Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucneqoni | Structured version Visualization version GIF version |
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) |
Ref | Expression |
---|---|
sucneqoni.1 | ⊢ 𝑋 = suc 𝑌 |
sucneqoni.2 | ⊢ 𝑌 ∈ On |
Ref | Expression |
---|---|
sucneqoni | ⊢ 𝑋 ≠ 𝑌 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucneqoni.1 | . . . 4 ⊢ 𝑋 = suc 𝑌 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝑋 = suc 𝑌) |
3 | sucneqoni.2 | . . . 4 ⊢ 𝑌 ∈ On | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝑌 ∈ On) |
5 | 2, 4 | sucneqond 35096 | . 2 ⊢ (⊤ → 𝑋 ≠ 𝑌) |
6 | 5 | mptru 1545 | 1 ⊢ 𝑋 ≠ 𝑌 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 ≠ wne 2951 Oncon0 6174 suc csuc 6176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-tr 5143 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-ord 6177 df-on 6178 df-suc 6180 |
This theorem is referenced by: finxpreclem3 35124 |
Copyright terms: Public domain | W3C validator |