![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supmax | Structured version Visualization version GIF version |
Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof shortened by OpenAI, 30-Mar-2020.) |
Ref | Expression |
---|---|
supmax.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
supmax.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
supmax.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
supmax.4 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) |
Ref | Expression |
---|---|
supmax | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmax.1 | . 2 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | supmax.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | supmax.4 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) | |
4 | supmax.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
5 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → 𝑦𝑅𝐶) | |
6 | breq2 5170 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑦𝑅𝑧 ↔ 𝑦𝑅𝐶)) | |
7 | 6 | rspcev 3635 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑦𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
8 | 4, 5, 7 | syl2an2r 684 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
9 | 1, 2, 3, 8 | eqsupd 9526 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 Or wor 5606 supcsup 9509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-po 5607 df-so 5608 df-iota 6525 df-riota 7404 df-sup 9511 |
This theorem is referenced by: suppr 9540 gsumesum 34023 supfz 35691 mblfinlem2 37618 |
Copyright terms: Public domain | W3C validator |