MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmax Structured version   Visualization version   GIF version

Theorem supmax 9352
Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof shortened by OpenAI, 30-Mar-2020.)
Hypotheses
Ref Expression
supmax.1 (𝜑𝑅 Or 𝐴)
supmax.2 (𝜑𝐶𝐴)
supmax.3 (𝜑𝐶𝐵)
supmax.4 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
Assertion
Ref Expression
supmax (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝑅   𝜑,𝑦

Proof of Theorem supmax
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 supmax.1 . 2 (𝜑𝑅 Or 𝐴)
2 supmax.2 . 2 (𝜑𝐶𝐴)
3 supmax.4 . 2 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
4 supmax.3 . . 3 (𝜑𝐶𝐵)
5 simprr 772 . . 3 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → 𝑦𝑅𝐶)
6 breq2 5093 . . . 4 (𝑧 = 𝐶 → (𝑦𝑅𝑧𝑦𝑅𝐶))
76rspcev 3572 . . 3 ((𝐶𝐵𝑦𝑅𝐶) → ∃𝑧𝐵 𝑦𝑅𝑧)
84, 5, 7syl2an2r 685 . 2 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)
91, 2, 3, 8eqsupd 9341 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5089   Or wor 5521  supcsup 9324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-po 5522  df-so 5523  df-iota 6437  df-riota 7303  df-sup 9326
This theorem is referenced by:  suppr  9356  gsumesum  34072  supfz  35773  mblfinlem2  37697
  Copyright terms: Public domain W3C validator