅 “
ω)) |
| 239 | 237, 238 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪ 𝑗 ∈ ω (𝑅‘𝑗) = ∪ (𝑅 “
ω) |
| 240 | 239 | eleq2i 2821 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪
𝑗 ∈ ω (𝑅‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅
“ ω)) |
| 241 | 230, 240 | bitr3i 277 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑗 ∈
ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅
“ ω)) |
| 242 | 229, 177,
241 | 3imtr3g 295 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 ∈ ∪ (𝐿 “ ω) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅 “
ω))) |
| 243 | 242 | impr 454 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅 “
ω)) |
| 244 | 193, 197,
243 | ssltsepcd 27713 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑌 <s (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)) |
| 245 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑌 ∈
No ) |
| 246 | 144 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
1s ∈ No ) |
| 247 | | leftssno 27799 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ( L
‘𝐴) ⊆ No |
| 248 | 6, 247 | sstri 3959 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ⊆ No |
| 249 | 248 | sseli 3945 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 ∈ No
) |
| 250 | 249 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 ∈ No
) |
| 251 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 ∈ No
) |
| 252 | 250, 251 | subscld 27974 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 -s 𝐴) ∈ No
) |
| 253 | 252 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 -s 𝐴) ∈
No ) |
| 254 | 115 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑑 ∈
No ) |
| 255 | 253, 254 | mulscld 28045 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) ∈
No ) |
| 256 | 246, 255 | addscld 27894 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No
) |
| 257 | 249 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑐 ∈
No ) |
| 258 | | breq2 5114 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑐 → ( 0s <s 𝑥 ↔ 0s <s
𝑐)) |
| 259 | 258 | elrab 3662 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑐 ∈ ( L ‘𝐴) ∧ 0s <s 𝑐)) |
| 260 | 259 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s
𝑐) |
| 261 | 260 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
0s <s 𝑐) |
| 262 | 260 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s
𝑐) |
| 263 | | breq2 5114 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥𝑂 = 𝑐 → ( 0s <s
𝑥𝑂
↔ 0s <s 𝑐)) |
| 264 | | oveq1 7397 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥𝑂 = 𝑐 → (𝑥𝑂 ·s
𝑦) = (𝑐 ·s 𝑦)) |
| 265 | 264 | eqeq1d 2732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥𝑂 = 𝑐 → ((𝑥𝑂 ·s
𝑦) = 1s ↔
(𝑐 ·s
𝑦) = 1s
)) |
| 266 | 265 | rexbidv 3158 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥𝑂 = 𝑐 → (∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s ↔
∃𝑦 ∈ No (𝑐 ·s 𝑦) = 1s )) |
| 267 | 263, 266 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥𝑂 = 𝑐 → (( 0s <s
𝑥𝑂
→ ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s ) ↔
( 0s <s 𝑐
→ ∃𝑦 ∈
No (𝑐 ·s 𝑦) = 1s ))) |
| 268 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))( 0s
<s 𝑥𝑂
→ ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s
)) |
| 269 | | ssun1 4144 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ( L
‘𝐴) ⊆ (( L
‘𝐴) ∪ ( R
‘𝐴)) |
| 270 | 6, 269 | sstri 3959 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ⊆ (( L
‘𝐴) ∪ ( R
‘𝐴)) |
| 271 | 270 | sseli 3945 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 272 | 271 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 273 | 267, 268,
272 | rspcdva 3592 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s
𝑐 → ∃𝑦 ∈
No (𝑐
·s 𝑦) =
1s )) |
| 274 | 262, 273 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 ∈
No (𝑐
·s 𝑦) =
1s ) |
| 275 | 274 | adantrr 717 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
∃𝑦 ∈ No (𝑐 ·s 𝑦) = 1s ) |
| 276 | 245, 256,
257, 261, 275 | sltmuldiv2wd 28112 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 ·s
𝑌) <s ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
↔ 𝑌 <s ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))) |
| 277 | 244, 276 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑌) <s ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))) |
| 278 | 257, 254 | mulscld 28045 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑑) ∈ No ) |
| 279 | 166 | adantrl 716 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝐴 ·s
𝑑) ∈ No ) |
| 280 | 246, 278,
279 | addsubsassd 27992 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
| 281 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝐴 ∈
No ) |
| 282 | 257, 281,
254 | subsdird 28069 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))) |
| 283 | 282 | oveq2d 7406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
| 284 | 280, 283 | eqtr4d 2768 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑))) |
| 285 | 277, 284 | breqtrrd 5138 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑌) <s (( 1s
+s (𝑐
·s 𝑑))
-s (𝐴
·s 𝑑))) |
| 286 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑌 ∈ No
) |
| 287 | 250, 286 | mulscld 28045 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 ·s 𝑌) ∈ No
) |
| 288 | 287 | adantrr 717 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑌) ∈ No ) |
| 289 | 288, 279 | addscld 27894 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) ∈
No ) |
| 290 | 289, 278,
246 | sltsubaddd 28000 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s
+s (𝑐
·s 𝑑)))) |
| 291 | 246, 278 | addscld 27894 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s (𝑐 ·s 𝑑)) ∈ No
) |
| 292 | 288, 279,
291 | sltaddsubd 28002 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s
+s (𝑐
·s 𝑑))
↔ (𝑐
·s 𝑌)
<s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))) |
| 293 | 290, 292 | bitrd 279 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔
(𝑐 ·s
𝑌) <s (( 1s
+s (𝑐
·s 𝑑))
-s (𝐴
·s 𝑑)))) |
| 294 | 285, 293 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
) |
| 295 | 294 | exp32 420 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 ∈ ∪ (𝐿 “ ω) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
))) |
| 296 | 189, 295 | jaod 859 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑐 = 0s ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 ∈ ∪ (𝐿 “ ω) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
))) |
| 297 | 159, 296 | biimtrid 242 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → (𝑑 ∈ ∪ (𝐿
“ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ))) |
| 298 | 297 | imp32 418 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ) |
| 299 | | breq1 5113 |
. . . . . . . . . . 11
⊢ (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑒 <s 1s ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
)) |
| 300 | 298, 299 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝐿
“ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s )) |
| 301 | 300 | rexlimdvva 3195 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s )) |
| 302 | 192 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
{(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))} <<s ∪ (𝑅 “ ω)) |
| 303 | 196 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑌 ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))}) |
| 304 | 198 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → suc 𝑖 ∈ ω) |
| 305 | | oveq1 7397 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥𝑅 = 𝑐 → (𝑥𝑅 -s 𝐴) = (𝑐 -s 𝐴)) |
| 306 | 305 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅)) |
| 307 | 306 | oveq2d 7406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥𝑅 = 𝑐 → ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = (
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅))) |
| 308 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥𝑅 = 𝑐 → 𝑥𝑅 = 𝑐) |
| 309 | 307, 308 | oveq12d 7408 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥𝑅 = 𝑐 → (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝑅)) /su
𝑐)) |
| 310 | 309 | eqeq2d 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥𝑅 = 𝑐 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su
𝑐))) |
| 311 | | oveq2 7398 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦𝑅 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑑)) |
| 312 | 311 | oveq2d 7406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦𝑅 = 𝑑 → ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝑅)) = ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))) |
| 313 | 312 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦𝑅 = 𝑑 → (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝑅)) /su
𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)) |
| 314 | 313 | eqeq2d 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦𝑅 = 𝑑 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su
𝑐) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))) |
| 315 | 310, 314 | rspc2ev 3604 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅‘𝑖) ∧ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐))
→ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)) |
| 316 | 200, 315 | mp3an3 1452 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅‘𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)) |
| 317 | 316 | ad2ant2l 746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)) |
| 318 | | eqeq1 2734 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (𝑎 = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
| 319 | 318 | 2rexbidv 3203 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
| 320 | 214, 319 | elab 3649 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)) |
| 321 | 317, 320 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}) |
| 322 | | elun2 4149 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})) |
| 323 | 321, 322,
220 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
| 324 | 222 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (𝑅‘suc 𝑖) = ((𝑅‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
| 325 | 323, 324 | eleqtrrd 2832 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) |
| 326 | 304, 325,
227 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗)) |
| 327 | 326 | rexlimdvaa 3136 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅‘𝑖) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝑅‘𝑗))) |
| 328 | | eliun 4962 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 ∈ ∪ 𝑖 ∈ ω (𝑅‘𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝑅‘𝑖)) |
| 329 | | funiunfv 7225 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Fun
𝑅 → ∪ 𝑖 ∈ ω (𝑅‘𝑖) = ∪ (𝑅 “
ω)) |
| 330 | 237, 329 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑖 ∈ ω (𝑅‘𝑖) = ∪ (𝑅 “
ω) |
| 331 | 330 | eleq2i 2821 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 ∈ ∪ 𝑖 ∈ ω (𝑅‘𝑖) ↔ 𝑑 ∈ ∪ (𝑅 “
ω)) |
| 332 | 328, 331 | bitr3i 277 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑖 ∈
ω 𝑑 ∈ (𝑅‘𝑖) ↔ 𝑑 ∈ ∪ (𝑅 “
ω)) |
| 333 | 327, 332,
241 | 3imtr3g 295 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (𝑑 ∈ ∪ (𝑅 “ ω) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅 “
ω))) |
| 334 | 333 | impr 454 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝑅 “
ω)) |
| 335 | 302, 303,
334 | ssltsepcd 27713 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑌 <s (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)) |
| 336 | 144 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
1s ∈ No ) |
| 337 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 𝐴 ∈ No
) |
| 338 | 127, 337 | subscld 27974 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (𝑐 -s 𝐴) ∈ No
) |
| 339 | 338 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 -s 𝐴) ∈
No ) |
| 340 | 339, 135 | mulscld 28045 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) ∈
No ) |
| 341 | 336, 340 | addscld 27894 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No
) |
| 342 | 20 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 0s ∈ No ) |
| 343 | 3 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝐴) |
| 344 | | rightgt 27783 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ ( R ‘𝐴) → 𝐴 <s 𝑐) |
| 345 | 344 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑐) |
| 346 | 342, 337,
127, 343, 345 | slttrd 27678 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝑐) |
| 347 | 346 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
0s <s 𝑐) |
| 348 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
| 349 | | elun2 4149 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ ( R ‘𝐴) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 350 | 349 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 351 | 267, 348,
350 | rspcdva 3592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → ( 0s <s 𝑐 → ∃𝑦 ∈
No (𝑐
·s 𝑦) =
1s )) |
| 352 | 346, 351 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → ∃𝑦 ∈ No
(𝑐 ·s
𝑦) = 1s
) |
| 353 | 352 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
∃𝑦 ∈ No (𝑐 ·s 𝑦) = 1s ) |
| 354 | 129, 341,
128, 347, 353 | sltmuldiv2wd 28112 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 ·s
𝑌) <s ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
↔ 𝑌 <s ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))) |
| 355 | 335, 354 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑌) <s ( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))) |
| 356 | 336, 138,
136 | addsubsassd 27992 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
| 357 | 128, 131,
135 | subsdird 28069 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))) |
| 358 | 357 | oveq2d 7406 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
| 359 | 356, 358 | eqtr4d 2768 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑))) |
| 360 | 355, 359 | breqtrrd 5138 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑌) <s (( 1s
+s (𝑐
·s 𝑑))
-s (𝐴
·s 𝑑))) |
| 361 | 137, 138,
336 | sltsubaddd 28000 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s
+s (𝑐
·s 𝑑)))) |
| 362 | 336, 138 | addscld 27894 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s (𝑐 ·s 𝑑)) ∈ No
) |
| 363 | 130, 136,
362 | sltaddsubd 28002 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s
+s (𝑐
·s 𝑑))
↔ (𝑐
·s 𝑌)
<s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))) |
| 364 | 361, 363 | bitrd 279 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔
(𝑐 ·s
𝑌) <s (( 1s
+s (𝑐
·s 𝑑))
-s (𝐴
·s 𝑑)))) |
| 365 | 360, 364 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s
) |
| 366 | 365, 299 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s )) |
| 367 | 366 | rexlimdvva 3195 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s )) |
| 368 | 301, 367 | jaod 859 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑒 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 𝑒 <s 1s )) |
| 369 | 155, 368 | biimtrid 242 |
. . . . . . 7
⊢ (𝜑 → (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 1s )) |
| 370 | 369 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 1s ) |
| 371 | | velsn 4608 |
. . . . . . 7
⊢ (𝑓 ∈ { 1s } ↔
𝑓 = 1s
) |
| 372 | | breq2 5114 |
. . . . . . 7
⊢ (𝑓 = 1s → (𝑒 <s 𝑓 ↔ 𝑒 <s 1s )) |
| 373 | 371, 372 | sylbi 217 |
. . . . . 6
⊢ (𝑓 ∈ { 1s } →
(𝑒 <s 𝑓 ↔ 𝑒 <s 1s )) |
| 374 | 370, 373 | syl5ibrcom 247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → (𝑓 ∈ { 1s } → 𝑒 <s 𝑓)) |
| 375 | 374 | 3impia 1117 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∧ 𝑓 ∈ { 1s }) → 𝑒 <s 𝑓) |
| 376 | 103, 105,
143, 146, 375 | ssltd 27710 |
. . 3
⊢ (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) <<s { 1s
}) |
| 377 | | eqid 2730 |
. . . . . . 7
⊢ (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 378 | 377 | rnmpo 7525 |
. . . . . 6
⊢ ran
(𝑐 ∈ ({ 0s
} ∪ {𝑥 ∈ ( L
‘𝐴) ∣
0s <s 𝑥}),
𝑑 ∈ ∪ (𝑅
“ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} |
| 379 | | mpoexga 8059 |
. . . . . . . 8
⊢ ((({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥}) ∈ V ∧ ∪ (𝑅
“ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 380 | 85, 97, 379 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 381 | | rnexg 7881 |
. . . . . . 7
⊢ ((𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 382 | 380, 381 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}), 𝑑 ∈ ∪ (𝑅 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 383 | 378, 382 | eqeltrrid 2834 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V) |
| 384 | | eqid 2730 |
. . . . . . 7
⊢ (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 385 | 384 | rnmpo 7525 |
. . . . . 6
⊢ ran
(𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} |
| 386 | | mpoexga 8059 |
. . . . . . . 8
⊢ ((( R
‘𝐴) ∈ V ∧
∪ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 387 | 95, 87, 386 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 388 | | rnexg 7881 |
. . . . . . 7
⊢ ((𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 389 | 387, 388 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 ∈ ∪ (𝐿 “ ω) ↦
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V) |
| 390 | 385, 389 | eqeltrrid 2834 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V) |
| 391 | 383, 390 | unexd 7733 |
. . . 4
⊢ (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V) |
| 392 | 108 | adantrr 717 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → 𝑐
∈ No ) |
| 393 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → 𝑌
∈ No ) |
| 394 | 392, 393 | mulscld 28045 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (𝑐 ·s 𝑌) ∈ No
) |
| 395 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → 𝐴
∈ No ) |
| 396 | 134 | adantrl 716 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → 𝑑
∈ No ) |
| 397 | 395, 396 | mulscld 28045 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (𝐴 ·s 𝑑) ∈ No
) |
| 398 | 394, 397 | addscld 27894 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No
) |
| 399 | 392, 396 | mulscld 28045 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (𝑐 ·s 𝑑) ∈ No
) |
| 400 | 398, 399 | subscld 27974 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No
) |
| 401 | 400, 121 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
| 402 | 401 | rexlimdvva 3195 |
. . . . . 6
⊢ (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
| 403 | 402 | abssdv 4034 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No ) |
| 404 | 127 | adantrr 717 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑐 ∈
No ) |
| 405 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑌 ∈
No ) |
| 406 | 404, 405 | mulscld 28045 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑌) ∈ No ) |
| 407 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝐴 ∈
No ) |
| 408 | 115 | adantrl 716 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑑 ∈
No ) |
| 409 | 407, 408 | mulscld 28045 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝐴 ·s
𝑑) ∈ No ) |
| 410 | 406, 409 | addscld 27894 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) ∈
No ) |
| 411 | 404, 408 | mulscld 28045 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 ·s
𝑑) ∈ No ) |
| 412 | 410, 411 | subscld 27974 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈
No ) |
| 413 | 412, 121 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
| 414 | 413 | rexlimdvva 3195 |
. . . . . 6
⊢ (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 ∈ No
)) |
| 415 | 414 | abssdv 4034 |
. . . . 5
⊢ (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No
) |
| 416 | 403, 415 | unssd 4158 |
. . . 4
⊢ (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No
) |
| 417 | | elun 4119 |
. . . . . . . 8
⊢ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) |
| 418 | | vex 3454 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
| 419 | | eqeq1 2734 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑓 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 420 | 419 | 2rexbidv 3203 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑓 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 421 | 418, 420 | elab 3649 |
. . . . . . . . 9
⊢ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 422 | 419 | 2rexbidv 3203 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑓 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 423 | 418, 422 | elab 3649 |
. . . . . . . . 9
⊢ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 424 | 421, 423 | orbi12i 914 |
. . . . . . . 8
⊢ ((𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 425 | 417, 424 | bitri 275 |
. . . . . . 7
⊢ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 426 | | eliun 4962 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 ∈ ∪ 𝑗 ∈ ω (𝑅‘𝑗) ↔ ∃𝑗 ∈ ω 𝑑 ∈ (𝑅‘𝑗)) |
| 427 | 239 | eleq2i 2821 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 ∈ ∪ 𝑗 ∈ ω (𝑅‘𝑗) ↔ 𝑑 ∈ ∪ (𝑅 “
ω)) |
| 428 | 426, 427 | bitr3i 277 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑗 ∈
ω 𝑑 ∈ (𝑅‘𝑗) ↔ 𝑑 ∈ ∪ (𝑅 “
ω)) |
| 429 | 11, 12, 13, 2, 3, 14 | precsexlem9 28124 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (∀𝑐 ∈ (𝐿‘𝑗)(𝐴 ·s 𝑐) <s 1s ∧ ∀𝑑 ∈ (𝑅‘𝑗) 1s <s (𝐴 ·s 𝑑))) |
| 430 | | rsp 3226 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑑 ∈
(𝑅‘𝑗) 1s <s (𝐴 ·s 𝑑) → (𝑑 ∈ (𝑅‘𝑗) → 1s <s (𝐴 ·s 𝑑))) |
| 431 | 429, 430 | simpl2im 503 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝑑 ∈ (𝑅‘𝑗) → 1s <s (𝐴 ·s 𝑑))) |
| 432 | 431 | rexlimdva 3135 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (∃𝑗 ∈ ω 𝑑 ∈ (𝑅‘𝑗) → 1s <s (𝐴 ·s 𝑑))) |
| 433 | 428, 432 | biimtrrid 243 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s (𝐴
·s 𝑑))) |
| 434 | 433 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) →
1s <s (𝐴
·s 𝑑)) |
| 435 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → 𝑌 ∈
No ) |
| 436 | 57 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑌 ∈
No → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑))) |
| 437 | 435, 436 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → ((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑))) |
| 438 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → 𝐴 ∈
No ) |
| 439 | 438, 134 | mulscld 28045 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → (𝐴 ·s 𝑑) ∈
No ) |
| 440 | 439, 167 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → (
0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑)) |
| 441 | 437, 440 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → ((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑)) |
| 442 | 134, 162 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → (
0s ·s 𝑑) = 0s ) |
| 443 | 441, 442 | oveq12d 7408 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)) =
((𝐴 ·s
𝑑) -s
0s )) |
| 444 | 439, 170 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) →
((𝐴 ·s
𝑑) -s
0s ) = (𝐴
·s 𝑑)) |
| 445 | 443, 444 | eqtrd 2765 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) → (((
0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)) =
(𝐴 ·s
𝑑)) |
| 446 | 434, 445 | breqtrrd 5138 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ ∪ (𝑅 “ ω)) →
1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))) |
| 447 | 446 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)))) |
| 448 | 67 | breq2d 5122 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 0s → (
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))
↔ 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑)))) |
| 449 | 448 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 0s → ((𝑑 ∈ ∪ (𝑅
“ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ↔ (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s
·s 𝑑))))) |
| 450 | 447, 449 | syl5ibrcom 247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑐 = 0s → (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))))) |
| 451 | 144 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
1s ∈ No ) |
| 452 | 249 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑐 ∈
No ) |
| 453 | 134 | adantrl 716 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑑 ∈
No ) |
| 454 | 452, 453 | mulscld 28045 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑑) ∈ No ) |
| 455 | 439 | adantrl 716 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝐴 ·s
𝑑) ∈ No ) |
| 456 | 451, 454,
455 | addsubsassd 27992 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
| 457 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝐴 ∈
No ) |
| 458 | 452, 457,
453 | subsdird 28069 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))) |
| 459 | 458 | oveq2d 7406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
| 460 | 456, 459 | eqtr4d 2768 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑))) |
| 461 | 191 | simp2d 1143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∪ (𝐿
“ ω) <<s {(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))}) |
| 462 | 461 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ∪ (𝐿
“ ω) <<s {(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))}) |
| 463 | 198 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → suc 𝑖 ∈ ω) |
| 464 | 201 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅)) |
| 465 | 464 | oveq2d 7406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥𝐿 = 𝑐 → ( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = (
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅))) |
| 466 | 465, 204 | oveq12d 7408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥𝐿 = 𝑐 → (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝑅)) /su
𝑐)) |
| 467 | 466 | eqeq2d 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥𝐿 = 𝑐 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su
𝑐))) |
| 468 | 467, 314 | rspc2ev 3604 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅‘𝑖) ∧ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐))
→ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)) |
| 469 | 200, 468 | mp3an3 1452 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅‘𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)) |
| 470 | 469 | ad2ant2l 746 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)) |
| 471 | | eqeq1 2734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (𝑎 = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿))) |
| 472 | 471 | 2rexbidv 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
| 473 | 214, 472 | elab 3649 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)) |
| 474 | 470, 473 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}) |
| 475 | | elun2 4149 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})) |
| 476 | | elun2 4149 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
| 477 | 474, 475,
476 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
| 478 | 11, 12, 13 | precsexlem4 28119 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ ω → (𝐿‘suc 𝑖) = ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
| 479 | 478 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (𝐿‘suc 𝑖) = ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
| 480 | 477, 479 | eleqtrrd 2832 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) |
| 481 | | fveq2 6861 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = suc 𝑖 → (𝐿‘𝑗) = (𝐿‘suc 𝑖)) |
| 482 | 481 | eleq2d 2815 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = suc 𝑖 → ((( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))) |
| 483 | 482 | rspcev 3591 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((suc
𝑖 ∈ ω ∧ ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗)) |
| 484 | 463, 480,
483 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅‘𝑖))) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗)) |
| 485 | 484 | rexlimdvaa 3136 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅‘𝑖) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗))) |
| 486 | | eliun 4962 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪
𝑗 ∈ ω (𝐿‘𝑗) ↔ ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗)) |
| 487 | | funiunfv 7225 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (Fun
𝐿 → ∪ 𝑗 ∈ ω (𝐿‘𝑗) = ∪ (𝐿 “
ω)) |
| 488 | 43, 487 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ∪ 𝑗 ∈ ω (𝐿‘𝑗) = ∪ (𝐿 “
ω) |
| 489 | 488 | eleq2i 2821 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪
𝑗 ∈ ω (𝐿‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿
“ ω)) |
| 490 | 486, 489 | bitr3i 277 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑗 ∈
ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘𝑗) ↔ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿
“ ω)) |
| 491 | 485, 332,
490 | 3imtr3g 295 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 ∈ ∪ (𝑅 “ ω) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿 “
ω))) |
| 492 | 491 | impr 454 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿 “
ω)) |
| 493 | 196 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑌 ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))}) |
| 494 | 462, 492,
493 | ssltsepcd 27713 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌) |
| 495 | 252 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 -s 𝐴) ∈
No ) |
| 496 | 495, 453 | mulscld 28045 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) ∈
No ) |
| 497 | 451, 496 | addscld 27894 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No
) |
| 498 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → 𝑌 ∈
No ) |
| 499 | 260 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
0s <s 𝑐) |
| 500 | 274 | adantrr 717 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
∃𝑦 ∈ No (𝑐 ·s 𝑦) = 1s ) |
| 501 | 497, 498,
452, 499, 500 | sltdivmulwd 28109 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))) |
| 502 | 494, 501 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)) |
| 503 | 460, 502 | eqbrtrd 5132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌)) |
| 504 | 451, 454 | addscld 27894 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (
1s +s (𝑐 ·s 𝑑)) ∈ No
) |
| 505 | 287 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
(𝑐 ·s
𝑌) ∈ No ) |
| 506 | 504, 455,
505 | sltsubaddd 28000 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s
(𝑐 ·s
𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)))) |
| 507 | 505, 455 | addscld 27894 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) ∈
No ) |
| 508 | 451, 454,
507 | sltaddsubd 28002 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 509 | 506, 508 | bitrd 279 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) → (((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 510 | 503, 509 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ ∪ (𝑅 “ ω))) →
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))) |
| 511 | 510 | exp32 420 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))))) |
| 512 | 450, 511 | jaod 859 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑐 = 0s ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 ∈ ∪ (𝑅 “ ω) →
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))))) |
| 513 | 159, 512 | biimtrid 242 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) → (𝑑 ∈ ∪ (𝑅
“ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))) |
| 514 | 513 | imp32 418 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) |
| 515 | | breq2 5114 |
. . . . . . . . . 10
⊢ (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → ( 1s <s 𝑓 ↔ 1s <s
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 516 | 514, 515 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) ∧ 𝑑 ∈ ∪ (𝑅
“ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓)) |
| 517 | 516 | rexlimdvva 3195 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s
𝑓)) |
| 518 | 144 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
1s ∈ No ) |
| 519 | 518, 411,
409 | addsubsassd 27992 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
| 520 | 404, 407,
408 | subsdird 28069 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))) |
| 521 | 520 | oveq2d 7406 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))) |
| 522 | 519, 521 | eqtr4d 2768 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑))) |
| 523 | 461 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ∪ (𝐿
“ ω) <<s {(∪ (𝐿 “ ω) |s ∪ (𝑅
“ ω))}) |
| 524 | 198 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → suc 𝑖 ∈ ω) |
| 525 | 305 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿)) |
| 526 | 525 | oveq2d 7406 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥𝑅 = 𝑐 → ( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = (
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿))) |
| 527 | 526, 308 | oveq12d 7408 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥𝑅 = 𝑐 → (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑦𝐿)) /su
𝑐)) |
| 528 | 527 | eqeq2d 2741 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥𝑅 = 𝑐 → ((( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su
𝑐))) |
| 529 | 528, 210 | rspc2ev 3604 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿‘𝑖) ∧ (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐))
→ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)) |
| 530 | 200, 529 | mp3an3 1452 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿‘𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)) |
| 531 | 530 | ad2ant2l 746 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)) |
| 532 | | eqeq1 2734 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (𝑎 = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) ↔ (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐) = ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅))) |
| 533 | 532 | 2rexbidv 3203 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
→ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅))) |
| 534 | 214, 533 | elab 3649 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)) |
| 535 | 531, 534 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}) |
| 536 | | elun1 4148 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
→ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})) |
| 537 | 535, 536,
476 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
| 538 | 478 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (𝐿‘suc 𝑖) = ((𝐿‘𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑖)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑖)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
| 539 | 537, 538 | eleqtrrd 2832 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → (( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) |
| 540 | 524, 539,
483 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿‘𝑖))) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗)) |
| 541 | 540 | rexlimdvaa 3136 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿‘𝑖) → ∃𝑗 ∈ ω (( 1s
+s ((𝑐
-s 𝐴)
·s 𝑑))
/su 𝑐)
∈ (𝐿‘𝑗))) |
| 542 | 541, 177,
490 | 3imtr3g 295 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (𝑑 ∈ ∪ (𝐿 “ ω) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿 “
ω))) |
| 543 | 542 | impr 454 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ∪ (𝐿 “
ω)) |
| 544 | 196 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → 𝑌 ∈ {(∪ (𝐿
“ ω) |s ∪ (𝑅 “ ω))}) |
| 545 | 523, 543,
544 | ssltsepcd 27713 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌) |
| 546 | 338 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑐 -s 𝐴) ∈
No ) |
| 547 | 546, 408 | mulscld 28045 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
((𝑐 -s 𝐴) ·s 𝑑) ∈
No ) |
| 548 | 518, 547 | addscld 27894 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No
) |
| 549 | 346 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
0s <s 𝑐) |
| 550 | 352 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
∃𝑦 ∈ No (𝑐 ·s 𝑦) = 1s ) |
| 551 | 548, 405,
404, 549, 550 | sltdivmulwd 28109 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (((
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s
((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))) |
| 552 | 545, 551 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)) |
| 553 | 522, 552 | eqbrtrd 5132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌)) |
| 554 | 518, 411 | addscld 27894 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (
1s +s (𝑐 ·s 𝑑)) ∈ No
) |
| 555 | 554, 409,
406 | sltsubaddd 28000 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s
(𝑐 ·s
𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)))) |
| 556 | 518, 411,
410 | sltaddsubd 28002 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → ((
1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 557 | 555, 556 | bitrd 279 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) → (((
1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))) |
| 558 | 553, 557 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
1s <s (((𝑐
·s 𝑌)
+s (𝐴
·s 𝑑))
-s (𝑐
·s 𝑑))) |
| 559 | 558, 515 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ ∪ (𝐿 “ ω))) →
(𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓)) |
| 560 | 559 | rexlimdvva 3195 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓)) |
| 561 | 517, 560 | jaod 859 |
. . . . . . 7
⊢ (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑓 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 1s <s 𝑓)) |
| 562 | 425, 561 | biimtrid 242 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)) |
| 563 | | velsn 4608 |
. . . . . . 7
⊢ (𝑒 ∈ { 1s } ↔
𝑒 = 1s
) |
| 564 | | breq1 5113 |
. . . . . . . 8
⊢ (𝑒 = 1s → (𝑒 <s 𝑓 ↔ 1s <s 𝑓)) |
| 565 | 564 | imbi2d 340 |
. . . . . . 7
⊢ (𝑒 = 1s → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓))) |
| 566 | 563, 565 | sylbi 217 |
. . . . . 6
⊢ (𝑒 ∈ { 1s } →
((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓))) |
| 567 | 562, 566 | syl5ibrcom 247 |
. . . . 5
⊢ (𝜑 → (𝑒 ∈ { 1s } → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓))) |
| 568 | 567 | 3imp 1110 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ { 1s } ∧ 𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 𝑓) |
| 569 | 105, 391,
146, 416, 568 | ssltd 27710 |
. . 3
⊢ (𝜑 → { 1s }
<<s ({𝑏 ∣
∃𝑐 ∈ ({
0s } ∪ {𝑥
∈ ( L ‘𝐴)
∣ 0s <s 𝑥})∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) |
| 570 | 81, 376, 569 | cuteq1 27753 |
. 2
⊢ (𝜑 → (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝐿
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥})∃𝑑 ∈ ∪ (𝑅
“ ω)𝑏 =
(((𝑐 ·s
𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ ∪ (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) = 1s ) |
| 571 | 19, 570 | eqtrd 2765 |
1
⊢ (𝜑 → (𝐴 ·s 𝑌) = 1s ) |