Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucneqond Structured version   Visualization version   GIF version

Theorem sucneqond 34743
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.)
Hypotheses
Ref Expression
sucneqond.1 (𝜑𝑋 = suc 𝑌)
sucneqond.2 (𝜑𝑌 ∈ On)
Assertion
Ref Expression
sucneqond (𝜑𝑋𝑌)

Proof of Theorem sucneqond
StepHypRef Expression
1 sucneqond.2 . . . . 5 (𝜑𝑌 ∈ On)
2 sucidg 6247 . . . . 5 (𝑌 ∈ On → 𝑌 ∈ suc 𝑌)
31, 2syl 17 . . . 4 (𝜑𝑌 ∈ suc 𝑌)
4 sucneqond.1 . . . 4 (𝜑𝑋 = suc 𝑌)
53, 4eleqtrrd 2917 . . 3 (𝜑𝑌𝑋)
6 suceloni 7513 . . . . . . . 8 (𝑌 ∈ On → suc 𝑌 ∈ On)
71, 6syl 17 . . . . . . 7 (𝜑 → suc 𝑌 ∈ On)
84, 7eqeltrd 2914 . . . . . 6 (𝜑𝑋 ∈ On)
9 eloni 6179 . . . . . 6 (𝑋 ∈ On → Ord 𝑋)
108, 9syl 17 . . . . 5 (𝜑 → Ord 𝑋)
11 ordirr 6187 . . . . 5 (Ord 𝑋 → ¬ 𝑋𝑋)
1210, 11syl 17 . . . 4 (𝜑 → ¬ 𝑋𝑋)
13 eleq1 2901 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑋𝑌𝑋))
1413biimprd 251 . . . . 5 (𝑋 = 𝑌 → (𝑌𝑋𝑋𝑋))
1514con3d 155 . . . 4 (𝑋 = 𝑌 → (¬ 𝑋𝑋 → ¬ 𝑌𝑋))
1612, 15syl5com 31 . . 3 (𝜑 → (𝑋 = 𝑌 → ¬ 𝑌𝑋))
175, 16mt2d 138 . 2 (𝜑 → ¬ 𝑋 = 𝑌)
1817neqned 3018 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wcel 2114  wne 3011  Ord word 6168  Oncon0 6169  suc csuc 6171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-tr 5149  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-ord 6172  df-on 6173  df-suc 6175
This theorem is referenced by:  sucneqoni  34744
  Copyright terms: Public domain W3C validator