| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supmax | Structured version Visualization version GIF version | ||
| Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| supmax.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| supmax.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| supmax.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| supmax.4 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) |
| Ref | Expression |
|---|---|
| supmax | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmax.1 | . 2 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 2 | supmax.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | supmax.4 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) | |
| 4 | supmax.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 5 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → 𝑦𝑅𝐶) | |
| 6 | breq2 5106 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑦𝑅𝑧 ↔ 𝑦𝑅𝐶)) | |
| 7 | 6 | rspcev 3585 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑦𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
| 8 | 4, 5, 7 | syl2an2r 685 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
| 9 | 1, 2, 3, 8 | eqsupd 9384 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5102 Or wor 5538 supcsup 9367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-po 5539 df-so 5540 df-iota 6452 df-riota 7326 df-sup 9369 |
| This theorem is referenced by: suppr 9399 gsumesum 34042 supfz 35709 mblfinlem2 37645 |
| Copyright terms: Public domain | W3C validator |