![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucneqond | Structured version Visualization version GIF version |
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) |
Ref | Expression |
---|---|
sucneqond.1 | ⊢ (𝜑 → 𝑋 = suc 𝑌) |
sucneqond.2 | ⊢ (𝜑 → 𝑌 ∈ On) |
Ref | Expression |
---|---|
sucneqond | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucneqond.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ On) | |
2 | sucidg 6019 | . . . . 5 ⊢ (𝑌 ∈ On → 𝑌 ∈ suc 𝑌) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ suc 𝑌) |
4 | sucneqond.1 | . . . 4 ⊢ (𝜑 → 𝑋 = suc 𝑌) | |
5 | 3, 4 | eleqtrrd 2881 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
6 | suceloni 7247 | . . . . . . . 8 ⊢ (𝑌 ∈ On → suc 𝑌 ∈ On) | |
7 | 1, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → suc 𝑌 ∈ On) |
8 | 4, 7 | eqeltrd 2878 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ On) |
9 | eloni 5951 | . . . . . 6 ⊢ (𝑋 ∈ On → Ord 𝑋) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord 𝑋) |
11 | ordirr 5959 | . . . . 5 ⊢ (Ord 𝑋 → ¬ 𝑋 ∈ 𝑋) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑋) |
13 | eleq1 2866 | . . . . . 6 ⊢ (𝑋 = 𝑌 → (𝑋 ∈ 𝑋 ↔ 𝑌 ∈ 𝑋)) | |
14 | 13 | biimprd 240 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑌 ∈ 𝑋 → 𝑋 ∈ 𝑋)) |
15 | 14 | con3d 150 | . . . 4 ⊢ (𝑋 = 𝑌 → (¬ 𝑋 ∈ 𝑋 → ¬ 𝑌 ∈ 𝑋)) |
16 | 12, 15 | syl5com 31 | . . 3 ⊢ (𝜑 → (𝑋 = 𝑌 → ¬ 𝑌 ∈ 𝑋)) |
17 | 5, 16 | mt2d 134 | . 2 ⊢ (𝜑 → ¬ 𝑋 = 𝑌) |
18 | 17 | neqned 2978 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 Ord word 5940 Oncon0 5941 suc csuc 5943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-tr 4946 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-ord 5944 df-on 5945 df-suc 5947 |
This theorem is referenced by: sucneqoni 33712 |
Copyright terms: Public domain | W3C validator |