MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footexlem2 Structured version   Visualization version   GIF version

Theorem footexlem2 28664
Description: Lemma for footex 28665. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
footexlem.e (𝜑𝐸𝑃)
footexlem.f (𝜑𝐹𝑃)
footexlem.r (𝜑𝑅𝑃)
footexlem.x (𝜑𝑋𝑃)
footexlem.y (𝜑𝑌𝑃)
footexlem.z (𝜑𝑍𝑃)
footexlem.d (𝜑𝐷𝑃)
footexlem.1 (𝜑𝐴 = (𝐸𝐿𝐹))
footexlem.2 (𝜑𝐸𝐹)
footexlem.3 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
footexlem.4 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
footexlem.5 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
footexlem.6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
footexlem.7 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
footexlem.q (𝜑𝑄𝑃)
footexlem.8 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
footexlem.9 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
footexlem.10 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
footexlem.11 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
footexlem.12 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
Assertion
Ref Expression
footexlem2 (𝜑 → (𝐶𝐿𝑋)(⟂G‘𝐺)𝐴)

Proof of Theorem footexlem2
StepHypRef Expression
1 isperp.p . 2 𝑃 = (Base‘𝐺)
2 isperp.d . 2 = (dist‘𝐺)
3 isperp.i . 2 𝐼 = (Itv‘𝐺)
4 isperp.l . 2 𝐿 = (LineG‘𝐺)
5 isperp.g . 2 (𝜑𝐺 ∈ TarskiG)
6 foot.x . . 3 (𝜑𝐶𝑃)
7 footexlem.x . . 3 (𝜑𝑋𝑃)
8 isperp.a . . . . . 6 (𝜑𝐴 ∈ ran 𝐿)
9 foot.y . . . . . 6 (𝜑 → ¬ 𝐶𝐴)
10 footexlem.e . . . . . 6 (𝜑𝐸𝑃)
11 footexlem.f . . . . . 6 (𝜑𝐹𝑃)
12 footexlem.r . . . . . 6 (𝜑𝑅𝑃)
13 footexlem.y . . . . . 6 (𝜑𝑌𝑃)
14 footexlem.z . . . . . 6 (𝜑𝑍𝑃)
15 footexlem.d . . . . . 6 (𝜑𝐷𝑃)
16 footexlem.1 . . . . . 6 (𝜑𝐴 = (𝐸𝐿𝐹))
17 footexlem.2 . . . . . 6 (𝜑𝐸𝐹)
18 footexlem.3 . . . . . 6 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
19 footexlem.4 . . . . . 6 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
20 footexlem.5 . . . . . 6 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
21 footexlem.6 . . . . . 6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
22 footexlem.7 . . . . . 6 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
23 footexlem.q . . . . . 6 (𝜑𝑄𝑃)
24 footexlem.8 . . . . . 6 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
25 footexlem.9 . . . . . 6 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
26 footexlem.10 . . . . . 6 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
27 footexlem.11 . . . . . 6 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
28 footexlem.12 . . . . . 6 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
291, 2, 3, 4, 5, 8, 6, 9, 10, 11, 12, 7, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28footexlem1 28663 . . . . 5 (𝜑𝑋𝐴)
30 nelne2 3029 . . . . 5 ((𝑋𝐴 ∧ ¬ 𝐶𝐴) → 𝑋𝐶)
3129, 9, 30syl2anc 584 . . . 4 (𝜑𝑋𝐶)
3231necomd 2986 . . 3 (𝜑𝐶𝑋)
331, 3, 4, 5, 6, 7, 32tgelrnln 28574 . 2 (𝜑 → (𝐶𝐿𝑋) ∈ ran 𝐿)
341, 3, 4, 5, 6, 7, 32tglinerflx2 28578 . . 3 (𝜑𝑋 ∈ (𝐶𝐿𝑋))
3534, 29elind 4180 . 2 (𝜑𝑋 ∈ ((𝐶𝐿𝑋) ∩ 𝐴))
361, 3, 4, 5, 6, 7, 32tglinerflx1 28577 . 2 (𝜑𝐶 ∈ (𝐶𝐿𝑋))
3717necomd 2986 . . . . 5 (𝜑𝐹𝐸)
381, 3, 4, 5, 11, 10, 13, 37, 18btwnlng3 28565 . . . 4 (𝜑𝑌 ∈ (𝐹𝐿𝐸))
391, 3, 4, 5, 10, 11, 13, 17, 38lncom 28566 . . 3 (𝜑𝑌 ∈ (𝐸𝐿𝐹))
4039, 16eleqtrrd 2836 . 2 (𝜑𝑌𝐴)
41 eqid 2734 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
425adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝐺 ∈ TarskiG)
4310adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝐸𝑃)
4413adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑌𝑃)
4512adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑅𝑃)
466adantr 480 . . . . . . 7 ((𝜑𝑌 = 𝑋) → 𝐶𝑃)
47 eqidd 2735 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝐶 = 𝐶)
48 simpr 484 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝑌 = 𝑋)
49 eqidd 2735 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝐸 = 𝐸)
5047, 48, 49s3eqd 14885 . . . . . . . 8 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑌𝐸”⟩ = ⟨“𝐶𝑋𝐸”⟩)
517adantr 480 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝑋𝑃)
5214adantr 480 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → 𝑍𝑃)
53 eqid 2734 . . . . . . . . . . . . . . . 16 ((pInvG‘𝐺)‘𝑍) = ((pInvG‘𝐺)‘𝑍)
541, 2, 3, 4, 41, 5, 14, 53, 23mircl 28605 . . . . . . . . . . . . . . 15 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) ∈ 𝑃)
551, 2, 3, 5, 10, 13, 10, 6, 19tgcgrcomlr 28424 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑌 𝐸) = (𝐶 𝐸))
5625, 55eqtr2d 2770 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶 𝐸) = (𝑌 𝑄))
571, 3, 4, 5, 10, 11, 17tglinerflx1 28577 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 ∈ (𝐸𝐿𝐹))
5857, 16eleqtrrd 2836 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸𝐴)
59 nelne2 3029 . . . . . . . . . . . . . . . . . . 19 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → 𝐸𝐶)
6058, 9, 59syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸𝐶)
6160necomd 2986 . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝐸)
621, 2, 3, 5, 6, 10, 13, 23, 56, 61tgcgrneq 28427 . . . . . . . . . . . . . . . 16 (𝜑𝑌𝑄)
6362necomd 2986 . . . . . . . . . . . . . . 15 (𝜑𝑄𝑌)
64 nelne2 3029 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝐴 ∧ ¬ 𝐶𝐴) → 𝑌𝐶)
6540, 9, 64syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐶)
6665necomd 2986 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶𝑌)
6720, 66eqnetrrd 2999 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌)
68 eqid 2734 . . . . . . . . . . . . . . . . . . . 20 ((pInvG‘𝐺)‘𝑅) = ((pInvG‘𝐺)‘𝑅)
691, 2, 3, 4, 41, 5, 12, 68, 13mirinv 28610 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) = 𝑌𝑅 = 𝑌))
7069necon3bid 2975 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌𝑅𝑌))
7167, 70mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑𝑅𝑌)
721, 2, 3, 4, 41, 5, 12, 68, 13mirbtwn 28602 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
7320oveq1d 7428 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶𝐼𝑌) = ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
7472, 73eleqtrrd 2836 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ (𝐶𝐼𝑌))
751, 2, 3, 5, 6, 12, 13, 23, 71, 74, 24tgbtwnouttr2 28439 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝐶𝐼𝑄))
761, 2, 3, 5, 6, 13, 23, 75tgbtwncom 28432 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑄𝐼𝐶))
77 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (cgrG‘𝐺) = (cgrG‘𝐺)
7820oveq2d 7429 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 𝐶) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
7919, 78eqtrd 2769 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
801, 2, 3, 4, 41, 5, 10, 12, 13israg 28641 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌))))
8179, 80mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
821, 2, 3, 5, 12, 13, 23, 24tgbtwncom 28432 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑌 ∈ (𝑄𝐼𝑅))
831, 2, 3, 5, 13, 23, 13, 10, 25tgcgrcomlr 28424 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄 𝑌) = (𝐸 𝑌))
8422eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 𝑅) = (𝑌 𝑍))
851, 2, 3, 5, 23, 10axtgcgrrflx 28406 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄 𝐸) = (𝐸 𝑄))
8625eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 𝐸) = (𝑌 𝑄))
871, 2, 3, 5, 23, 13, 12, 10, 13, 14, 10, 23, 63, 82, 21, 83, 84, 85, 86axtg5seg 28409 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅 𝐸) = (𝑍 𝑄))
881, 2, 3, 5, 12, 10, 14, 23, 87tgcgrcomlr 28424 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 𝑅) = (𝑄 𝑍))
891, 2, 3, 5, 13, 12, 13, 14, 84tgcgrcomlr 28424 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅 𝑌) = (𝑍 𝑌))
901, 2, 77, 5, 10, 12, 13, 23, 14, 13, 88, 89, 86trgcgr 28460 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨“𝐸𝑅𝑌”⟩(cgrG‘𝐺)⟨“𝑄𝑍𝑌”⟩)
911, 2, 3, 4, 41, 5, 10, 12, 13, 77, 23, 14, 13, 81, 90ragcgr 28651 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨“𝑄𝑍𝑌”⟩ ∈ (∟G‘𝐺))
921, 2, 3, 4, 41, 5, 23, 14, 13, 91ragcom 28642 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺))
931, 2, 3, 4, 41, 5, 13, 14, 23israg 28641 . . . . . . . . . . . . . . . . 17 (𝜑 → (⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄))))
9492, 93mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
951, 2, 3, 5, 13, 23, 13, 54, 94tgcgrcomlr 28424 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 𝑌) = ((((pInvG‘𝐺)‘𝑍)‘𝑄) 𝑌))
9627eqcomd 2740 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 𝐶) = (𝑌 𝐷))
971, 2, 3, 4, 41, 5, 14, 53, 23mircgr 28601 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 (((pInvG‘𝐺)‘𝑍)‘𝑄)) = (𝑍 𝑄))
9897eqcomd 2740 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 𝑄) = (𝑍 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
991, 2, 3, 5, 14, 23, 14, 54, 98tgcgrcomlr 28424 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 𝑍) = ((((pInvG‘𝐺)‘𝑍)‘𝑄) 𝑍))
100 eqidd 2735 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 𝑍) = (𝑌 𝑍))
1011, 2, 3, 5, 23, 13, 6, 54, 13, 15, 14, 14, 63, 76, 26, 95, 96, 99, 100axtg5seg 28409 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 𝑍) = (𝐷 𝑍))
1021, 2, 3, 5, 6, 14, 15, 14, 101tgcgrcomlr 28424 . . . . . . . . . . . . 13 (𝜑 → (𝑍 𝐶) = (𝑍 𝐷))
10328oveq2d 7429 . . . . . . . . . . . . 13 (𝜑 → (𝑍 𝐷) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
104102, 103eqtrd 2769 . . . . . . . . . . . 12 (𝜑 → (𝑍 𝐶) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
1051, 2, 3, 4, 41, 5, 14, 7, 6israg 28641 . . . . . . . . . . . 12 (𝜑 → (⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑍 𝐶) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶))))
106104, 105mpbird 257 . . . . . . . . . . 11 (𝜑 → ⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺))
107106adantr 480 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → ⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺))
10871necomd 2986 . . . . . . . . . . . . . 14 (𝜑𝑌𝑅)
1091, 2, 3, 5, 13, 12, 13, 14, 84, 108tgcgrneq 28427 . . . . . . . . . . . . 13 (𝜑𝑌𝑍)
110109necomd 2986 . . . . . . . . . . . 12 (𝜑𝑍𝑌)
111110adantr 480 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑋) → 𝑍𝑌)
112111, 48neeqtrd 3000 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → 𝑍𝑋)
11319eqcomd 2740 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 𝐶) = (𝐸 𝑌))
114113adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑋) → (𝐸 𝐶) = (𝐸 𝑌))
11560adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑋) → 𝐸𝐶)
1161, 2, 3, 42, 43, 46, 43, 44, 114, 115tgcgrneq 28427 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑋) → 𝐸𝑌)
117116necomd 2986 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑋) → 𝑌𝐸)
1181, 2, 3, 5, 10, 6, 10, 13, 113, 60tgcgrneq 28427 . . . . . . . . . . . . . . 15 (𝜑𝐸𝑌)
1191, 3, 4, 5, 10, 13, 14, 118, 21btwnlng3 28565 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝐸𝐿𝑌))
120119adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝐸𝐿𝑌))
1211, 3, 4, 42, 44, 43, 52, 117, 120lncom 28566 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝑌𝐿𝐸))
12248oveq1d 7428 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑋) → (𝑌𝐿𝐸) = (𝑋𝐿𝐸))
123121, 122eleqtrd 2835 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝑋𝐿𝐸))
124123orcd 873 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → (𝑍 ∈ (𝑋𝐿𝐸) ∨ 𝑋 = 𝐸))
1251, 2, 3, 4, 41, 42, 52, 51, 46, 43, 107, 112, 124ragcol 28643 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑋𝐶”⟩ ∈ (∟G‘𝐺))
1261, 2, 3, 4, 41, 42, 43, 51, 46, 125ragcom 28642 . . . . . . . 8 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑋𝐸”⟩ ∈ (∟G‘𝐺))
12750, 126eqeltrd 2833 . . . . . . 7 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑌𝐸”⟩ ∈ (∟G‘𝐺))
12866adantr 480 . . . . . . 7 ((𝜑𝑌 = 𝑋) → 𝐶𝑌)
1291, 2, 3, 5, 6, 12, 13, 74tgbtwncom 28432 . . . . . . . . 9 (𝜑𝑅 ∈ (𝑌𝐼𝐶))
1301, 4, 3, 5, 13, 12, 6, 129btwncolg3 28501 . . . . . . . 8 (𝜑 → (𝐶 ∈ (𝑌𝐿𝑅) ∨ 𝑌 = 𝑅))
131130adantr 480 . . . . . . 7 ((𝜑𝑌 = 𝑋) → (𝐶 ∈ (𝑌𝐿𝑅) ∨ 𝑌 = 𝑅))
1321, 2, 3, 4, 41, 42, 46, 44, 43, 45, 127, 128, 131ragcol 28643 . . . . . 6 ((𝜑𝑌 = 𝑋) → ⟨“𝑅𝑌𝐸”⟩ ∈ (∟G‘𝐺))
1331, 2, 3, 4, 41, 42, 45, 44, 43, 132ragcom 28642 . . . . 5 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑌𝑅”⟩ ∈ (∟G‘𝐺))
13481adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
1351, 2, 3, 4, 41, 42, 43, 44, 45, 133, 134ragflat 28648 . . . 4 ((𝜑𝑌 = 𝑋) → 𝑌 = 𝑅)
136108adantr 480 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑌𝑅)
137136neneqd 2936 . . . 4 ((𝜑𝑌 = 𝑋) → ¬ 𝑌 = 𝑅)
138135, 137pm2.65da 816 . . 3 (𝜑 → ¬ 𝑌 = 𝑋)
139138neqned 2938 . 2 (𝜑𝑌𝑋)
14028oveq2d 7429 . . . . 5 (𝜑 → (𝑌 𝐷) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
14196, 140eqtrd 2769 . . . 4 (𝜑 → (𝑌 𝐶) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
1421, 2, 3, 4, 41, 5, 13, 7, 6israg 28641 . . . 4 (𝜑 → (⟨“𝑌𝑋𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝐶) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶))))
143141, 142mpbird 257 . . 3 (𝜑 → ⟨“𝑌𝑋𝐶”⟩ ∈ (∟G‘𝐺))
1441, 2, 3, 4, 41, 5, 13, 7, 6, 143ragcom 28642 . 2 (𝜑 → ⟨“𝐶𝑋𝑌”⟩ ∈ (∟G‘𝐺))
1451, 2, 3, 4, 5, 33, 8, 35, 36, 40, 32, 139, 144ragperp 28661 1 (𝜑 → (𝐶𝐿𝑋)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  ran crn 5666  cfv 6541  (class class class)co 7413  ⟨“cs3 14863  Basecbs 17229  distcds 17282  TarskiGcstrkg 28371  Itvcitv 28377  LineGclng 28378  cgrGccgrg 28454  pInvGcmir 28596  ∟Gcrag 28637  ⟂Gcperpg 28639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677  df-hash 14352  df-word 14535  df-concat 14591  df-s1 14616  df-s2 14869  df-s3 14870  df-trkgc 28392  df-trkgb 28393  df-trkgcb 28394  df-trkg 28397  df-cgrg 28455  df-leg 28527  df-mir 28597  df-rag 28638  df-perpg 28640
This theorem is referenced by:  footex  28665
  Copyright terms: Public domain W3C validator