Mathbox for ML < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucneqoni Structured version   Visualization version   GIF version

Theorem sucneqoni 35097
 Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.)
Hypotheses
Ref Expression
sucneqoni.1 𝑋 = suc 𝑌
sucneqoni.2 𝑌 ∈ On
Assertion
Ref Expression
sucneqoni 𝑋𝑌

Proof of Theorem sucneqoni
StepHypRef Expression
1 sucneqoni.1 . . . 4 𝑋 = suc 𝑌
21a1i 11 . . 3 (⊤ → 𝑋 = suc 𝑌)
3 sucneqoni.2 . . . 4 𝑌 ∈ On
43a1i 11 . . 3 (⊤ → 𝑌 ∈ On)
52, 4sucneqond 35096 . 2 (⊤ → 𝑋𝑌)
65mptru 1545 1 𝑋𝑌
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538  ⊤wtru 1539   ∈ wcel 2111   ≠ wne 2951  Oncon0 6174  suc csuc 6176 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-tr 5143  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-ord 6177  df-on 6178  df-suc 6180 This theorem is referenced by:  finxpreclem3  35124
 Copyright terms: Public domain W3C validator