![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucneqoni | Structured version Visualization version GIF version |
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) |
Ref | Expression |
---|---|
sucneqoni.1 | ⊢ 𝑋 = suc 𝑌 |
sucneqoni.2 | ⊢ 𝑌 ∈ On |
Ref | Expression |
---|---|
sucneqoni | ⊢ 𝑋 ≠ 𝑌 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucneqoni.1 | . . . 4 ⊢ 𝑋 = suc 𝑌 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝑋 = suc 𝑌) |
3 | sucneqoni.2 | . . . 4 ⊢ 𝑌 ∈ On | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝑌 ∈ On) |
5 | 2, 4 | sucneqond 37360 | . 2 ⊢ (⊤ → 𝑋 ≠ 𝑌) |
6 | 5 | mptru 1546 | 1 ⊢ 𝑋 ≠ 𝑌 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2940 Oncon0 6392 suc csuc 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-ord 6395 df-on 6396 df-suc 6398 |
This theorem is referenced by: finxpreclem3 37388 |
Copyright terms: Public domain | W3C validator |