Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucneqond Structured version   Visualization version   GIF version

Theorem sucneqond 36550
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.)
Hypotheses
Ref Expression
sucneqond.1 (𝜑𝑋 = suc 𝑌)
sucneqond.2 (𝜑𝑌 ∈ On)
Assertion
Ref Expression
sucneqond (𝜑𝑋𝑌)

Proof of Theorem sucneqond
StepHypRef Expression
1 sucneqond.2 . . . . 5 (𝜑𝑌 ∈ On)
2 sucidg 6446 . . . . 5 (𝑌 ∈ On → 𝑌 ∈ suc 𝑌)
31, 2syl 17 . . . 4 (𝜑𝑌 ∈ suc 𝑌)
4 sucneqond.1 . . . 4 (𝜑𝑋 = suc 𝑌)
53, 4eleqtrrd 2835 . . 3 (𝜑𝑌𝑋)
6 onsuc 7802 . . . . . . . 8 (𝑌 ∈ On → suc 𝑌 ∈ On)
71, 6syl 17 . . . . . . 7 (𝜑 → suc 𝑌 ∈ On)
84, 7eqeltrd 2832 . . . . . 6 (𝜑𝑋 ∈ On)
9 eloni 6375 . . . . . 6 (𝑋 ∈ On → Ord 𝑋)
108, 9syl 17 . . . . 5 (𝜑 → Ord 𝑋)
11 ordirr 6383 . . . . 5 (Ord 𝑋 → ¬ 𝑋𝑋)
1210, 11syl 17 . . . 4 (𝜑 → ¬ 𝑋𝑋)
13 eleq1 2820 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑋𝑌𝑋))
1413biimprd 247 . . . . 5 (𝑋 = 𝑌 → (𝑌𝑋𝑋𝑋))
1514con3d 152 . . . 4 (𝑋 = 𝑌 → (¬ 𝑋𝑋 → ¬ 𝑌𝑋))
1612, 15syl5com 31 . . 3 (𝜑 → (𝑋 = 𝑌 → ¬ 𝑌𝑋))
175, 16mt2d 136 . 2 (𝜑 → ¬ 𝑋 = 𝑌)
1817neqned 2946 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2105  wne 2939  Ord word 6364  Oncon0 6365  suc csuc 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-suc 6371
This theorem is referenced by:  sucneqoni  36551
  Copyright terms: Public domain W3C validator