Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucneqond | Structured version Visualization version GIF version |
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) |
Ref | Expression |
---|---|
sucneqond.1 | ⊢ (𝜑 → 𝑋 = suc 𝑌) |
sucneqond.2 | ⊢ (𝜑 → 𝑌 ∈ On) |
Ref | Expression |
---|---|
sucneqond | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucneqond.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ On) | |
2 | sucidg 6329 | . . . . 5 ⊢ (𝑌 ∈ On → 𝑌 ∈ suc 𝑌) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ suc 𝑌) |
4 | sucneqond.1 | . . . 4 ⊢ (𝜑 → 𝑋 = suc 𝑌) | |
5 | 3, 4 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
6 | suceloni 7635 | . . . . . . . 8 ⊢ (𝑌 ∈ On → suc 𝑌 ∈ On) | |
7 | 1, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → suc 𝑌 ∈ On) |
8 | 4, 7 | eqeltrd 2839 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ On) |
9 | eloni 6261 | . . . . . 6 ⊢ (𝑋 ∈ On → Ord 𝑋) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord 𝑋) |
11 | ordirr 6269 | . . . . 5 ⊢ (Ord 𝑋 → ¬ 𝑋 ∈ 𝑋) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑋) |
13 | eleq1 2826 | . . . . . 6 ⊢ (𝑋 = 𝑌 → (𝑋 ∈ 𝑋 ↔ 𝑌 ∈ 𝑋)) | |
14 | 13 | biimprd 247 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑌 ∈ 𝑋 → 𝑋 ∈ 𝑋)) |
15 | 14 | con3d 152 | . . . 4 ⊢ (𝑋 = 𝑌 → (¬ 𝑋 ∈ 𝑋 → ¬ 𝑌 ∈ 𝑋)) |
16 | 12, 15 | syl5com 31 | . . 3 ⊢ (𝜑 → (𝑋 = 𝑌 → ¬ 𝑌 ∈ 𝑋)) |
17 | 5, 16 | mt2d 136 | . 2 ⊢ (𝜑 → ¬ 𝑋 = 𝑌) |
18 | 17 | neqned 2949 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Ord word 6250 Oncon0 6251 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 |
This theorem is referenced by: sucneqoni 35464 |
Copyright terms: Public domain | W3C validator |