| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucneqond | Structured version Visualization version GIF version | ||
| Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| sucneqond.1 | ⊢ (𝜑 → 𝑋 = suc 𝑌) |
| sucneqond.2 | ⊢ (𝜑 → 𝑌 ∈ On) |
| Ref | Expression |
|---|---|
| sucneqond | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucneqond.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ On) | |
| 2 | sucidg 6394 | . . . . 5 ⊢ (𝑌 ∈ On → 𝑌 ∈ suc 𝑌) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ suc 𝑌) |
| 4 | sucneqond.1 | . . . 4 ⊢ (𝜑 → 𝑋 = suc 𝑌) | |
| 5 | 3, 4 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| 6 | onsuc 7749 | . . . . . . . 8 ⊢ (𝑌 ∈ On → suc 𝑌 ∈ On) | |
| 7 | 1, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → suc 𝑌 ∈ On) |
| 8 | 4, 7 | eqeltrd 2833 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ On) |
| 9 | eloni 6321 | . . . . . 6 ⊢ (𝑋 ∈ On → Ord 𝑋) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord 𝑋) |
| 11 | ordirr 6329 | . . . . 5 ⊢ (Ord 𝑋 → ¬ 𝑋 ∈ 𝑋) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑋) |
| 13 | eleq1 2821 | . . . . . 6 ⊢ (𝑋 = 𝑌 → (𝑋 ∈ 𝑋 ↔ 𝑌 ∈ 𝑋)) | |
| 14 | 13 | biimprd 248 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑌 ∈ 𝑋 → 𝑋 ∈ 𝑋)) |
| 15 | 14 | con3d 152 | . . . 4 ⊢ (𝑋 = 𝑌 → (¬ 𝑋 ∈ 𝑋 → ¬ 𝑌 ∈ 𝑋)) |
| 16 | 12, 15 | syl5com 31 | . . 3 ⊢ (𝜑 → (𝑋 = 𝑌 → ¬ 𝑌 ∈ 𝑋)) |
| 17 | 5, 16 | mt2d 136 | . 2 ⊢ (𝜑 → ¬ 𝑋 = 𝑌) |
| 18 | 17 | neqned 2936 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Ord word 6310 Oncon0 6311 suc csuc 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-suc 6317 |
| This theorem is referenced by: sucneqoni 37431 |
| Copyright terms: Public domain | W3C validator |