MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem11 Structured version   Visualization version   GIF version

Theorem precsexlem11 28158
Description: Lemma for surreal reciprocal. Show that the cut of the left and right sets is a multiplicative inverse for 𝐴. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
precsexlem.7 𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω))
Assertion
Ref Expression
precsexlem11 (𝜑 → (𝐴 ·s 𝑌) = 1s )
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑟   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑥𝑂)   𝑌(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)

Proof of Theorem precsexlem11
Dummy variables 𝑖 𝑗 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27828 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
2 precsexlem.4 . . . . . . 7 (𝜑𝐴 No )
3 precsexlem.5 . . . . . . 7 (𝜑 → 0s <s 𝐴)
42, 30elleft 27865 . . . . . 6 (𝜑 → 0s ∈ ( L ‘𝐴))
54snssd 4785 . . . . 5 (𝜑 → { 0s } ⊆ ( L ‘𝐴))
6 ssrab2 4055 . . . . . 6 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)
76a1i 11 . . . . 5 (𝜑 → {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴))
85, 7unssd 4167 . . . 4 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴))
9 sssslt1 27757 . . . 4 ((( L ‘𝐴) <<s ( R ‘𝐴) ∧ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ ( L ‘𝐴)) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴))
101, 8, 9sylancr 587 . . 3 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴))
11 precsexlem.1 . . . 4 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
12 precsexlem.2 . . . 4 𝐿 = (1st𝐹)
13 precsexlem.3 . . . 4 𝑅 = (2nd𝐹)
14 precsexlem.6 . . . 4 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
1511, 12, 13, 2, 3, 14precsexlem10 28157 . . 3 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
162, 3cutpos 27884 . . 3 (𝜑𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |s ( R ‘𝐴)))
17 precsexlem.7 . . . 4 𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω))
1817a1i 11 . . 3 (𝜑𝑌 = ( (𝐿 “ ω) |s (𝑅 “ ω)))
1910, 15, 16, 18mulsunif 28093 . 2 (𝜑 → (𝐴 ·s 𝑌) = (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})))
20 0sno 27788 . . . . . . . . 9 0s No
2120elexi 3482 . . . . . . . 8 0s ∈ V
2221snid 4638 . . . . . . 7 0s ∈ { 0s }
23 elun1 4157 . . . . . . 7 ( 0s ∈ { 0s } → 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
2422, 23ax-mp 5 . . . . . 6 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
25 peano1 7882 . . . . . . . . 9 ∅ ∈ ω
2611, 12, 13precsexlem1 28148 . . . . . . . . . 10 (𝐿‘∅) = { 0s }
2722, 26eleqtrri 2833 . . . . . . . . 9 0s ∈ (𝐿‘∅)
28 fveq2 6875 . . . . . . . . . . 11 (𝑏 = ∅ → (𝐿𝑏) = (𝐿‘∅))
2928eleq2d 2820 . . . . . . . . . 10 (𝑏 = ∅ → ( 0s ∈ (𝐿𝑏) ↔ 0s ∈ (𝐿‘∅)))
3029rspcev 3601 . . . . . . . . 9 ((∅ ∈ ω ∧ 0s ∈ (𝐿‘∅)) → ∃𝑏 ∈ ω 0s ∈ (𝐿𝑏))
3125, 27, 30mp2an 692 . . . . . . . 8 𝑏 ∈ ω 0s ∈ (𝐿𝑏)
32 eliun 4971 . . . . . . . 8 ( 0s 𝑏 ∈ ω (𝐿𝑏) ↔ ∃𝑏 ∈ ω 0s ∈ (𝐿𝑏))
3331, 32mpbir 231 . . . . . . 7 0s 𝑏 ∈ ω (𝐿𝑏)
34 fo1st 8006 . . . . . . . . . . 11 1st :V–onto→V
35 fofun 6790 . . . . . . . . . . 11 (1st :V–onto→V → Fun 1st )
3634, 35ax-mp 5 . . . . . . . . . 10 Fun 1st
37 rdgfun 8428 . . . . . . . . . . 11 Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
3811funeqi 6556 . . . . . . . . . . 11 (Fun 𝐹 ↔ Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
3937, 38mpbir 231 . . . . . . . . . 10 Fun 𝐹
40 funco 6575 . . . . . . . . . 10 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
4136, 39, 40mp2an 692 . . . . . . . . 9 Fun (1st𝐹)
4212funeqi 6556 . . . . . . . . 9 (Fun 𝐿 ↔ Fun (1st𝐹))
4341, 42mpbir 231 . . . . . . . 8 Fun 𝐿
44 funiunfv 7239 . . . . . . . 8 (Fun 𝐿 𝑏 ∈ ω (𝐿𝑏) = (𝐿 “ ω))
4543, 44ax-mp 5 . . . . . . 7 𝑏 ∈ ω (𝐿𝑏) = (𝐿 “ ω)
4633, 45eleqtri 2832 . . . . . 6 0s (𝐿 “ ω)
47 addsrid 27914 . . . . . . . . . 10 ( 0s No → ( 0s +s 0s ) = 0s )
4820, 47ax-mp 5 . . . . . . . . 9 ( 0s +s 0s ) = 0s
49 muls01 28055 . . . . . . . . . 10 ( 0s No → ( 0s ·s 0s ) = 0s )
5020, 49ax-mp 5 . . . . . . . . 9 ( 0s ·s 0s ) = 0s
5148, 50oveq12i 7415 . . . . . . . 8 (( 0s +s 0s ) -s ( 0s ·s 0s )) = ( 0s -s 0s )
52 subsid 28016 . . . . . . . . 9 ( 0s No → ( 0s -s 0s ) = 0s )
5320, 52ax-mp 5 . . . . . . . 8 ( 0s -s 0s ) = 0s
5451, 53eqtr2i 2759 . . . . . . 7 0s = (( 0s +s 0s ) -s ( 0s ·s 0s ))
5515scutcld 27765 . . . . . . . . . . 11 (𝜑 → ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No )
5617, 55eqeltrid 2838 . . . . . . . . . 10 (𝜑𝑌 No )
57 muls02 28084 . . . . . . . . . 10 (𝑌 No → ( 0s ·s 𝑌) = 0s )
5856, 57syl 17 . . . . . . . . 9 (𝜑 → ( 0s ·s 𝑌) = 0s )
59 muls01 28055 . . . . . . . . . 10 (𝐴 No → (𝐴 ·s 0s ) = 0s )
602, 59syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ·s 0s ) = 0s )
6158, 60oveq12d 7421 . . . . . . . 8 (𝜑 → (( 0s ·s 𝑌) +s (𝐴 ·s 0s )) = ( 0s +s 0s ))
6261oveq1d 7418 . . . . . . 7 (𝜑 → ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )) = (( 0s +s 0s ) -s ( 0s ·s 0s )))
6354, 62eqtr4id 2789 . . . . . 6 (𝜑 → 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )))
64 oveq1 7410 . . . . . . . . . 10 (𝑐 = 0s → (𝑐 ·s 𝑌) = ( 0s ·s 𝑌))
6564oveq1d 7418 . . . . . . . . 9 (𝑐 = 0s → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)))
66 oveq1 7410 . . . . . . . . 9 (𝑐 = 0s → (𝑐 ·s 𝑑) = ( 0s ·s 𝑑))
6765, 66oveq12d 7421 . . . . . . . 8 (𝑐 = 0s → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))
6867eqeq2d 2746 . . . . . . 7 (𝑐 = 0s → ( 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
69 oveq2 7411 . . . . . . . . . 10 (𝑑 = 0s → (𝐴 ·s 𝑑) = (𝐴 ·s 0s ))
7069oveq2d 7419 . . . . . . . . 9 (𝑑 = 0s → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (( 0s ·s 𝑌) +s (𝐴 ·s 0s )))
71 oveq2 7411 . . . . . . . . 9 (𝑑 = 0s → ( 0s ·s 𝑑) = ( 0s ·s 0s ))
7270, 71oveq12d 7421 . . . . . . . 8 (𝑑 = 0s → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s )))
7372eqeq2d 2746 . . . . . . 7 (𝑑 = 0s → ( 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) ↔ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s ))))
7468, 73rspc2ev 3614 . . . . . 6 (( 0s ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 0s (𝐿 “ ω) ∧ 0s = ((( 0s ·s 𝑌) +s (𝐴 ·s 0s )) -s ( 0s ·s 0s ))) → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
7524, 46, 63, 74mp3an12i 1467 . . . . 5 (𝜑 → ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
76 eqeq1 2739 . . . . . . 7 (𝑏 = 0s → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
77762rexbidv 3206 . . . . . 6 (𝑏 = 0s → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
7821, 77elab 3658 . . . . 5 ( 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω) 0s = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
7975, 78sylibr 234 . . . 4 (𝜑 → 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})
80 elun1 4157 . . . 4 ( 0s ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
8179, 80syl 17 . . 3 (𝜑 → 0s ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
82 eqid 2735 . . . . . . 7 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
8382rnmpo 7538 . . . . . 6 ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
84 ssltex1 27748 . . . . . . . . 9 (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V)
8510, 84syl 17 . . . . . . . 8 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V)
86 ssltex1 27748 . . . . . . . . 9 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝐿 “ ω) ∈ V)
8715, 86syl 17 . . . . . . . 8 (𝜑 (𝐿 “ ω) ∈ V)
88 mpoexga 8074 . . . . . . . 8 ((({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V ∧ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
8985, 87, 88syl2anc 584 . . . . . . 7 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
90 rnexg 7896 . . . . . . 7 ((𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9189, 90syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9283, 91eqeltrrid 2839 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
93 eqid 2735 . . . . . . 7 (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
9493rnmpo 7538 . . . . . 6 ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
95 fvex 6888 . . . . . . . 8 ( R ‘𝐴) ∈ V
96 ssltex2 27749 . . . . . . . . 9 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝑅 “ ω) ∈ V)
9715, 96syl 17 . . . . . . . 8 (𝜑 (𝑅 “ ω) ∈ V)
98 mpoexga 8074 . . . . . . . 8 ((( R ‘𝐴) ∈ V ∧ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
9995, 97, 98sylancr 587 . . . . . . 7 (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
100 rnexg 7896 . . . . . . 7 ((𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
10199, 100syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
10294, 101eqeltrrid 2839 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
10392, 102unexd 7746 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V)
104 snex 5406 . . . . 5 { 1s } ∈ V
105104a1i 11 . . . 4 (𝜑 → { 1s } ∈ V)
106 ssltss1 27750 . . . . . . . . . . . . . 14 (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) <<s ( R ‘𝐴) → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ No )
10710, 106syl 17 . . . . . . . . . . . . 13 (𝜑 → ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ⊆ No )
108107sselda 3958 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})) → 𝑐 No )
109108adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
11056adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
111109, 110mulscld 28078 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
1122adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
113 ssltss1 27750 . . . . . . . . . . . . . 14 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝐿 “ ω) ⊆ No )
11415, 113syl 17 . . . . . . . . . . . . 13 (𝜑 (𝐿 “ ω) ⊆ No )
115114sselda 3958 . . . . . . . . . . . 12 ((𝜑𝑑 (𝐿 “ ω)) → 𝑑 No )
116115adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
117112, 116mulscld 28078 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
118111, 117addscld 27930 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
119109, 116mulscld 28078 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
120118, 119subscld 28010 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
121 eleq1 2822 . . . . . . . 8 (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑏 No ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No ))
122120, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
123122rexlimdvva 3198 . . . . . 6 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
124123abssdv 4043 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
125 rightssno 27837 . . . . . . . . . . . . . 14 ( R ‘𝐴) ⊆ No
126125a1i 11 . . . . . . . . . . . . 13 (𝜑 → ( R ‘𝐴) ⊆ No )
127126sselda 3958 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝑐 No )
128127adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
12956adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
130128, 129mulscld 28078 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
1312adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
132 ssltss2 27751 . . . . . . . . . . . . . 14 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (𝑅 “ ω) ⊆ No )
13315, 132syl 17 . . . . . . . . . . . . 13 (𝜑 (𝑅 “ ω) ⊆ No )
134133sselda 3958 . . . . . . . . . . . 12 ((𝜑𝑑 (𝑅 “ ω)) → 𝑑 No )
135134adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
136131, 135mulscld 28078 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
137130, 136addscld 27930 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
138128, 135mulscld 28078 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
139137, 138subscld 28010 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
140139, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
141140rexlimdvva 3198 . . . . . 6 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
142141abssdv 4043 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
143124, 142unssd 4167 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No )
144 1sno 27789 . . . . 5 1s No
145 snssi 4784 . . . . 5 ( 1s No → { 1s } ⊆ No )
146144, 145mp1i 13 . . . 4 (𝜑 → { 1s } ⊆ No )
147 elun 4128 . . . . . . . . 9 (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
148 vex 3463 . . . . . . . . . . 11 𝑒 ∈ V
149 eqeq1 2739 . . . . . . . . . . . 12 (𝑏 = 𝑒 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
1501492rexbidv 3206 . . . . . . . . . . 11 (𝑏 = 𝑒 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
151148, 150elab 3658 . . . . . . . . . 10 (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
1521492rexbidv 3206 . . . . . . . . . . 11 (𝑏 = 𝑒 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
153148, 152elab 3658 . . . . . . . . . 10 (𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
154151, 153orbi12i 914 . . . . . . . . 9 ((𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑒 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
155147, 154bitri 275 . . . . . . . 8 (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
156 elun 4128 . . . . . . . . . . . . . 14 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 ∈ { 0s } ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
157 velsn 4617 . . . . . . . . . . . . . . 15 (𝑐 ∈ { 0s } ↔ 𝑐 = 0s )
158157orbi1i 913 . . . . . . . . . . . . . 14 ((𝑐 ∈ { 0s } ∨ 𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
159156, 158bitri 275 . . . . . . . . . . . . 13 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ↔ (𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}))
16058adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s ·s 𝑌) = 0s )
161160oveq1d 7418 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
162 muls02 28084 . . . . . . . . . . . . . . . . . . . 20 (𝑑 No → ( 0s ·s 𝑑) = 0s )
163115, 162syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s ·s 𝑑) = 0s )
164161, 163oveq12d 7421 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (( 0s +s (𝐴 ·s 𝑑)) -s 0s ))
1652adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 (𝐿 “ ω)) → 𝐴 No )
166165, 115mulscld 28078 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝐿 “ ω)) → (𝐴 ·s 𝑑) ∈ No )
167 addslid 27918 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ·s 𝑑) ∈ No → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
168166, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝐿 “ ω)) → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
169168oveq1d 7418 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → (( 0s +s (𝐴 ·s 𝑑)) -s 0s ) = ((𝐴 ·s 𝑑) -s 0s ))
170 subsid1 28015 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ·s 𝑑) ∈ No → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
171166, 170syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝐿 “ ω)) → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
172164, 169, 1713eqtrd 2774 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (𝐴 ·s 𝑑))
173 eliun 4971 . . . . . . . . . . . . . . . . . . . 20 (𝑑 𝑖 ∈ ω (𝐿𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖))
174 funiunfv 7239 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐿 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω))
17543, 174ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω)
176175eleq2i 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑑 𝑖 ∈ ω (𝐿𝑖) ↔ 𝑑 (𝐿 “ ω))
177173, 176bitr3i 277 . . . . . . . . . . . . . . . . . . 19 (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) ↔ 𝑑 (𝐿 “ ω))
17811, 12, 13, 2, 3, 14precsexlem9 28156 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ ω) → (∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s ∧ ∀𝑐 ∈ (𝑅𝑖) 1s <s (𝐴 ·s 𝑐)))
179178simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ ω) → ∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s )
180 rsp 3230 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑑 ∈ (𝐿𝑖)(𝐴 ·s 𝑑) <s 1s → (𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
181179, 180syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ ω) → (𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
182181rexlimdva 3141 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → (𝐴 ·s 𝑑) <s 1s ))
183177, 182biimtrrid 243 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑑 (𝐿 “ ω) → (𝐴 ·s 𝑑) <s 1s ))
184183imp 406 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝐿 “ ω)) → (𝐴 ·s 𝑑) <s 1s )
185172, 184eqbrtrd 5141 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝐿 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s )
186185ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑑 (𝐿 “ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s ))
18767breq1d 5129 . . . . . . . . . . . . . . . 16 (𝑐 = 0s → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s ))
188187imbi2d 340 . . . . . . . . . . . . . . 15 (𝑐 = 0s → ((𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ) ↔ (𝑑 (𝐿 “ ω) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) <s 1s )))
189186, 188syl5ibrcom 247 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 = 0s → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
190 scutcut 27763 . . . . . . . . . . . . . . . . . . . . . 22 ( (𝐿 “ ω) <<s (𝑅 “ ω) → (( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))} ∧ {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω)))
19115, 190syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ No (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))} ∧ {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω)))
192191simp3d 1144 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
193192adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
194 ovex 7436 . . . . . . . . . . . . . . . . . . . . . 22 ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ V
195194snid 4638 . . . . . . . . . . . . . . . . . . . . 21 ( (𝐿 “ ω) |s (𝑅 “ ω)) ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))}
19617, 195eqeltri 2830 . . . . . . . . . . . . . . . . . . . 20 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))}
197196a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
198 peano2 7884 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
199198ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → suc 𝑖 ∈ ω)
200 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)
201 oveq1 7410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥𝐿 = 𝑐 → (𝑥𝐿 -s 𝐴) = (𝑐 -s 𝐴))
202201oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿))
203202oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐 → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)))
204 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐𝑥𝐿 = 𝑐)
205203, 204oveq12d 7421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥𝐿 = 𝑐 → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐))
206205eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝐿 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐)))
207 oveq2 7411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦𝐿 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑑))
208207oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦𝐿 = 𝑑 → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
209208oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦𝐿 = 𝑑 → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
210209eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐿 = 𝑑 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
211206, 210rspc2ev 3614 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
212200, 211mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝐿𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
213212ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
214 ovex 7436 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ V
215 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
2162152rexbidv 3206 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)))
217214, 216elab 3658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿))
218213, 217sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)})
219 elun1 4157 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
220 elun2 4158 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
221218, 219, 2203syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
22211, 12, 13precsexlem5 28152 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ ω → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
223222ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
224221, 223eleqtrrd 2837 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))
225 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = suc 𝑖 → (𝑅𝑗) = (𝑅‘suc 𝑖))
226225eleq2d 2820 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = suc 𝑖 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)))
227226rspcev 3601 . . . . . . . . . . . . . . . . . . . . . . 23 ((suc 𝑖 ∈ ω ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
228199, 224, 227syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
229228rexlimdvaa 3142 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗)))
230 eliun 4971 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
231 fo2nd 8007 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2nd :V–onto→V
232 fofun 6790 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2nd :V–onto→V → Fun 2nd )
233231, 232ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fun 2nd
234 funco 6575 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
235233, 39, 234mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 Fun (2nd𝐹)
23613funeqi 6556 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Fun 𝑅 ↔ Fun (2nd𝐹))
237235, 236mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . 24 Fun 𝑅
238 funiunfv 7239 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑅 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω))
239237, 238ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω)
240239eleq2i 2826 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
241230, 240bitr3i 277 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
242229, 177, 2413imtr3g 295 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω)))
243242impr 454 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
244193, 197, 243ssltsepcd 27756 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
24556adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
246144a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 1s No )
247 leftssno 27836 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( L ‘𝐴) ⊆ No
2486, 247sstri 3968 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ No
249248sseli 3954 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 No )
250249adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 No )
2512adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝐴 No )
252250, 251subscld 28010 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 -s 𝐴) ∈ No )
253252adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 -s 𝐴) ∈ No )
254115adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
255253, 254mulscld 28078 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
256246, 255addscld 27930 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
257249ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
258 breq2 5123 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → ( 0s <s 𝑥 ↔ 0s <s 𝑐))
259258elrab 3671 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑐 ∈ ( L ‘𝐴) ∧ 0s <s 𝑐))
260259simprbi 496 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑐)
261260ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 0s <s 𝑐)
262260adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 0s <s 𝑐)
263 breq2 5123 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑂 = 𝑐 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑐))
264 oveq1 7410 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑂 = 𝑐 → (𝑥𝑂 ·s 𝑦) = (𝑐 ·s 𝑦))
265264eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑂 = 𝑐 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑐 ·s 𝑦) = 1s ))
266265rexbidv 3164 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑂 = 𝑐 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
267263, 266imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑂 = 𝑐 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )))
26814adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
269 ssun1 4153 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
2706, 269sstri 3968 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
271270sseli 3954 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
272271adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
273267, 268, 272rspcdva 3602 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
274262, 273mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
275274adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
276245, 256, 257, 261, 275sltmuldiv2wd 28144 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ↔ 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
277244, 276mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
278257, 254mulscld 28078 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
279166adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
280246, 278, 279addsubsassd 28028 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
2812adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
282257, 281, 254subsdird 28102 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
283282oveq2d 7419 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
284280, 283eqtr4d 2773 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
285277, 284breqtrrd 5147 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))
28656adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → 𝑌 No )
287250, 286mulscld 28078 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑐 ·s 𝑌) ∈ No )
288287adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
289288, 279addscld 27930 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
290289, 278, 246sltsubaddd 28036 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑))))
291246, 278addscld 27930 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
292288, 279, 291sltaddsubd 28038 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑)) ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
293290, 292bitrd 279 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
294285, 293mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
295294exp32 420 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
296189, 295jaod 859 . . . . . . . . . . . . 13 (𝜑 → ((𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
297159, 296biimtrid 242 . . . . . . . . . . . 12 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝐿 “ ω) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )))
298297imp32 418 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
299 breq1 5122 . . . . . . . . . . 11 (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → (𝑒 <s 1s ↔ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ))
300298, 299syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝐿 “ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
301300rexlimdvva 3198 . . . . . . . . 9 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
302192adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → {( (𝐿 “ ω) |s (𝑅 “ ω))} <<s (𝑅 “ ω))
303196a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
304198ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → suc 𝑖 ∈ ω)
305 oveq1 7410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝑅 = 𝑐 → (𝑥𝑅 -s 𝐴) = (𝑐 -s 𝐴))
306305oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅))
307306oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐 → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)))
308 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐𝑥𝑅 = 𝑐)
309307, 308oveq12d 7421 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑅 = 𝑐 → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐))
310309eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑅 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐)))
311 oveq2 7411 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦𝑅 = 𝑑 → ((𝑐 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑑))
312311oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝑅 = 𝑑 → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
313312oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝑅 = 𝑑 → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
314313eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑅 = 𝑑 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
315310, 314rspc2ev 3614 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
316200, 315mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝑅𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
317316ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
318 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
3193182rexbidv 3206 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)))
320214, 319elab 3658 . . . . . . . . . . . . . . . . . . . . . 22 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅))
321317, 320sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})
322 elun2 4158 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))
323321, 322, 2203syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
324222ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (𝑅‘suc 𝑖) = ((𝑅𝑖) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
325323, 324eleqtrrd 2837 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅‘suc 𝑖))
326304, 325, 227syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗))
327326rexlimdvaa 3142 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅𝑗)))
328 eliun 4971 . . . . . . . . . . . . . . . . . 18 (𝑑 𝑖 ∈ ω (𝑅𝑖) ↔ ∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖))
329 funiunfv 7239 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑅 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω))
330237, 329ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω)
331330eleq2i 2826 . . . . . . . . . . . . . . . . . 18 (𝑑 𝑖 ∈ ω (𝑅𝑖) ↔ 𝑑 (𝑅 “ ω))
332328, 331bitr3i 277 . . . . . . . . . . . . . . . . 17 (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) ↔ 𝑑 (𝑅 “ ω))
333327, 332, 2413imtr3g 295 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑑 (𝑅 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω)))
334333impr 454 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝑅 “ ω))
335302, 303, 334ssltsepcd 27756 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐))
336144a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 1s No )
3372adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝐴 No )
338127, 337subscld 28010 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑐 -s 𝐴) ∈ No )
339338adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 -s 𝐴) ∈ No )
340339, 135mulscld 28078 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
341336, 340addscld 27930 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
34220a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s No )
3433adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝐴)
344 breq2 5123 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑂 = 𝑐 → (𝐴 <s 𝑥𝑂𝐴 <s 𝑐))
345 rightval 27820 . . . . . . . . . . . . . . . . . . . 20 ( R ‘𝐴) = {𝑥𝑂 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥𝑂}
346344, 345elrab2 3674 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ( R ‘𝐴) ↔ (𝑐 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑐))
347346simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ( R ‘𝐴) → 𝐴 <s 𝑐)
348347adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑐)
349342, 337, 127, 343, 348slttrd 27721 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 0s <s 𝑐)
350349adantrr 717 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → 0s <s 𝑐)
35114adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
352 elun2 4158 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ( R ‘𝐴) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
353352adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ ( R ‘𝐴)) → 𝑐 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
354267, 351, 353rspcdva 3602 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ( 0s <s 𝑐 → ∃𝑦 No (𝑐 ·s 𝑦) = 1s ))
355349, 354mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
356355adantrr 717 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
357129, 341, 128, 350, 356sltmuldiv2wd 28144 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ↔ 𝑌 <s (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)))
358335, 357mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) <s ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
359336, 138, 136addsubsassd 28028 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
360128, 131, 135subsdird 28102 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
361360oveq2d 7419 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
362359, 361eqtr4d 2773 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
363358, 362breqtrrd 5147 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)))
364137, 138, 336sltsubaddd 28036 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑))))
365336, 138addscld 27930 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
366130, 136, 365sltaddsubd 28038 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) <s ( 1s +s (𝑐 ·s 𝑑)) ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
367364, 366bitrd 279 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → ((((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s ↔ (𝑐 ·s 𝑌) <s (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑))))
368363, 367mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) <s 1s )
369368, 299syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝑅 “ ω))) → (𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
370369rexlimdvva 3198 . . . . . . . . 9 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑒 <s 1s ))
371301, 370jaod 859 . . . . . . . 8 (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑒 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 𝑒 <s 1s ))
372155, 371biimtrid 242 . . . . . . 7 (𝜑 → (𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 1s ))
373372imp 406 . . . . . 6 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 1s )
374 velsn 4617 . . . . . . 7 (𝑓 ∈ { 1s } ↔ 𝑓 = 1s )
375 breq2 5123 . . . . . . 7 (𝑓 = 1s → (𝑒 <s 𝑓𝑒 <s 1s ))
376374, 375sylbi 217 . . . . . 6 (𝑓 ∈ { 1s } → (𝑒 <s 𝑓𝑒 <s 1s ))
377373, 376syl5ibrcom 247 . . . . 5 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → (𝑓 ∈ { 1s } → 𝑒 <s 𝑓))
3783773impia 1117 . . . 4 ((𝜑𝑒 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∧ 𝑓 ∈ { 1s }) → 𝑒 <s 𝑓)
379103, 105, 143, 146, 378ssltd 27753 . . 3 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) <<s { 1s })
380 eqid 2735 . . . . . . 7 (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
381380rnmpo 7538 . . . . . 6 ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
382 mpoexga 8074 . . . . . . . 8 ((({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∈ V ∧ (𝑅 “ ω) ∈ V) → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
38385, 97, 382syl2anc 584 . . . . . . 7 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
384 rnexg 7896 . . . . . . 7 ((𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
385383, 384syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}), 𝑑 (𝑅 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
386381, 385eqeltrrid 2839 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
387 eqid 2735 . . . . . . 7 (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
388387rnmpo 7538 . . . . . 6 ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) = {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}
389 mpoexga 8074 . . . . . . . 8 ((( R ‘𝐴) ∈ V ∧ (𝐿 “ ω) ∈ V) → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
39095, 87, 389sylancr 587 . . . . . . 7 (𝜑 → (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
391 rnexg 7896 . . . . . . 7 ((𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
392390, 391syl 17 . . . . . 6 (𝜑 → ran (𝑐 ∈ ( R ‘𝐴), 𝑑 (𝐿 “ ω) ↦ (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ∈ V)
393388, 392eqeltrrid 2839 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∈ V)
394386, 393unexd 7746 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ∈ V)
395108adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
39656adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
397395, 396mulscld 28078 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
3982adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
399134adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
400398, 399mulscld 28078 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
401397, 400addscld 27930 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
402395, 399mulscld 28078 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
403401, 402subscld 28010 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
404403, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
405404rexlimdvva 3198 . . . . . 6 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
406405abssdv 4043 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
407127adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑐 No )
40856adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 No )
409407, 408mulscld 28078 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
4102adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝐴 No )
411115adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑑 No )
412410, 411mulscld 28078 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
413409, 412addscld 27930 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
414407, 411mulscld 28078 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
415413, 414subscld 28010 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∈ No )
416415, 121syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
417416rexlimdvva 3198 . . . . . 6 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 𝑏 No ))
418417abssdv 4043 . . . . 5 (𝜑 → {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ⊆ No )
419406, 418unssd 4167 . . . 4 (𝜑 → ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ⊆ No )
420 elun 4128 . . . . . . . 8 (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
421 vex 3463 . . . . . . . . . 10 𝑓 ∈ V
422 eqeq1 2739 . . . . . . . . . . 11 (𝑏 = 𝑓 → (𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
4234222rexbidv 3206 . . . . . . . . . 10 (𝑏 = 𝑓 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
424421, 423elab 3658 . . . . . . . . 9 (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
4254222rexbidv 3206 . . . . . . . . . 10 (𝑏 = 𝑓 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
426421, 425elab 3658 . . . . . . . . 9 (𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ↔ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
427424, 426orbi12i 914 . . . . . . . 8 ((𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∨ 𝑓 ∈ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
428420, 427bitri 275 . . . . . . 7 (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) ↔ (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
429 eliun 4971 . . . . . . . . . . . . . . . . . . 19 (𝑑 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗))
430239eleq2i 2826 . . . . . . . . . . . . . . . . . . 19 (𝑑 𝑗 ∈ ω (𝑅𝑗) ↔ 𝑑 (𝑅 “ ω))
431429, 430bitr3i 277 . . . . . . . . . . . . . . . . . 18 (∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗) ↔ 𝑑 (𝑅 “ ω))
43211, 12, 13, 2, 3, 14precsexlem9 28156 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ω) → (∀𝑐 ∈ (𝐿𝑗)(𝐴 ·s 𝑐) <s 1s ∧ ∀𝑑 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑑)))
433 rsp 3230 . . . . . . . . . . . . . . . . . . . 20 (∀𝑑 ∈ (𝑅𝑗) 1s <s (𝐴 ·s 𝑑) → (𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
434432, 433simpl2im 503 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ω) → (𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
435434rexlimdva 3141 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑗 ∈ ω 𝑑 ∈ (𝑅𝑗) → 1s <s (𝐴 ·s 𝑑)))
436431, 435biimtrrid 243 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑 (𝑅 “ ω) → 1s <s (𝐴 ·s 𝑑)))
437436imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝑅 “ ω)) → 1s <s (𝐴 ·s 𝑑))
43856adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝑅 “ ω)) → 𝑌 No )
43957oveq1d 7418 . . . . . . . . . . . . . . . . . . . 20 (𝑌 No → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
440438, 439syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝑅 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = ( 0s +s (𝐴 ·s 𝑑)))
4412adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 (𝑅 “ ω)) → 𝐴 No )
442441, 134mulscld 28078 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 (𝑅 “ ω)) → (𝐴 ·s 𝑑) ∈ No )
443442, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 (𝑅 “ ω)) → ( 0s +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
444440, 443eqtrd 2770 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝑅 “ ω)) → (( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) = (𝐴 ·s 𝑑))
445134, 162syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 (𝑅 “ ω)) → ( 0s ·s 𝑑) = 0s )
446444, 445oveq12d 7421 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝑅 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = ((𝐴 ·s 𝑑) -s 0s ))
447442, 170syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 (𝑅 “ ω)) → ((𝐴 ·s 𝑑) -s 0s ) = (𝐴 ·s 𝑑))
448446, 447eqtrd 2770 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 (𝑅 “ ω)) → ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)) = (𝐴 ·s 𝑑))
449437, 448breqtrrd 5147 . . . . . . . . . . . . . . 15 ((𝜑𝑑 (𝑅 “ ω)) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))
450449ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑑 (𝑅 “ ω) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
45167breq2d 5131 . . . . . . . . . . . . . . 15 (𝑐 = 0s → ( 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ↔ 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑))))
452451imbi2d 340 . . . . . . . . . . . . . 14 (𝑐 = 0s → ((𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) ↔ (𝑑 (𝑅 “ ω) → 1s <s ((( 0s ·s 𝑌) +s (𝐴 ·s 𝑑)) -s ( 0s ·s 𝑑)))))
453450, 452syl5ibrcom 247 . . . . . . . . . . . . 13 (𝜑 → (𝑐 = 0s → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
454144a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 1s No )
455249ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑐 No )
456134adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑑 No )
457455, 456mulscld 28078 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑑) ∈ No )
458442adantrl 716 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝐴 ·s 𝑑) ∈ No )
459454, 457, 458addsubsassd 28028 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
4602adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝐴 No )
461455, 460, 456subsdird 28102 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
462461oveq2d 7419 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
463459, 462eqtr4d 2773 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
464191simp2d 1143 . . . . . . . . . . . . . . . . . . 19 (𝜑 (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
465464adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
466198ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → suc 𝑖 ∈ ω)
467201oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥𝐿 = 𝑐 → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) = ((𝑐 -s 𝐴) ·s 𝑦𝑅))
468467oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥𝐿 = 𝑐 → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)))
469468, 204oveq12d 7421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥𝐿 = 𝑐 → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐))
470469eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝐿 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝑅)) /su 𝑐)))
471470, 314rspc2ev 3614 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
472200, 471mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 ∈ (𝑅𝑖)) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
473472ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
474 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
4754742rexbidv 3206 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)))
476214, 475elab 3658 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿))
477473, 476sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})
478 elun2 4158 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
479 elun2 4158 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
480477, 478, 4793syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
48111, 12, 13precsexlem4 28151 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ω → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
482481ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
483480, 482eleqtrrd 2837 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))
484 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = suc 𝑖 → (𝐿𝑗) = (𝐿‘suc 𝑖))
485484eleq2d 2820 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = suc 𝑖 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)))
486485rspcev 3601 . . . . . . . . . . . . . . . . . . . . . 22 ((suc 𝑖 ∈ ω ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖)) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
487466, 483, 486syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝑅𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
488487rexlimdvaa 3142 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (∃𝑖 ∈ ω 𝑑 ∈ (𝑅𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗)))
489 eliun 4971 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝐿𝑗) ↔ ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
490 funiunfv 7239 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐿 𝑗 ∈ ω (𝐿𝑗) = (𝐿 “ ω))
49143, 490ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 𝑗 ∈ ω (𝐿𝑗) = (𝐿 “ ω)
492491eleq2i 2826 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ 𝑗 ∈ ω (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
493489, 492bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 (∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
494488, 332, 4933imtr3g 295 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω)))
495494impr 454 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
496196a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
497465, 495, 496ssltsepcd 27756 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌)
498252adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 -s 𝐴) ∈ No )
499498, 456mulscld 28078 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
500454, 499addscld 27930 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
50156adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 𝑌 No )
502260ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 0s <s 𝑐)
503274adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
504500, 501, 455, 502, 503sltdivmulwd 28141 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)))
505497, 504mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))
506463, 505eqbrtrd 5141 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌))
507454, 457addscld 27930 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
508287adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (𝑐 ·s 𝑌) ∈ No )
509507, 458, 508sltsubaddd 28036 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑))))
510508, 458addscld 27930 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ∈ No )
511454, 457, 510sltaddsubd 28038 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
512509, 511bitrd 279 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
513506, 512mpbid 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑑 (𝑅 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
514513exp32 420 . . . . . . . . . . . . 13 (𝜑 → (𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
515453, 514jaod 859 . . . . . . . . . . . 12 (𝜑 → ((𝑐 = 0s𝑐 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
516159, 515biimtrid 242 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) → (𝑑 (𝑅 “ ω) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))))
517516imp32 418 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
518 breq2 5123 . . . . . . . . . 10 (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → ( 1s <s 𝑓 ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
519517, 518syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) ∧ 𝑑 (𝑅 “ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
520519rexlimdvva 3198 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
521144a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 1s No )
522521, 414, 412addsubsassd 28028 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
523407, 410, 411subsdird 28102 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) = ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑)))
524523oveq2d 7419 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) = ( 1s +s ((𝑐 ·s 𝑑) -s (𝐴 ·s 𝑑))))
525522, 524eqtr4d 2773 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)))
526464adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝐿 “ ω) <<s {( (𝐿 “ ω) |s (𝑅 “ ω))})
527198ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → suc 𝑖 ∈ ω)
528305oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝑅 = 𝑐 → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) = ((𝑐 -s 𝐴) ·s 𝑦𝐿))
529528oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑅 = 𝑐 → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = ( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)))
530529, 308oveq12d 7421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑅 = 𝑐 → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐))
531530eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑅 = 𝑐 → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑦𝐿)) /su 𝑐)))
532531, 210rspc2ev 3614 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿𝑖) ∧ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
533200, 532mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 ∈ (𝐿𝑖)) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
534533ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
535 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
5365352rexbidv 3206 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)))
537214, 536elab 3658 . . . . . . . . . . . . . . . . . . . . 21 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)(( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅))
538534, 537sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)})
539 elun1 4157 . . . . . . . . . . . . . . . . . . . 20 ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))
540538, 539, 4793syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
541481ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (𝐿‘suc 𝑖) = ((𝐿𝑖) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑖)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑖)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
542540, 541eleqtrrd 2837 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿‘suc 𝑖))
543527, 542, 486syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ ( R ‘𝐴)) ∧ (𝑖 ∈ ω ∧ 𝑑 ∈ (𝐿𝑖))) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗))
544543rexlimdvaa 3142 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (∃𝑖 ∈ ω 𝑑 ∈ (𝐿𝑖) → ∃𝑗 ∈ ω (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿𝑗)))
545544, 177, 4933imtr3g 295 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ( R ‘𝐴)) → (𝑑 (𝐿 “ ω) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω)))
546545impr 454 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) ∈ (𝐿 “ ω))
547196a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 𝑌 ∈ {( (𝐿 “ ω) |s (𝑅 “ ω))})
548526, 546, 547ssltsepcd 27756 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌)
549338adantrr 717 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑐 -s 𝐴) ∈ No )
550549, 411mulscld 28078 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((𝑐 -s 𝐴) ·s 𝑑) ∈ No )
551521, 550addscld 27930 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) ∈ No )
552349adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 0s <s 𝑐)
553355adantrr 717 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ∃𝑦 No (𝑐 ·s 𝑦) = 1s )
554551, 408, 407, 552, 553sltdivmulwd 28141 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) /su 𝑐) <s 𝑌 ↔ ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌)))
555548, 554mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s ((𝑐 -s 𝐴) ·s 𝑑)) <s (𝑐 ·s 𝑌))
556525, 555eqbrtrd 5141 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌))
557521, 414addscld 27930 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ( 1s +s (𝑐 ·s 𝑑)) ∈ No )
558557, 412, 409sltsubaddd 28036 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ ( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑))))
559521, 414, 413sltaddsubd 28038 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (( 1s +s (𝑐 ·s 𝑑)) <s ((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
560558, 559bitrd 279 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → ((( 1s +s (𝑐 ·s 𝑑)) -s (𝐴 ·s 𝑑)) <s (𝑐 ·s 𝑌) ↔ 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))))
561556, 560mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → 1s <s (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)))
562561, 518syl5ibrcom 247 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ( R ‘𝐴) ∧ 𝑑 (𝐿 “ ω))) → (𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
563562rexlimdvva 3198 . . . . . . . 8 (𝜑 → (∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) → 1s <s 𝑓))
564520, 563jaod 859 . . . . . . 7 (𝜑 → ((∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑)) ∨ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑓 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))) → 1s <s 𝑓))
565428, 564biimtrid 242 . . . . . 6 (𝜑 → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓))
566 velsn 4617 . . . . . . 7 (𝑒 ∈ { 1s } ↔ 𝑒 = 1s )
567 breq1 5122 . . . . . . . 8 (𝑒 = 1s → (𝑒 <s 𝑓 ↔ 1s <s 𝑓))
568567imbi2d 340 . . . . . . 7 (𝑒 = 1s → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)))
569566, 568sylbi 217 . . . . . 6 (𝑒 ∈ { 1s } → ((𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓) ↔ (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 1s <s 𝑓)))
570565, 569syl5ibrcom 247 . . . . 5 (𝜑 → (𝑒 ∈ { 1s } → (𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) → 𝑒 <s 𝑓)))
5715703imp 1110 . . . 4 ((𝜑𝑒 ∈ { 1s } ∧ 𝑓 ∈ ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) → 𝑒 <s 𝑓)
572105, 394, 146, 419, 571ssltd 27753 . . 3 (𝜑 → { 1s } <<s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}))
57381, 379, 572cuteq1 27795 . 2 (𝜑 → (({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))}) |s ({𝑏 ∣ ∃𝑐 ∈ ({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})∃𝑑 (𝑅 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))} ∪ {𝑏 ∣ ∃𝑐 ∈ ( R ‘𝐴)∃𝑑 (𝐿 “ ω)𝑏 = (((𝑐 ·s 𝑌) +s (𝐴 ·s 𝑑)) -s (𝑐 ·s 𝑑))})) = 1s )
57419, 573eqtrd 2770 1 (𝜑 → (𝐴 ·s 𝑌) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  csb 3874  cun 3924  wss 3926  c0 4308  {csn 4601  cop 4607   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201  ran crn 5655  cima 5657  ccom 5658  suc csuc 6354  Fun wfun 6524  ontowfo 6528  cfv 6530  (class class class)co 7403  cmpo 7405  ωcom 7859  1st c1st 7984  2nd c2nd 7985  reccrdg 8421   No csur 27601   <s cslt 27602   bday cbday 27603   <<s csslt 27742   |s cscut 27744   0s c0s 27784   1s c1s 27785   O cold 27799   L cleft 27801   R cright 27802   +s cadds 27909   -s csubs 27969   ·s cmuls 28049   /su cdivs 28130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-dc 10458
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-nadd 8676  df-no 27604  df-slt 27605  df-bday 27606  df-sle 27707  df-sslt 27743  df-scut 27745  df-0s 27786  df-1s 27787  df-made 27803  df-old 27804  df-left 27806  df-right 27807  df-norec 27888  df-norec2 27899  df-adds 27910  df-negs 27970  df-subs 27971  df-muls 28050  df-divs 28131
This theorem is referenced by:  precsex  28159
  Copyright terms: Public domain W3C validator