Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucneqond Structured version   Visualization version   GIF version

Theorem sucneqond 35536
Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020.)
Hypotheses
Ref Expression
sucneqond.1 (𝜑𝑋 = suc 𝑌)
sucneqond.2 (𝜑𝑌 ∈ On)
Assertion
Ref Expression
sucneqond (𝜑𝑋𝑌)

Proof of Theorem sucneqond
StepHypRef Expression
1 sucneqond.2 . . . . 5 (𝜑𝑌 ∈ On)
2 sucidg 6344 . . . . 5 (𝑌 ∈ On → 𝑌 ∈ suc 𝑌)
31, 2syl 17 . . . 4 (𝜑𝑌 ∈ suc 𝑌)
4 sucneqond.1 . . . 4 (𝜑𝑋 = suc 𝑌)
53, 4eleqtrrd 2842 . . 3 (𝜑𝑌𝑋)
6 suceloni 7659 . . . . . . . 8 (𝑌 ∈ On → suc 𝑌 ∈ On)
71, 6syl 17 . . . . . . 7 (𝜑 → suc 𝑌 ∈ On)
84, 7eqeltrd 2839 . . . . . 6 (𝜑𝑋 ∈ On)
9 eloni 6276 . . . . . 6 (𝑋 ∈ On → Ord 𝑋)
108, 9syl 17 . . . . 5 (𝜑 → Ord 𝑋)
11 ordirr 6284 . . . . 5 (Ord 𝑋 → ¬ 𝑋𝑋)
1210, 11syl 17 . . . 4 (𝜑 → ¬ 𝑋𝑋)
13 eleq1 2826 . . . . . 6 (𝑋 = 𝑌 → (𝑋𝑋𝑌𝑋))
1413biimprd 247 . . . . 5 (𝑋 = 𝑌 → (𝑌𝑋𝑋𝑋))
1514con3d 152 . . . 4 (𝑋 = 𝑌 → (¬ 𝑋𝑋 → ¬ 𝑌𝑋))
1612, 15syl5com 31 . . 3 (𝜑 → (𝑋 = 𝑌 → ¬ 𝑌𝑋))
175, 16mt2d 136 . 2 (𝜑 → ¬ 𝑋 = 𝑌)
1817neqned 2950 1 (𝜑𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  wne 2943  Ord word 6265  Oncon0 6266  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272
This theorem is referenced by:  sucneqoni  35537
  Copyright terms: Public domain W3C validator