Step | Hyp | Ref
| Expression |
1 | | isperp.p |
. 2
β’ π = (BaseβπΊ) |
2 | | isperp.d |
. 2
β’ β =
(distβπΊ) |
3 | | isperp.i |
. 2
β’ πΌ = (ItvβπΊ) |
4 | | isperp.l |
. 2
β’ πΏ = (LineGβπΊ) |
5 | | isperp.g |
. 2
β’ (π β πΊ β TarskiG) |
6 | | foot.x |
. . 3
β’ (π β πΆ β π) |
7 | | footexlem.x |
. . 3
β’ (π β π β π) |
8 | | isperp.a |
. . . . . 6
β’ (π β π΄ β ran πΏ) |
9 | | foot.y |
. . . . . 6
β’ (π β Β¬ πΆ β π΄) |
10 | | footexlem.e |
. . . . . 6
β’ (π β πΈ β π) |
11 | | footexlem.f |
. . . . . 6
β’ (π β πΉ β π) |
12 | | footexlem.r |
. . . . . 6
β’ (π β π
β π) |
13 | | footexlem.y |
. . . . . 6
β’ (π β π β π) |
14 | | footexlem.z |
. . . . . 6
β’ (π β π β π) |
15 | | footexlem.d |
. . . . . 6
β’ (π β π· β π) |
16 | | footexlem.1 |
. . . . . 6
β’ (π β π΄ = (πΈπΏπΉ)) |
17 | | footexlem.2 |
. . . . . 6
β’ (π β πΈ β πΉ) |
18 | | footexlem.3 |
. . . . . 6
β’ (π β πΈ β (πΉπΌπ)) |
19 | | footexlem.4 |
. . . . . 6
β’ (π β (πΈ β π) = (πΈ β πΆ)) |
20 | | footexlem.5 |
. . . . . 6
β’ (π β πΆ = (((pInvGβπΊ)βπ
)βπ)) |
21 | | footexlem.6 |
. . . . . 6
β’ (π β π β (πΈπΌπ)) |
22 | | footexlem.7 |
. . . . . 6
β’ (π β (π β π) = (π β π
)) |
23 | | footexlem.q |
. . . . . 6
β’ (π β π β π) |
24 | | footexlem.8 |
. . . . . 6
β’ (π β π β (π
πΌπ)) |
25 | | footexlem.9 |
. . . . . 6
β’ (π β (π β π) = (π β πΈ)) |
26 | | footexlem.10 |
. . . . . 6
β’ (π β π β ((((pInvGβπΊ)βπ)βπ)πΌπ·)) |
27 | | footexlem.11 |
. . . . . 6
β’ (π β (π β π·) = (π β πΆ)) |
28 | | footexlem.12 |
. . . . . 6
β’ (π β π· = (((pInvGβπΊ)βπ)βπΆ)) |
29 | 1, 2, 3, 4, 5, 8, 6, 9, 10, 11, 12, 7, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | footexlem1 27959 |
. . . . 5
β’ (π β π β π΄) |
30 | | nelne2 3040 |
. . . . 5
β’ ((π β π΄ β§ Β¬ πΆ β π΄) β π β πΆ) |
31 | 29, 9, 30 | syl2anc 584 |
. . . 4
β’ (π β π β πΆ) |
32 | 31 | necomd 2996 |
. . 3
β’ (π β πΆ β π) |
33 | 1, 3, 4, 5, 6, 7, 32 | tgelrnln 27870 |
. 2
β’ (π β (πΆπΏπ) β ran πΏ) |
34 | 1, 3, 4, 5, 6, 7, 32 | tglinerflx2 27874 |
. . 3
β’ (π β π β (πΆπΏπ)) |
35 | 34, 29 | elind 4193 |
. 2
β’ (π β π β ((πΆπΏπ) β© π΄)) |
36 | 1, 3, 4, 5, 6, 7, 32 | tglinerflx1 27873 |
. 2
β’ (π β πΆ β (πΆπΏπ)) |
37 | 17 | necomd 2996 |
. . . . 5
β’ (π β πΉ β πΈ) |
38 | 1, 3, 4, 5, 11, 10, 13, 37, 18 | btwnlng3 27861 |
. . . 4
β’ (π β π β (πΉπΏπΈ)) |
39 | 1, 3, 4, 5, 10, 11, 13, 17, 38 | lncom 27862 |
. . 3
β’ (π β π β (πΈπΏπΉ)) |
40 | 39, 16 | eleqtrrd 2836 |
. 2
β’ (π β π β π΄) |
41 | | eqid 2732 |
. . . . 5
β’
(pInvGβπΊ) =
(pInvGβπΊ) |
42 | 5 | adantr 481 |
. . . . 5
β’ ((π β§ π = π) β πΊ β TarskiG) |
43 | 10 | adantr 481 |
. . . . 5
β’ ((π β§ π = π) β πΈ β π) |
44 | 13 | adantr 481 |
. . . . 5
β’ ((π β§ π = π) β π β π) |
45 | 12 | adantr 481 |
. . . . 5
β’ ((π β§ π = π) β π
β π) |
46 | 6 | adantr 481 |
. . . . . . 7
β’ ((π β§ π = π) β πΆ β π) |
47 | | eqidd 2733 |
. . . . . . . . 9
β’ ((π β§ π = π) β πΆ = πΆ) |
48 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ π = π) β π = π) |
49 | | eqidd 2733 |
. . . . . . . . 9
β’ ((π β§ π = π) β πΈ = πΈ) |
50 | 47, 48, 49 | s3eqd 14811 |
. . . . . . . 8
β’ ((π β§ π = π) β β¨βπΆππΈββ© = β¨βπΆππΈββ©) |
51 | 7 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = π) β π β π) |
52 | 14 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π = π) β π β π) |
53 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
((pInvGβπΊ)βπ) = ((pInvGβπΊ)βπ) |
54 | 1, 2, 3, 4, 41, 5,
14, 53, 23 | mircl 27901 |
. . . . . . . . . . . . . . 15
β’ (π β (((pInvGβπΊ)βπ)βπ) β π) |
55 | 1, 2, 3, 5, 10, 13, 10, 6, 19 | tgcgrcomlr 27720 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π β πΈ) = (πΆ β πΈ)) |
56 | 25, 55 | eqtr2d 2773 |
. . . . . . . . . . . . . . . . 17
β’ (π β (πΆ β πΈ) = (π β π)) |
57 | 1, 3, 4, 5, 10, 11, 17 | tglinerflx1 27873 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β πΈ β (πΈπΏπΉ)) |
58 | 57, 16 | eleqtrrd 2836 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β πΈ β π΄) |
59 | | nelne2 3040 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΈ β π΄ β§ Β¬ πΆ β π΄) β πΈ β πΆ) |
60 | 58, 9, 59 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΈ β πΆ) |
61 | 60 | necomd 2996 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΆ β πΈ) |
62 | 1, 2, 3, 5, 6, 10,
13, 23, 56, 61 | tgcgrneq 27723 |
. . . . . . . . . . . . . . . 16
β’ (π β π β π) |
63 | 62 | necomd 2996 |
. . . . . . . . . . . . . . 15
β’ (π β π β π) |
64 | | nelne2 3040 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β π΄ β§ Β¬ πΆ β π΄) β π β πΆ) |
65 | 40, 9, 64 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β π β πΆ) |
66 | 65 | necomd 2996 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β πΆ β π) |
67 | 20, 66 | eqnetrrd 3009 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (((pInvGβπΊ)βπ
)βπ) β π) |
68 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . 20
β’
((pInvGβπΊ)βπ
) = ((pInvGβπΊ)βπ
) |
69 | 1, 2, 3, 4, 41, 5,
12, 68, 13 | mirinv 27906 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β ((((pInvGβπΊ)βπ
)βπ) = π β π
= π)) |
70 | 69 | necon3bid 2985 |
. . . . . . . . . . . . . . . . . 18
β’ (π β ((((pInvGβπΊ)βπ
)βπ) β π β π
β π)) |
71 | 67, 70 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
β’ (π β π
β π) |
72 | 1, 2, 3, 4, 41, 5,
12, 68, 13 | mirbtwn 27898 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π
β ((((pInvGβπΊ)βπ
)βπ)πΌπ)) |
73 | 20 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΆπΌπ) = ((((pInvGβπΊ)βπ
)βπ)πΌπ)) |
74 | 72, 73 | eleqtrrd 2836 |
. . . . . . . . . . . . . . . . 17
β’ (π β π
β (πΆπΌπ)) |
75 | 1, 2, 3, 5, 6, 12,
13, 23, 71, 74, 24 | tgbtwnouttr2 27735 |
. . . . . . . . . . . . . . . 16
β’ (π β π β (πΆπΌπ)) |
76 | 1, 2, 3, 5, 6, 13,
23, 75 | tgbtwncom 27728 |
. . . . . . . . . . . . . . 15
β’ (π β π β (ππΌπΆ)) |
77 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . 19
β’
(cgrGβπΊ) =
(cgrGβπΊ) |
78 | 20 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (πΈ β πΆ) = (πΈ β (((pInvGβπΊ)βπ
)βπ))) |
79 | 19, 78 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (πΈ β π) = (πΈ β (((pInvGβπΊ)βπ
)βπ))) |
80 | 1, 2, 3, 4, 41, 5,
10, 12, 13 | israg 27937 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (β¨βπΈπ
πββ© β (βGβπΊ) β (πΈ β π) = (πΈ β (((pInvGβπΊ)βπ
)βπ)))) |
81 | 79, 80 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β¨βπΈπ
πββ© β (βGβπΊ)) |
82 | 1, 2, 3, 5, 12, 13, 23, 24 | tgbtwncom 27728 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β π β (ππΌπ
)) |
83 | 1, 2, 3, 5, 13, 23, 13, 10, 25 | tgcgrcomlr 27720 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (π β π) = (πΈ β π)) |
84 | 22 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (π β π
) = (π β π)) |
85 | 1, 2, 3, 5, 23, 10 | axtgcgrrflx 27702 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (π β πΈ) = (πΈ β π)) |
86 | 25 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (π β πΈ) = (π β π)) |
87 | 1, 2, 3, 5, 23, 13, 12, 10, 13, 14, 10, 23, 63, 82, 21, 83, 84, 85, 86 | axtg5seg 27705 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (π
β πΈ) = (π β π)) |
88 | 1, 2, 3, 5, 12, 10, 14, 23, 87 | tgcgrcomlr 27720 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (πΈ β π
) = (π β π)) |
89 | 1, 2, 3, 5, 13, 12, 13, 14, 84 | tgcgrcomlr 27720 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (π
β π) = (π β π)) |
90 | 1, 2, 77, 5, 10, 12, 13, 23, 14, 13, 88, 89, 86 | trgcgr 27756 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β¨βπΈπ
πββ©(cgrGβπΊ)β¨βπππββ©) |
91 | 1, 2, 3, 4, 41, 5,
10, 12, 13, 77, 23, 14, 13, 81, 90 | ragcgr 27947 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β¨βπππββ© β (βGβπΊ)) |
92 | 1, 2, 3, 4, 41, 5,
23, 14, 13, 91 | ragcom 27938 |
. . . . . . . . . . . . . . . . 17
β’ (π β β¨βπππββ© β (βGβπΊ)) |
93 | 1, 2, 3, 4, 41, 5,
13, 14, 23 | israg 27937 |
. . . . . . . . . . . . . . . . 17
β’ (π β (β¨βπππββ© β (βGβπΊ) β (π β π) = (π β (((pInvGβπΊ)βπ)βπ)))) |
94 | 92, 93 | mpbid 231 |
. . . . . . . . . . . . . . . 16
β’ (π β (π β π) = (π β (((pInvGβπΊ)βπ)βπ))) |
95 | 1, 2, 3, 5, 13, 23, 13, 54, 94 | tgcgrcomlr 27720 |
. . . . . . . . . . . . . . 15
β’ (π β (π β π) = ((((pInvGβπΊ)βπ)βπ) β π)) |
96 | 27 | eqcomd 2738 |
. . . . . . . . . . . . . . 15
β’ (π β (π β πΆ) = (π β π·)) |
97 | 1, 2, 3, 4, 41, 5,
14, 53, 23 | mircgr 27897 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π β (((pInvGβπΊ)βπ)βπ)) = (π β π)) |
98 | 97 | eqcomd 2738 |
. . . . . . . . . . . . . . . 16
β’ (π β (π β π) = (π β (((pInvGβπΊ)βπ)βπ))) |
99 | 1, 2, 3, 5, 14, 23, 14, 54, 98 | tgcgrcomlr 27720 |
. . . . . . . . . . . . . . 15
β’ (π β (π β π) = ((((pInvGβπΊ)βπ)βπ) β π)) |
100 | | eqidd 2733 |
. . . . . . . . . . . . . . 15
β’ (π β (π β π) = (π β π)) |
101 | 1, 2, 3, 5, 23, 13, 6, 54, 13, 15, 14, 14, 63, 76, 26, 95, 96, 99, 100 | axtg5seg 27705 |
. . . . . . . . . . . . . 14
β’ (π β (πΆ β π) = (π· β π)) |
102 | 1, 2, 3, 5, 6, 14,
15, 14, 101 | tgcgrcomlr 27720 |
. . . . . . . . . . . . 13
β’ (π β (π β πΆ) = (π β π·)) |
103 | 28 | oveq2d 7421 |
. . . . . . . . . . . . 13
β’ (π β (π β π·) = (π β (((pInvGβπΊ)βπ)βπΆ))) |
104 | 102, 103 | eqtrd 2772 |
. . . . . . . . . . . 12
β’ (π β (π β πΆ) = (π β (((pInvGβπΊ)βπ)βπΆ))) |
105 | 1, 2, 3, 4, 41, 5,
14, 7, 6 | israg 27937 |
. . . . . . . . . . . 12
β’ (π β (β¨βπππΆββ© β (βGβπΊ) β (π β πΆ) = (π β (((pInvGβπΊ)βπ)βπΆ)))) |
106 | 104, 105 | mpbird 256 |
. . . . . . . . . . 11
β’ (π β β¨βπππΆββ© β (βGβπΊ)) |
107 | 106 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π = π) β β¨βπππΆββ© β (βGβπΊ)) |
108 | 71 | necomd 2996 |
. . . . . . . . . . . . . 14
β’ (π β π β π
) |
109 | 1, 2, 3, 5, 13, 12, 13, 14, 84, 108 | tgcgrneq 27723 |
. . . . . . . . . . . . 13
β’ (π β π β π) |
110 | 109 | necomd 2996 |
. . . . . . . . . . . 12
β’ (π β π β π) |
111 | 110 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π = π) β π β π) |
112 | 111, 48 | neeqtrd 3010 |
. . . . . . . . . 10
β’ ((π β§ π = π) β π β π) |
113 | 19 | eqcomd 2738 |
. . . . . . . . . . . . . . . 16
β’ (π β (πΈ β πΆ) = (πΈ β π)) |
114 | 113 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π = π) β (πΈ β πΆ) = (πΈ β π)) |
115 | 60 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π = π) β πΈ β πΆ) |
116 | 1, 2, 3, 42, 43, 46, 43, 44, 114, 115 | tgcgrneq 27723 |
. . . . . . . . . . . . . 14
β’ ((π β§ π = π) β πΈ β π) |
117 | 116 | necomd 2996 |
. . . . . . . . . . . . 13
β’ ((π β§ π = π) β π β πΈ) |
118 | 1, 2, 3, 5, 10, 6,
10, 13, 113, 60 | tgcgrneq 27723 |
. . . . . . . . . . . . . . 15
β’ (π β πΈ β π) |
119 | 1, 3, 4, 5, 10, 13, 14, 118, 21 | btwnlng3 27861 |
. . . . . . . . . . . . . 14
β’ (π β π β (πΈπΏπ)) |
120 | 119 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π = π) β π β (πΈπΏπ)) |
121 | 1, 3, 4, 42, 44, 43, 52, 117, 120 | lncom 27862 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β π β (ππΏπΈ)) |
122 | 48 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ ((π β§ π = π) β (ππΏπΈ) = (ππΏπΈ)) |
123 | 121, 122 | eleqtrd 2835 |
. . . . . . . . . . 11
β’ ((π β§ π = π) β π β (ππΏπΈ)) |
124 | 123 | orcd 871 |
. . . . . . . . . 10
β’ ((π β§ π = π) β (π β (ππΏπΈ) β¨ π = πΈ)) |
125 | 1, 2, 3, 4, 41, 42, 52, 51, 46, 43, 107, 112, 124 | ragcol 27939 |
. . . . . . . . 9
β’ ((π β§ π = π) β β¨βπΈππΆββ© β (βGβπΊ)) |
126 | 1, 2, 3, 4, 41, 42, 43, 51, 46, 125 | ragcom 27938 |
. . . . . . . 8
β’ ((π β§ π = π) β β¨βπΆππΈββ© β (βGβπΊ)) |
127 | 50, 126 | eqeltrd 2833 |
. . . . . . 7
β’ ((π β§ π = π) β β¨βπΆππΈββ© β (βGβπΊ)) |
128 | 66 | adantr 481 |
. . . . . . 7
β’ ((π β§ π = π) β πΆ β π) |
129 | 1, 2, 3, 5, 6, 12,
13, 74 | tgbtwncom 27728 |
. . . . . . . . 9
β’ (π β π
β (ππΌπΆ)) |
130 | 1, 4, 3, 5, 13, 12, 6, 129 | btwncolg3 27797 |
. . . . . . . 8
β’ (π β (πΆ β (ππΏπ
) β¨ π = π
)) |
131 | 130 | adantr 481 |
. . . . . . 7
β’ ((π β§ π = π) β (πΆ β (ππΏπ
) β¨ π = π
)) |
132 | 1, 2, 3, 4, 41, 42, 46, 44, 43, 45, 127, 128, 131 | ragcol 27939 |
. . . . . 6
β’ ((π β§ π = π) β β¨βπ
ππΈββ© β (βGβπΊ)) |
133 | 1, 2, 3, 4, 41, 42, 45, 44, 43, 132 | ragcom 27938 |
. . . . 5
β’ ((π β§ π = π) β β¨βπΈππ
ββ© β (βGβπΊ)) |
134 | 81 | adantr 481 |
. . . . 5
β’ ((π β§ π = π) β β¨βπΈπ
πββ© β (βGβπΊ)) |
135 | 1, 2, 3, 4, 41, 42, 43, 44, 45, 133, 134 | ragflat 27944 |
. . . 4
β’ ((π β§ π = π) β π = π
) |
136 | 108 | adantr 481 |
. . . . 5
β’ ((π β§ π = π) β π β π
) |
137 | 136 | neneqd 2945 |
. . . 4
β’ ((π β§ π = π) β Β¬ π = π
) |
138 | 135, 137 | pm2.65da 815 |
. . 3
β’ (π β Β¬ π = π) |
139 | 138 | neqned 2947 |
. 2
β’ (π β π β π) |
140 | 28 | oveq2d 7421 |
. . . . 5
β’ (π β (π β π·) = (π β (((pInvGβπΊ)βπ)βπΆ))) |
141 | 96, 140 | eqtrd 2772 |
. . . 4
β’ (π β (π β πΆ) = (π β (((pInvGβπΊ)βπ)βπΆ))) |
142 | 1, 2, 3, 4, 41, 5,
13, 7, 6 | israg 27937 |
. . . 4
β’ (π β (β¨βπππΆββ© β (βGβπΊ) β (π β πΆ) = (π β (((pInvGβπΊ)βπ)βπΆ)))) |
143 | 141, 142 | mpbird 256 |
. . 3
β’ (π β β¨βπππΆββ© β (βGβπΊ)) |
144 | 1, 2, 3, 4, 41, 5,
13, 7, 6, 143 | ragcom 27938 |
. 2
β’ (π β β¨βπΆππββ© β (βGβπΊ)) |
145 | 1, 2, 3, 4, 5, 33,
8, 35, 36, 40, 32, 139, 144 | ragperp 27957 |
1
β’ (π β (πΆπΏπ)(βGβπΊ)π΄) |