Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucneqoni Structured version   Visualization version   GIF version

Theorem sucneqoni 35443
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.)
Hypotheses
Ref Expression
sucneqoni.1 𝑋 = suc 𝑌
sucneqoni.2 𝑌 ∈ On
Assertion
Ref Expression
sucneqoni 𝑋𝑌

Proof of Theorem sucneqoni
StepHypRef Expression
1 sucneqoni.1 . . . 4 𝑋 = suc 𝑌
21a1i 11 . . 3 (⊤ → 𝑋 = suc 𝑌)
3 sucneqoni.2 . . . 4 𝑌 ∈ On
43a1i 11 . . 3 (⊤ → 𝑌 ∈ On)
52, 4sucneqond 35442 . 2 (⊤ → 𝑋𝑌)
65mptru 1550 1 𝑋𝑌
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wtru 1544  wcel 2112  wne 2943  Oncon0 6248  suc csuc 6250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-11 2160  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5186  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-ord 6251  df-on 6252  df-suc 6254
This theorem is referenced by:  finxpreclem3  35470
  Copyright terms: Public domain W3C validator