![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucneqond | Structured version Visualization version GIF version |
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.) |
Ref | Expression |
---|---|
sucneqond.1 | ⊢ (𝜑 → 𝑋 = suc 𝑌) |
sucneqond.2 | ⊢ (𝜑 → 𝑌 ∈ On) |
Ref | Expression |
---|---|
sucneqond | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucneqond.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ On) | |
2 | sucidg 6461 | . . . . 5 ⊢ (𝑌 ∈ On → 𝑌 ∈ suc 𝑌) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ suc 𝑌) |
4 | sucneqond.1 | . . . 4 ⊢ (𝜑 → 𝑋 = suc 𝑌) | |
5 | 3, 4 | eleqtrrd 2840 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
6 | onsuc 7824 | . . . . . . . 8 ⊢ (𝑌 ∈ On → suc 𝑌 ∈ On) | |
7 | 1, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → suc 𝑌 ∈ On) |
8 | 4, 7 | eqeltrd 2837 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ On) |
9 | eloni 6390 | . . . . . 6 ⊢ (𝑋 ∈ On → Ord 𝑋) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord 𝑋) |
11 | ordirr 6398 | . . . . 5 ⊢ (Ord 𝑋 → ¬ 𝑋 ∈ 𝑋) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑋) |
13 | eleq1 2825 | . . . . . 6 ⊢ (𝑋 = 𝑌 → (𝑋 ∈ 𝑋 ↔ 𝑌 ∈ 𝑋)) | |
14 | 13 | biimprd 248 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑌 ∈ 𝑋 → 𝑋 ∈ 𝑋)) |
15 | 14 | con3d 152 | . . . 4 ⊢ (𝑋 = 𝑌 → (¬ 𝑋 ∈ 𝑋 → ¬ 𝑌 ∈ 𝑋)) |
16 | 12, 15 | syl5com 31 | . . 3 ⊢ (𝜑 → (𝑋 = 𝑌 → ¬ 𝑌 ∈ 𝑋)) |
17 | 5, 16 | mt2d 136 | . 2 ⊢ (𝜑 → ¬ 𝑋 = 𝑌) |
18 | 17 | neqned 2943 | 1 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1535 ∈ wcel 2104 ≠ wne 2936 Ord word 6379 Oncon0 6380 suc csuc 6382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5430 ax-un 7747 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-ord 6383 df-on 6384 df-suc 6386 |
This theorem is referenced by: sucneqoni 37309 |
Copyright terms: Public domain | W3C validator |