MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footexlem2 Structured version   Visualization version   GIF version

Theorem footexlem2 28645
Description: Lemma for footex 28646. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
footexlem.e (𝜑𝐸𝑃)
footexlem.f (𝜑𝐹𝑃)
footexlem.r (𝜑𝑅𝑃)
footexlem.x (𝜑𝑋𝑃)
footexlem.y (𝜑𝑌𝑃)
footexlem.z (𝜑𝑍𝑃)
footexlem.d (𝜑𝐷𝑃)
footexlem.1 (𝜑𝐴 = (𝐸𝐿𝐹))
footexlem.2 (𝜑𝐸𝐹)
footexlem.3 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
footexlem.4 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
footexlem.5 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
footexlem.6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
footexlem.7 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
footexlem.q (𝜑𝑄𝑃)
footexlem.8 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
footexlem.9 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
footexlem.10 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
footexlem.11 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
footexlem.12 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
Assertion
Ref Expression
footexlem2 (𝜑 → (𝐶𝐿𝑋)(⟂G‘𝐺)𝐴)

Proof of Theorem footexlem2
StepHypRef Expression
1 isperp.p . 2 𝑃 = (Base‘𝐺)
2 isperp.d . 2 = (dist‘𝐺)
3 isperp.i . 2 𝐼 = (Itv‘𝐺)
4 isperp.l . 2 𝐿 = (LineG‘𝐺)
5 isperp.g . 2 (𝜑𝐺 ∈ TarskiG)
6 foot.x . . 3 (𝜑𝐶𝑃)
7 footexlem.x . . 3 (𝜑𝑋𝑃)
8 isperp.a . . . . . 6 (𝜑𝐴 ∈ ran 𝐿)
9 foot.y . . . . . 6 (𝜑 → ¬ 𝐶𝐴)
10 footexlem.e . . . . . 6 (𝜑𝐸𝑃)
11 footexlem.f . . . . . 6 (𝜑𝐹𝑃)
12 footexlem.r . . . . . 6 (𝜑𝑅𝑃)
13 footexlem.y . . . . . 6 (𝜑𝑌𝑃)
14 footexlem.z . . . . . 6 (𝜑𝑍𝑃)
15 footexlem.d . . . . . 6 (𝜑𝐷𝑃)
16 footexlem.1 . . . . . 6 (𝜑𝐴 = (𝐸𝐿𝐹))
17 footexlem.2 . . . . . 6 (𝜑𝐸𝐹)
18 footexlem.3 . . . . . 6 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
19 footexlem.4 . . . . . 6 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
20 footexlem.5 . . . . . 6 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
21 footexlem.6 . . . . . 6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
22 footexlem.7 . . . . . 6 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
23 footexlem.q . . . . . 6 (𝜑𝑄𝑃)
24 footexlem.8 . . . . . 6 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
25 footexlem.9 . . . . . 6 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
26 footexlem.10 . . . . . 6 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
27 footexlem.11 . . . . . 6 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
28 footexlem.12 . . . . . 6 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
291, 2, 3, 4, 5, 8, 6, 9, 10, 11, 12, 7, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28footexlem1 28644 . . . . 5 (𝜑𝑋𝐴)
30 nelne2 3030 . . . . 5 ((𝑋𝐴 ∧ ¬ 𝐶𝐴) → 𝑋𝐶)
3129, 9, 30syl2anc 584 . . . 4 (𝜑𝑋𝐶)
3231necomd 2987 . . 3 (𝜑𝐶𝑋)
331, 3, 4, 5, 6, 7, 32tgelrnln 28555 . 2 (𝜑 → (𝐶𝐿𝑋) ∈ ran 𝐿)
341, 3, 4, 5, 6, 7, 32tglinerflx2 28559 . . 3 (𝜑𝑋 ∈ (𝐶𝐿𝑋))
3534, 29elind 4175 . 2 (𝜑𝑋 ∈ ((𝐶𝐿𝑋) ∩ 𝐴))
361, 3, 4, 5, 6, 7, 32tglinerflx1 28558 . 2 (𝜑𝐶 ∈ (𝐶𝐿𝑋))
3717necomd 2987 . . . . 5 (𝜑𝐹𝐸)
381, 3, 4, 5, 11, 10, 13, 37, 18btwnlng3 28546 . . . 4 (𝜑𝑌 ∈ (𝐹𝐿𝐸))
391, 3, 4, 5, 10, 11, 13, 17, 38lncom 28547 . . 3 (𝜑𝑌 ∈ (𝐸𝐿𝐹))
4039, 16eleqtrrd 2837 . 2 (𝜑𝑌𝐴)
41 eqid 2735 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
425adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝐺 ∈ TarskiG)
4310adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝐸𝑃)
4413adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑌𝑃)
4512adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑅𝑃)
466adantr 480 . . . . . . 7 ((𝜑𝑌 = 𝑋) → 𝐶𝑃)
47 eqidd 2736 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝐶 = 𝐶)
48 simpr 484 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝑌 = 𝑋)
49 eqidd 2736 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝐸 = 𝐸)
5047, 48, 49s3eqd 14881 . . . . . . . 8 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑌𝐸”⟩ = ⟨“𝐶𝑋𝐸”⟩)
517adantr 480 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝑋𝑃)
5214adantr 480 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → 𝑍𝑃)
53 eqid 2735 . . . . . . . . . . . . . . . 16 ((pInvG‘𝐺)‘𝑍) = ((pInvG‘𝐺)‘𝑍)
541, 2, 3, 4, 41, 5, 14, 53, 23mircl 28586 . . . . . . . . . . . . . . 15 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) ∈ 𝑃)
551, 2, 3, 5, 10, 13, 10, 6, 19tgcgrcomlr 28405 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑌 𝐸) = (𝐶 𝐸))
5625, 55eqtr2d 2771 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶 𝐸) = (𝑌 𝑄))
571, 3, 4, 5, 10, 11, 17tglinerflx1 28558 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 ∈ (𝐸𝐿𝐹))
5857, 16eleqtrrd 2837 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸𝐴)
59 nelne2 3030 . . . . . . . . . . . . . . . . . . 19 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → 𝐸𝐶)
6058, 9, 59syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸𝐶)
6160necomd 2987 . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝐸)
621, 2, 3, 5, 6, 10, 13, 23, 56, 61tgcgrneq 28408 . . . . . . . . . . . . . . . 16 (𝜑𝑌𝑄)
6362necomd 2987 . . . . . . . . . . . . . . 15 (𝜑𝑄𝑌)
64 nelne2 3030 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝐴 ∧ ¬ 𝐶𝐴) → 𝑌𝐶)
6540, 9, 64syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐶)
6665necomd 2987 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶𝑌)
6720, 66eqnetrrd 3000 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌)
68 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 ((pInvG‘𝐺)‘𝑅) = ((pInvG‘𝐺)‘𝑅)
691, 2, 3, 4, 41, 5, 12, 68, 13mirinv 28591 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) = 𝑌𝑅 = 𝑌))
7069necon3bid 2976 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌𝑅𝑌))
7167, 70mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑𝑅𝑌)
721, 2, 3, 4, 41, 5, 12, 68, 13mirbtwn 28583 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
7320oveq1d 7418 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶𝐼𝑌) = ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
7472, 73eleqtrrd 2837 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ (𝐶𝐼𝑌))
751, 2, 3, 5, 6, 12, 13, 23, 71, 74, 24tgbtwnouttr2 28420 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝐶𝐼𝑄))
761, 2, 3, 5, 6, 13, 23, 75tgbtwncom 28413 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑄𝐼𝐶))
77 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (cgrG‘𝐺) = (cgrG‘𝐺)
7820oveq2d 7419 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 𝐶) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
7919, 78eqtrd 2770 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
801, 2, 3, 4, 41, 5, 10, 12, 13israg 28622 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌))))
8179, 80mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
821, 2, 3, 5, 12, 13, 23, 24tgbtwncom 28413 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑌 ∈ (𝑄𝐼𝑅))
831, 2, 3, 5, 13, 23, 13, 10, 25tgcgrcomlr 28405 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄 𝑌) = (𝐸 𝑌))
8422eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 𝑅) = (𝑌 𝑍))
851, 2, 3, 5, 23, 10axtgcgrrflx 28387 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄 𝐸) = (𝐸 𝑄))
8625eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 𝐸) = (𝑌 𝑄))
871, 2, 3, 5, 23, 13, 12, 10, 13, 14, 10, 23, 63, 82, 21, 83, 84, 85, 86axtg5seg 28390 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅 𝐸) = (𝑍 𝑄))
881, 2, 3, 5, 12, 10, 14, 23, 87tgcgrcomlr 28405 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 𝑅) = (𝑄 𝑍))
891, 2, 3, 5, 13, 12, 13, 14, 84tgcgrcomlr 28405 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅 𝑌) = (𝑍 𝑌))
901, 2, 77, 5, 10, 12, 13, 23, 14, 13, 88, 89, 86trgcgr 28441 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨“𝐸𝑅𝑌”⟩(cgrG‘𝐺)⟨“𝑄𝑍𝑌”⟩)
911, 2, 3, 4, 41, 5, 10, 12, 13, 77, 23, 14, 13, 81, 90ragcgr 28632 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨“𝑄𝑍𝑌”⟩ ∈ (∟G‘𝐺))
921, 2, 3, 4, 41, 5, 23, 14, 13, 91ragcom 28623 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺))
931, 2, 3, 4, 41, 5, 13, 14, 23israg 28622 . . . . . . . . . . . . . . . . 17 (𝜑 → (⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄))))
9492, 93mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
951, 2, 3, 5, 13, 23, 13, 54, 94tgcgrcomlr 28405 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 𝑌) = ((((pInvG‘𝐺)‘𝑍)‘𝑄) 𝑌))
9627eqcomd 2741 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 𝐶) = (𝑌 𝐷))
971, 2, 3, 4, 41, 5, 14, 53, 23mircgr 28582 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 (((pInvG‘𝐺)‘𝑍)‘𝑄)) = (𝑍 𝑄))
9897eqcomd 2741 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 𝑄) = (𝑍 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
991, 2, 3, 5, 14, 23, 14, 54, 98tgcgrcomlr 28405 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 𝑍) = ((((pInvG‘𝐺)‘𝑍)‘𝑄) 𝑍))
100 eqidd 2736 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 𝑍) = (𝑌 𝑍))
1011, 2, 3, 5, 23, 13, 6, 54, 13, 15, 14, 14, 63, 76, 26, 95, 96, 99, 100axtg5seg 28390 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 𝑍) = (𝐷 𝑍))
1021, 2, 3, 5, 6, 14, 15, 14, 101tgcgrcomlr 28405 . . . . . . . . . . . . 13 (𝜑 → (𝑍 𝐶) = (𝑍 𝐷))
10328oveq2d 7419 . . . . . . . . . . . . 13 (𝜑 → (𝑍 𝐷) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
104102, 103eqtrd 2770 . . . . . . . . . . . 12 (𝜑 → (𝑍 𝐶) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
1051, 2, 3, 4, 41, 5, 14, 7, 6israg 28622 . . . . . . . . . . . 12 (𝜑 → (⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑍 𝐶) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶))))
106104, 105mpbird 257 . . . . . . . . . . 11 (𝜑 → ⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺))
107106adantr 480 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → ⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺))
10871necomd 2987 . . . . . . . . . . . . . 14 (𝜑𝑌𝑅)
1091, 2, 3, 5, 13, 12, 13, 14, 84, 108tgcgrneq 28408 . . . . . . . . . . . . 13 (𝜑𝑌𝑍)
110109necomd 2987 . . . . . . . . . . . 12 (𝜑𝑍𝑌)
111110adantr 480 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑋) → 𝑍𝑌)
112111, 48neeqtrd 3001 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → 𝑍𝑋)
11319eqcomd 2741 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 𝐶) = (𝐸 𝑌))
114113adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑋) → (𝐸 𝐶) = (𝐸 𝑌))
11560adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑋) → 𝐸𝐶)
1161, 2, 3, 42, 43, 46, 43, 44, 114, 115tgcgrneq 28408 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑋) → 𝐸𝑌)
117116necomd 2987 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑋) → 𝑌𝐸)
1181, 2, 3, 5, 10, 6, 10, 13, 113, 60tgcgrneq 28408 . . . . . . . . . . . . . . 15 (𝜑𝐸𝑌)
1191, 3, 4, 5, 10, 13, 14, 118, 21btwnlng3 28546 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝐸𝐿𝑌))
120119adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝐸𝐿𝑌))
1211, 3, 4, 42, 44, 43, 52, 117, 120lncom 28547 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝑌𝐿𝐸))
12248oveq1d 7418 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑋) → (𝑌𝐿𝐸) = (𝑋𝐿𝐸))
123121, 122eleqtrd 2836 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝑋𝐿𝐸))
124123orcd 873 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → (𝑍 ∈ (𝑋𝐿𝐸) ∨ 𝑋 = 𝐸))
1251, 2, 3, 4, 41, 42, 52, 51, 46, 43, 107, 112, 124ragcol 28624 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑋𝐶”⟩ ∈ (∟G‘𝐺))
1261, 2, 3, 4, 41, 42, 43, 51, 46, 125ragcom 28623 . . . . . . . 8 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑋𝐸”⟩ ∈ (∟G‘𝐺))
12750, 126eqeltrd 2834 . . . . . . 7 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑌𝐸”⟩ ∈ (∟G‘𝐺))
12866adantr 480 . . . . . . 7 ((𝜑𝑌 = 𝑋) → 𝐶𝑌)
1291, 2, 3, 5, 6, 12, 13, 74tgbtwncom 28413 . . . . . . . . 9 (𝜑𝑅 ∈ (𝑌𝐼𝐶))
1301, 4, 3, 5, 13, 12, 6, 129btwncolg3 28482 . . . . . . . 8 (𝜑 → (𝐶 ∈ (𝑌𝐿𝑅) ∨ 𝑌 = 𝑅))
131130adantr 480 . . . . . . 7 ((𝜑𝑌 = 𝑋) → (𝐶 ∈ (𝑌𝐿𝑅) ∨ 𝑌 = 𝑅))
1321, 2, 3, 4, 41, 42, 46, 44, 43, 45, 127, 128, 131ragcol 28624 . . . . . 6 ((𝜑𝑌 = 𝑋) → ⟨“𝑅𝑌𝐸”⟩ ∈ (∟G‘𝐺))
1331, 2, 3, 4, 41, 42, 45, 44, 43, 132ragcom 28623 . . . . 5 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑌𝑅”⟩ ∈ (∟G‘𝐺))
13481adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
1351, 2, 3, 4, 41, 42, 43, 44, 45, 133, 134ragflat 28629 . . . 4 ((𝜑𝑌 = 𝑋) → 𝑌 = 𝑅)
136108adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑌𝑅)
137136neneqd 2937 . . . 4 ((𝜑𝑌 = 𝑋) → ¬ 𝑌 = 𝑅)
138135, 137pm2.65da 816 . . 3 (𝜑 → ¬ 𝑌 = 𝑋)
139138neqned 2939 . 2 (𝜑𝑌𝑋)
14028oveq2d 7419 . . . . 5 (𝜑 → (𝑌 𝐷) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
14196, 140eqtrd 2770 . . . 4 (𝜑 → (𝑌 𝐶) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
1421, 2, 3, 4, 41, 5, 13, 7, 6israg 28622 . . . 4 (𝜑 → (⟨“𝑌𝑋𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝐶) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶))))
143141, 142mpbird 257 . . 3 (𝜑 → ⟨“𝑌𝑋𝐶”⟩ ∈ (∟G‘𝐺))
1441, 2, 3, 4, 41, 5, 13, 7, 6, 143ragcom 28623 . 2 (𝜑 → ⟨“𝐶𝑋𝑌”⟩ ∈ (∟G‘𝐺))
1451, 2, 3, 4, 5, 33, 8, 35, 36, 40, 32, 139, 144ragperp 28642 1 (𝜑 → (𝐶𝐿𝑋)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  ran crn 5655  cfv 6530  (class class class)co 7403  ⟨“cs3 14859  Basecbs 17226  distcds 17278  TarskiGcstrkg 28352  Itvcitv 28358  LineGclng 28359  cgrGccgrg 28435  pInvGcmir 28577  ∟Gcrag 28618  ⟂Gcperpg 28620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-hash 14347  df-word 14530  df-concat 14587  df-s1 14612  df-s2 14865  df-s3 14866  df-trkgc 28373  df-trkgb 28374  df-trkgcb 28375  df-trkg 28378  df-cgrg 28436  df-leg 28508  df-mir 28578  df-rag 28619  df-perpg 28621
This theorem is referenced by:  footex  28646
  Copyright terms: Public domain W3C validator