MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footexlem2 Structured version   Visualization version   GIF version

Theorem footexlem2 27662
Description: Lemma for footex 27663. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
footexlem.e (𝜑𝐸𝑃)
footexlem.f (𝜑𝐹𝑃)
footexlem.r (𝜑𝑅𝑃)
footexlem.x (𝜑𝑋𝑃)
footexlem.y (𝜑𝑌𝑃)
footexlem.z (𝜑𝑍𝑃)
footexlem.d (𝜑𝐷𝑃)
footexlem.1 (𝜑𝐴 = (𝐸𝐿𝐹))
footexlem.2 (𝜑𝐸𝐹)
footexlem.3 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
footexlem.4 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
footexlem.5 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
footexlem.6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
footexlem.7 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
footexlem.q (𝜑𝑄𝑃)
footexlem.8 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
footexlem.9 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
footexlem.10 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
footexlem.11 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
footexlem.12 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
Assertion
Ref Expression
footexlem2 (𝜑 → (𝐶𝐿𝑋)(⟂G‘𝐺)𝐴)

Proof of Theorem footexlem2
StepHypRef Expression
1 isperp.p . 2 𝑃 = (Base‘𝐺)
2 isperp.d . 2 = (dist‘𝐺)
3 isperp.i . 2 𝐼 = (Itv‘𝐺)
4 isperp.l . 2 𝐿 = (LineG‘𝐺)
5 isperp.g . 2 (𝜑𝐺 ∈ TarskiG)
6 foot.x . . 3 (𝜑𝐶𝑃)
7 footexlem.x . . 3 (𝜑𝑋𝑃)
8 isperp.a . . . . . 6 (𝜑𝐴 ∈ ran 𝐿)
9 foot.y . . . . . 6 (𝜑 → ¬ 𝐶𝐴)
10 footexlem.e . . . . . 6 (𝜑𝐸𝑃)
11 footexlem.f . . . . . 6 (𝜑𝐹𝑃)
12 footexlem.r . . . . . 6 (𝜑𝑅𝑃)
13 footexlem.y . . . . . 6 (𝜑𝑌𝑃)
14 footexlem.z . . . . . 6 (𝜑𝑍𝑃)
15 footexlem.d . . . . . 6 (𝜑𝐷𝑃)
16 footexlem.1 . . . . . 6 (𝜑𝐴 = (𝐸𝐿𝐹))
17 footexlem.2 . . . . . 6 (𝜑𝐸𝐹)
18 footexlem.3 . . . . . 6 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
19 footexlem.4 . . . . . 6 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
20 footexlem.5 . . . . . 6 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
21 footexlem.6 . . . . . 6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
22 footexlem.7 . . . . . 6 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
23 footexlem.q . . . . . 6 (𝜑𝑄𝑃)
24 footexlem.8 . . . . . 6 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
25 footexlem.9 . . . . . 6 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
26 footexlem.10 . . . . . 6 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
27 footexlem.11 . . . . . 6 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
28 footexlem.12 . . . . . 6 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
291, 2, 3, 4, 5, 8, 6, 9, 10, 11, 12, 7, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28footexlem1 27661 . . . . 5 (𝜑𝑋𝐴)
30 nelne2 3042 . . . . 5 ((𝑋𝐴 ∧ ¬ 𝐶𝐴) → 𝑋𝐶)
3129, 9, 30syl2anc 584 . . . 4 (𝜑𝑋𝐶)
3231necomd 2999 . . 3 (𝜑𝐶𝑋)
331, 3, 4, 5, 6, 7, 32tgelrnln 27572 . 2 (𝜑 → (𝐶𝐿𝑋) ∈ ran 𝐿)
341, 3, 4, 5, 6, 7, 32tglinerflx2 27576 . . 3 (𝜑𝑋 ∈ (𝐶𝐿𝑋))
3534, 29elind 4154 . 2 (𝜑𝑋 ∈ ((𝐶𝐿𝑋) ∩ 𝐴))
361, 3, 4, 5, 6, 7, 32tglinerflx1 27575 . 2 (𝜑𝐶 ∈ (𝐶𝐿𝑋))
3717necomd 2999 . . . . 5 (𝜑𝐹𝐸)
381, 3, 4, 5, 11, 10, 13, 37, 18btwnlng3 27563 . . . 4 (𝜑𝑌 ∈ (𝐹𝐿𝐸))
391, 3, 4, 5, 10, 11, 13, 17, 38lncom 27564 . . 3 (𝜑𝑌 ∈ (𝐸𝐿𝐹))
4039, 16eleqtrrd 2841 . 2 (𝜑𝑌𝐴)
41 eqid 2736 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
425adantr 481 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝐺 ∈ TarskiG)
4310adantr 481 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝐸𝑃)
4413adantr 481 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑌𝑃)
4512adantr 481 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑅𝑃)
466adantr 481 . . . . . . 7 ((𝜑𝑌 = 𝑋) → 𝐶𝑃)
47 eqidd 2737 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝐶 = 𝐶)
48 simpr 485 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝑌 = 𝑋)
49 eqidd 2737 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝐸 = 𝐸)
5047, 48, 49s3eqd 14753 . . . . . . . 8 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑌𝐸”⟩ = ⟨“𝐶𝑋𝐸”⟩)
517adantr 481 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝑋𝑃)
5214adantr 481 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → 𝑍𝑃)
53 eqid 2736 . . . . . . . . . . . . . . . 16 ((pInvG‘𝐺)‘𝑍) = ((pInvG‘𝐺)‘𝑍)
541, 2, 3, 4, 41, 5, 14, 53, 23mircl 27603 . . . . . . . . . . . . . . 15 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) ∈ 𝑃)
551, 2, 3, 5, 10, 13, 10, 6, 19tgcgrcomlr 27422 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑌 𝐸) = (𝐶 𝐸))
5625, 55eqtr2d 2777 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶 𝐸) = (𝑌 𝑄))
571, 3, 4, 5, 10, 11, 17tglinerflx1 27575 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 ∈ (𝐸𝐿𝐹))
5857, 16eleqtrrd 2841 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸𝐴)
59 nelne2 3042 . . . . . . . . . . . . . . . . . . 19 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → 𝐸𝐶)
6058, 9, 59syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸𝐶)
6160necomd 2999 . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝐸)
621, 2, 3, 5, 6, 10, 13, 23, 56, 61tgcgrneq 27425 . . . . . . . . . . . . . . . 16 (𝜑𝑌𝑄)
6362necomd 2999 . . . . . . . . . . . . . . 15 (𝜑𝑄𝑌)
64 nelne2 3042 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝐴 ∧ ¬ 𝐶𝐴) → 𝑌𝐶)
6540, 9, 64syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐶)
6665necomd 2999 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶𝑌)
6720, 66eqnetrrd 3012 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌)
68 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 ((pInvG‘𝐺)‘𝑅) = ((pInvG‘𝐺)‘𝑅)
691, 2, 3, 4, 41, 5, 12, 68, 13mirinv 27608 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) = 𝑌𝑅 = 𝑌))
7069necon3bid 2988 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌𝑅𝑌))
7167, 70mpbid 231 . . . . . . . . . . . . . . . . 17 (𝜑𝑅𝑌)
721, 2, 3, 4, 41, 5, 12, 68, 13mirbtwn 27600 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
7320oveq1d 7372 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶𝐼𝑌) = ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
7472, 73eleqtrrd 2841 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ (𝐶𝐼𝑌))
751, 2, 3, 5, 6, 12, 13, 23, 71, 74, 24tgbtwnouttr2 27437 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝐶𝐼𝑄))
761, 2, 3, 5, 6, 13, 23, 75tgbtwncom 27430 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑄𝐼𝐶))
77 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (cgrG‘𝐺) = (cgrG‘𝐺)
7820oveq2d 7373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 𝐶) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
7919, 78eqtrd 2776 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
801, 2, 3, 4, 41, 5, 10, 12, 13israg 27639 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌))))
8179, 80mpbird 256 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
821, 2, 3, 5, 12, 13, 23, 24tgbtwncom 27430 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑌 ∈ (𝑄𝐼𝑅))
831, 2, 3, 5, 13, 23, 13, 10, 25tgcgrcomlr 27422 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄 𝑌) = (𝐸 𝑌))
8422eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 𝑅) = (𝑌 𝑍))
851, 2, 3, 5, 23, 10axtgcgrrflx 27404 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄 𝐸) = (𝐸 𝑄))
8625eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 𝐸) = (𝑌 𝑄))
871, 2, 3, 5, 23, 13, 12, 10, 13, 14, 10, 23, 63, 82, 21, 83, 84, 85, 86axtg5seg 27407 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅 𝐸) = (𝑍 𝑄))
881, 2, 3, 5, 12, 10, 14, 23, 87tgcgrcomlr 27422 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 𝑅) = (𝑄 𝑍))
891, 2, 3, 5, 13, 12, 13, 14, 84tgcgrcomlr 27422 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅 𝑌) = (𝑍 𝑌))
901, 2, 77, 5, 10, 12, 13, 23, 14, 13, 88, 89, 86trgcgr 27458 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨“𝐸𝑅𝑌”⟩(cgrG‘𝐺)⟨“𝑄𝑍𝑌”⟩)
911, 2, 3, 4, 41, 5, 10, 12, 13, 77, 23, 14, 13, 81, 90ragcgr 27649 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨“𝑄𝑍𝑌”⟩ ∈ (∟G‘𝐺))
921, 2, 3, 4, 41, 5, 23, 14, 13, 91ragcom 27640 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺))
931, 2, 3, 4, 41, 5, 13, 14, 23israg 27639 . . . . . . . . . . . . . . . . 17 (𝜑 → (⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄))))
9492, 93mpbid 231 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
951, 2, 3, 5, 13, 23, 13, 54, 94tgcgrcomlr 27422 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 𝑌) = ((((pInvG‘𝐺)‘𝑍)‘𝑄) 𝑌))
9627eqcomd 2742 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 𝐶) = (𝑌 𝐷))
971, 2, 3, 4, 41, 5, 14, 53, 23mircgr 27599 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 (((pInvG‘𝐺)‘𝑍)‘𝑄)) = (𝑍 𝑄))
9897eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 𝑄) = (𝑍 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
991, 2, 3, 5, 14, 23, 14, 54, 98tgcgrcomlr 27422 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 𝑍) = ((((pInvG‘𝐺)‘𝑍)‘𝑄) 𝑍))
100 eqidd 2737 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 𝑍) = (𝑌 𝑍))
1011, 2, 3, 5, 23, 13, 6, 54, 13, 15, 14, 14, 63, 76, 26, 95, 96, 99, 100axtg5seg 27407 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 𝑍) = (𝐷 𝑍))
1021, 2, 3, 5, 6, 14, 15, 14, 101tgcgrcomlr 27422 . . . . . . . . . . . . 13 (𝜑 → (𝑍 𝐶) = (𝑍 𝐷))
10328oveq2d 7373 . . . . . . . . . . . . 13 (𝜑 → (𝑍 𝐷) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
104102, 103eqtrd 2776 . . . . . . . . . . . 12 (𝜑 → (𝑍 𝐶) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
1051, 2, 3, 4, 41, 5, 14, 7, 6israg 27639 . . . . . . . . . . . 12 (𝜑 → (⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑍 𝐶) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶))))
106104, 105mpbird 256 . . . . . . . . . . 11 (𝜑 → ⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺))
107106adantr 481 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → ⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺))
10871necomd 2999 . . . . . . . . . . . . . 14 (𝜑𝑌𝑅)
1091, 2, 3, 5, 13, 12, 13, 14, 84, 108tgcgrneq 27425 . . . . . . . . . . . . 13 (𝜑𝑌𝑍)
110109necomd 2999 . . . . . . . . . . . 12 (𝜑𝑍𝑌)
111110adantr 481 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑋) → 𝑍𝑌)
112111, 48neeqtrd 3013 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → 𝑍𝑋)
11319eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 𝐶) = (𝐸 𝑌))
114113adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑋) → (𝐸 𝐶) = (𝐸 𝑌))
11560adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑋) → 𝐸𝐶)
1161, 2, 3, 42, 43, 46, 43, 44, 114, 115tgcgrneq 27425 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑋) → 𝐸𝑌)
117116necomd 2999 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑋) → 𝑌𝐸)
1181, 2, 3, 5, 10, 6, 10, 13, 113, 60tgcgrneq 27425 . . . . . . . . . . . . . . 15 (𝜑𝐸𝑌)
1191, 3, 4, 5, 10, 13, 14, 118, 21btwnlng3 27563 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝐸𝐿𝑌))
120119adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝐸𝐿𝑌))
1211, 3, 4, 42, 44, 43, 52, 117, 120lncom 27564 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝑌𝐿𝐸))
12248oveq1d 7372 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑋) → (𝑌𝐿𝐸) = (𝑋𝐿𝐸))
123121, 122eleqtrd 2840 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝑋𝐿𝐸))
124123orcd 871 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → (𝑍 ∈ (𝑋𝐿𝐸) ∨ 𝑋 = 𝐸))
1251, 2, 3, 4, 41, 42, 52, 51, 46, 43, 107, 112, 124ragcol 27641 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑋𝐶”⟩ ∈ (∟G‘𝐺))
1261, 2, 3, 4, 41, 42, 43, 51, 46, 125ragcom 27640 . . . . . . . 8 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑋𝐸”⟩ ∈ (∟G‘𝐺))
12750, 126eqeltrd 2838 . . . . . . 7 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑌𝐸”⟩ ∈ (∟G‘𝐺))
12866adantr 481 . . . . . . 7 ((𝜑𝑌 = 𝑋) → 𝐶𝑌)
1291, 2, 3, 5, 6, 12, 13, 74tgbtwncom 27430 . . . . . . . . 9 (𝜑𝑅 ∈ (𝑌𝐼𝐶))
1301, 4, 3, 5, 13, 12, 6, 129btwncolg3 27499 . . . . . . . 8 (𝜑 → (𝐶 ∈ (𝑌𝐿𝑅) ∨ 𝑌 = 𝑅))
131130adantr 481 . . . . . . 7 ((𝜑𝑌 = 𝑋) → (𝐶 ∈ (𝑌𝐿𝑅) ∨ 𝑌 = 𝑅))
1321, 2, 3, 4, 41, 42, 46, 44, 43, 45, 127, 128, 131ragcol 27641 . . . . . 6 ((𝜑𝑌 = 𝑋) → ⟨“𝑅𝑌𝐸”⟩ ∈ (∟G‘𝐺))
1331, 2, 3, 4, 41, 42, 45, 44, 43, 132ragcom 27640 . . . . 5 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑌𝑅”⟩ ∈ (∟G‘𝐺))
13481adantr 481 . . . . 5 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
1351, 2, 3, 4, 41, 42, 43, 44, 45, 133, 134ragflat 27646 . . . 4 ((𝜑𝑌 = 𝑋) → 𝑌 = 𝑅)
136108adantr 481 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑌𝑅)
137136neneqd 2948 . . . 4 ((𝜑𝑌 = 𝑋) → ¬ 𝑌 = 𝑅)
138135, 137pm2.65da 815 . . 3 (𝜑 → ¬ 𝑌 = 𝑋)
139138neqned 2950 . 2 (𝜑𝑌𝑋)
14028oveq2d 7373 . . . . 5 (𝜑 → (𝑌 𝐷) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
14196, 140eqtrd 2776 . . . 4 (𝜑 → (𝑌 𝐶) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
1421, 2, 3, 4, 41, 5, 13, 7, 6israg 27639 . . . 4 (𝜑 → (⟨“𝑌𝑋𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝐶) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶))))
143141, 142mpbird 256 . . 3 (𝜑 → ⟨“𝑌𝑋𝐶”⟩ ∈ (∟G‘𝐺))
1441, 2, 3, 4, 41, 5, 13, 7, 6, 143ragcom 27640 . 2 (𝜑 → ⟨“𝐶𝑋𝑌”⟩ ∈ (∟G‘𝐺))
1451, 2, 3, 4, 5, 33, 8, 35, 36, 40, 32, 139, 144ragperp 27659 1 (𝜑 → (𝐶𝐿𝑋)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  ran crn 5634  cfv 6496  (class class class)co 7357  ⟨“cs3 14731  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  Itvcitv 27375  LineGclng 27376  cgrGccgrg 27452  pInvGcmir 27594  ∟Gcrag 27635  ⟂Gcperpg 27637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkg 27395  df-cgrg 27453  df-leg 27525  df-mir 27595  df-rag 27636  df-perpg 27638
This theorem is referenced by:  footex  27663
  Copyright terms: Public domain W3C validator