Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucneqoni | Structured version Visualization version GIF version |
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) |
Ref | Expression |
---|---|
sucneqoni.1 | ⊢ 𝑋 = suc 𝑌 |
sucneqoni.2 | ⊢ 𝑌 ∈ On |
Ref | Expression |
---|---|
sucneqoni | ⊢ 𝑋 ≠ 𝑌 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucneqoni.1 | . . . 4 ⊢ 𝑋 = suc 𝑌 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝑋 = suc 𝑌) |
3 | sucneqoni.2 | . . . 4 ⊢ 𝑌 ∈ On | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝑌 ∈ On) |
5 | 2, 4 | sucneqond 35442 | . 2 ⊢ (⊤ → 𝑋 ≠ 𝑌) |
6 | 5 | mptru 1550 | 1 ⊢ 𝑋 ≠ 𝑌 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ⊤wtru 1544 ∈ wcel 2112 ≠ wne 2943 Oncon0 6248 suc csuc 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-11 2160 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5186 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-ord 6251 df-on 6252 df-suc 6254 |
This theorem is referenced by: finxpreclem3 35470 |
Copyright terms: Public domain | W3C validator |