Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucneqoni Structured version   Visualization version   GIF version

Theorem sucneqoni 37340
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.)
Hypotheses
Ref Expression
sucneqoni.1 𝑋 = suc 𝑌
sucneqoni.2 𝑌 ∈ On
Assertion
Ref Expression
sucneqoni 𝑋𝑌

Proof of Theorem sucneqoni
StepHypRef Expression
1 sucneqoni.1 . . . 4 𝑋 = suc 𝑌
21a1i 11 . . 3 (⊤ → 𝑋 = suc 𝑌)
3 sucneqoni.2 . . . 4 𝑌 ∈ On
43a1i 11 . . 3 (⊤ → 𝑌 ∈ On)
52, 4sucneqond 37339 . 2 (⊤ → 𝑋𝑌)
65mptru 1547 1 𝑋𝑌
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Oncon0 6307  suc csuc 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-suc 6313
This theorem is referenced by:  finxpreclem3  37367
  Copyright terms: Public domain W3C validator