Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucneqond | Structured version Visualization version GIF version |
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) |
Ref | Expression |
---|---|
sucneqond.1 | ⊢ (𝜑 → 𝑋 = suc 𝑌) |
sucneqond.2 | ⊢ (𝜑 → 𝑌 ∈ On) |
Ref | Expression |
---|---|
sucneqond | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucneqond.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ On) | |
2 | sucidg 6344 | . . . . 5 ⊢ (𝑌 ∈ On → 𝑌 ∈ suc 𝑌) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ suc 𝑌) |
4 | sucneqond.1 | . . . 4 ⊢ (𝜑 → 𝑋 = suc 𝑌) | |
5 | 3, 4 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
6 | suceloni 7659 | . . . . . . . 8 ⊢ (𝑌 ∈ On → suc 𝑌 ∈ On) | |
7 | 1, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → suc 𝑌 ∈ On) |
8 | 4, 7 | eqeltrd 2839 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ On) |
9 | eloni 6276 | . . . . . 6 ⊢ (𝑋 ∈ On → Ord 𝑋) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord 𝑋) |
11 | ordirr 6284 | . . . . 5 ⊢ (Ord 𝑋 → ¬ 𝑋 ∈ 𝑋) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑋) |
13 | eleq1 2826 | . . . . . 6 ⊢ (𝑋 = 𝑌 → (𝑋 ∈ 𝑋 ↔ 𝑌 ∈ 𝑋)) | |
14 | 13 | biimprd 247 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑌 ∈ 𝑋 → 𝑋 ∈ 𝑋)) |
15 | 14 | con3d 152 | . . . 4 ⊢ (𝑋 = 𝑌 → (¬ 𝑋 ∈ 𝑋 → ¬ 𝑌 ∈ 𝑋)) |
16 | 12, 15 | syl5com 31 | . . 3 ⊢ (𝜑 → (𝑋 = 𝑌 → ¬ 𝑌 ∈ 𝑋)) |
17 | 5, 16 | mt2d 136 | . 2 ⊢ (𝜑 → ¬ 𝑋 = 𝑌) |
18 | 17 | neqned 2950 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Ord word 6265 Oncon0 6266 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 |
This theorem is referenced by: sucneqoni 35537 |
Copyright terms: Public domain | W3C validator |