MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footexlem2 Structured version   Visualization version   GIF version

Theorem footexlem2 26811
Description: Lemma for footex 26812. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
footexlem.e (𝜑𝐸𝑃)
footexlem.f (𝜑𝐹𝑃)
footexlem.r (𝜑𝑅𝑃)
footexlem.x (𝜑𝑋𝑃)
footexlem.y (𝜑𝑌𝑃)
footexlem.z (𝜑𝑍𝑃)
footexlem.d (𝜑𝐷𝑃)
footexlem.1 (𝜑𝐴 = (𝐸𝐿𝐹))
footexlem.2 (𝜑𝐸𝐹)
footexlem.3 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
footexlem.4 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
footexlem.5 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
footexlem.6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
footexlem.7 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
footexlem.q (𝜑𝑄𝑃)
footexlem.8 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
footexlem.9 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
footexlem.10 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
footexlem.11 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
footexlem.12 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
Assertion
Ref Expression
footexlem2 (𝜑 → (𝐶𝐿𝑋)(⟂G‘𝐺)𝐴)

Proof of Theorem footexlem2
StepHypRef Expression
1 isperp.p . 2 𝑃 = (Base‘𝐺)
2 isperp.d . 2 = (dist‘𝐺)
3 isperp.i . 2 𝐼 = (Itv‘𝐺)
4 isperp.l . 2 𝐿 = (LineG‘𝐺)
5 isperp.g . 2 (𝜑𝐺 ∈ TarskiG)
6 foot.x . . 3 (𝜑𝐶𝑃)
7 footexlem.x . . 3 (𝜑𝑋𝑃)
8 isperp.a . . . . . 6 (𝜑𝐴 ∈ ran 𝐿)
9 foot.y . . . . . 6 (𝜑 → ¬ 𝐶𝐴)
10 footexlem.e . . . . . 6 (𝜑𝐸𝑃)
11 footexlem.f . . . . . 6 (𝜑𝐹𝑃)
12 footexlem.r . . . . . 6 (𝜑𝑅𝑃)
13 footexlem.y . . . . . 6 (𝜑𝑌𝑃)
14 footexlem.z . . . . . 6 (𝜑𝑍𝑃)
15 footexlem.d . . . . . 6 (𝜑𝐷𝑃)
16 footexlem.1 . . . . . 6 (𝜑𝐴 = (𝐸𝐿𝐹))
17 footexlem.2 . . . . . 6 (𝜑𝐸𝐹)
18 footexlem.3 . . . . . 6 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
19 footexlem.4 . . . . . 6 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
20 footexlem.5 . . . . . 6 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
21 footexlem.6 . . . . . 6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
22 footexlem.7 . . . . . 6 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
23 footexlem.q . . . . . 6 (𝜑𝑄𝑃)
24 footexlem.8 . . . . . 6 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
25 footexlem.9 . . . . . 6 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
26 footexlem.10 . . . . . 6 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
27 footexlem.11 . . . . . 6 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
28 footexlem.12 . . . . . 6 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
291, 2, 3, 4, 5, 8, 6, 9, 10, 11, 12, 7, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28footexlem1 26810 . . . . 5 (𝜑𝑋𝐴)
30 nelne2 3039 . . . . 5 ((𝑋𝐴 ∧ ¬ 𝐶𝐴) → 𝑋𝐶)
3129, 9, 30syl2anc 587 . . . 4 (𝜑𝑋𝐶)
3231necomd 2996 . . 3 (𝜑𝐶𝑋)
331, 3, 4, 5, 6, 7, 32tgelrnln 26721 . 2 (𝜑 → (𝐶𝐿𝑋) ∈ ran 𝐿)
341, 3, 4, 5, 6, 7, 32tglinerflx2 26725 . . 3 (𝜑𝑋 ∈ (𝐶𝐿𝑋))
3534, 29elind 4108 . 2 (𝜑𝑋 ∈ ((𝐶𝐿𝑋) ∩ 𝐴))
361, 3, 4, 5, 6, 7, 32tglinerflx1 26724 . 2 (𝜑𝐶 ∈ (𝐶𝐿𝑋))
3717necomd 2996 . . . . 5 (𝜑𝐹𝐸)
381, 3, 4, 5, 11, 10, 13, 37, 18btwnlng3 26712 . . . 4 (𝜑𝑌 ∈ (𝐹𝐿𝐸))
391, 3, 4, 5, 10, 11, 13, 17, 38lncom 26713 . . 3 (𝜑𝑌 ∈ (𝐸𝐿𝐹))
4039, 16eleqtrrd 2841 . 2 (𝜑𝑌𝐴)
41 eqid 2737 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
425adantr 484 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝐺 ∈ TarskiG)
4310adantr 484 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝐸𝑃)
4413adantr 484 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑌𝑃)
4512adantr 484 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑅𝑃)
466adantr 484 . . . . . . 7 ((𝜑𝑌 = 𝑋) → 𝐶𝑃)
47 eqidd 2738 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝐶 = 𝐶)
48 simpr 488 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝑌 = 𝑋)
49 eqidd 2738 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝐸 = 𝐸)
5047, 48, 49s3eqd 14429 . . . . . . . 8 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑌𝐸”⟩ = ⟨“𝐶𝑋𝐸”⟩)
517adantr 484 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → 𝑋𝑃)
5214adantr 484 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → 𝑍𝑃)
53 eqid 2737 . . . . . . . . . . . . . . . 16 ((pInvG‘𝐺)‘𝑍) = ((pInvG‘𝐺)‘𝑍)
541, 2, 3, 4, 41, 5, 14, 53, 23mircl 26752 . . . . . . . . . . . . . . 15 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) ∈ 𝑃)
551, 2, 3, 5, 10, 13, 10, 6, 19tgcgrcomlr 26571 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑌 𝐸) = (𝐶 𝐸))
5625, 55eqtr2d 2778 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶 𝐸) = (𝑌 𝑄))
571, 3, 4, 5, 10, 11, 17tglinerflx1 26724 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 ∈ (𝐸𝐿𝐹))
5857, 16eleqtrrd 2841 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸𝐴)
59 nelne2 3039 . . . . . . . . . . . . . . . . . . 19 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → 𝐸𝐶)
6058, 9, 59syl2anc 587 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸𝐶)
6160necomd 2996 . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝐸)
621, 2, 3, 5, 6, 10, 13, 23, 56, 61tgcgrneq 26574 . . . . . . . . . . . . . . . 16 (𝜑𝑌𝑄)
6362necomd 2996 . . . . . . . . . . . . . . 15 (𝜑𝑄𝑌)
64 nelne2 3039 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝐴 ∧ ¬ 𝐶𝐴) → 𝑌𝐶)
6540, 9, 64syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐶)
6665necomd 2996 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶𝑌)
6720, 66eqnetrrd 3009 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌)
68 eqid 2737 . . . . . . . . . . . . . . . . . . . 20 ((pInvG‘𝐺)‘𝑅) = ((pInvG‘𝐺)‘𝑅)
691, 2, 3, 4, 41, 5, 12, 68, 13mirinv 26757 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) = 𝑌𝑅 = 𝑌))
7069necon3bid 2985 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌𝑅𝑌))
7167, 70mpbid 235 . . . . . . . . . . . . . . . . 17 (𝜑𝑅𝑌)
721, 2, 3, 4, 41, 5, 12, 68, 13mirbtwn 26749 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
7320oveq1d 7228 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶𝐼𝑌) = ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
7472, 73eleqtrrd 2841 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ (𝐶𝐼𝑌))
751, 2, 3, 5, 6, 12, 13, 23, 71, 74, 24tgbtwnouttr2 26586 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝐶𝐼𝑄))
761, 2, 3, 5, 6, 13, 23, 75tgbtwncom 26579 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑄𝐼𝐶))
77 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (cgrG‘𝐺) = (cgrG‘𝐺)
7820oveq2d 7229 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 𝐶) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
7919, 78eqtrd 2777 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
801, 2, 3, 4, 41, 5, 10, 12, 13israg 26788 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌))))
8179, 80mpbird 260 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
821, 2, 3, 5, 12, 13, 23, 24tgbtwncom 26579 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑌 ∈ (𝑄𝐼𝑅))
831, 2, 3, 5, 13, 23, 13, 10, 25tgcgrcomlr 26571 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄 𝑌) = (𝐸 𝑌))
8422eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 𝑅) = (𝑌 𝑍))
851, 2, 3, 5, 23, 10axtgcgrrflx 26553 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄 𝐸) = (𝐸 𝑄))
8625eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 𝐸) = (𝑌 𝑄))
871, 2, 3, 5, 23, 13, 12, 10, 13, 14, 10, 23, 63, 82, 21, 83, 84, 85, 86axtg5seg 26556 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅 𝐸) = (𝑍 𝑄))
881, 2, 3, 5, 12, 10, 14, 23, 87tgcgrcomlr 26571 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 𝑅) = (𝑄 𝑍))
891, 2, 3, 5, 13, 12, 13, 14, 84tgcgrcomlr 26571 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑅 𝑌) = (𝑍 𝑌))
901, 2, 77, 5, 10, 12, 13, 23, 14, 13, 88, 89, 86trgcgr 26607 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ⟨“𝐸𝑅𝑌”⟩(cgrG‘𝐺)⟨“𝑄𝑍𝑌”⟩)
911, 2, 3, 4, 41, 5, 10, 12, 13, 77, 23, 14, 13, 81, 90ragcgr 26798 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨“𝑄𝑍𝑌”⟩ ∈ (∟G‘𝐺))
921, 2, 3, 4, 41, 5, 23, 14, 13, 91ragcom 26789 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺))
931, 2, 3, 4, 41, 5, 13, 14, 23israg 26788 . . . . . . . . . . . . . . . . 17 (𝜑 → (⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄))))
9492, 93mpbid 235 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
951, 2, 3, 5, 13, 23, 13, 54, 94tgcgrcomlr 26571 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 𝑌) = ((((pInvG‘𝐺)‘𝑍)‘𝑄) 𝑌))
9627eqcomd 2743 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 𝐶) = (𝑌 𝐷))
971, 2, 3, 4, 41, 5, 14, 53, 23mircgr 26748 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 (((pInvG‘𝐺)‘𝑍)‘𝑄)) = (𝑍 𝑄))
9897eqcomd 2743 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 𝑄) = (𝑍 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
991, 2, 3, 5, 14, 23, 14, 54, 98tgcgrcomlr 26571 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 𝑍) = ((((pInvG‘𝐺)‘𝑍)‘𝑄) 𝑍))
100 eqidd 2738 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 𝑍) = (𝑌 𝑍))
1011, 2, 3, 5, 23, 13, 6, 54, 13, 15, 14, 14, 63, 76, 26, 95, 96, 99, 100axtg5seg 26556 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 𝑍) = (𝐷 𝑍))
1021, 2, 3, 5, 6, 14, 15, 14, 101tgcgrcomlr 26571 . . . . . . . . . . . . 13 (𝜑 → (𝑍 𝐶) = (𝑍 𝐷))
10328oveq2d 7229 . . . . . . . . . . . . 13 (𝜑 → (𝑍 𝐷) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
104102, 103eqtrd 2777 . . . . . . . . . . . 12 (𝜑 → (𝑍 𝐶) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
1051, 2, 3, 4, 41, 5, 14, 7, 6israg 26788 . . . . . . . . . . . 12 (𝜑 → (⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑍 𝐶) = (𝑍 (((pInvG‘𝐺)‘𝑋)‘𝐶))))
106104, 105mpbird 260 . . . . . . . . . . 11 (𝜑 → ⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺))
107106adantr 484 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → ⟨“𝑍𝑋𝐶”⟩ ∈ (∟G‘𝐺))
10871necomd 2996 . . . . . . . . . . . . . 14 (𝜑𝑌𝑅)
1091, 2, 3, 5, 13, 12, 13, 14, 84, 108tgcgrneq 26574 . . . . . . . . . . . . 13 (𝜑𝑌𝑍)
110109necomd 2996 . . . . . . . . . . . 12 (𝜑𝑍𝑌)
111110adantr 484 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑋) → 𝑍𝑌)
112111, 48neeqtrd 3010 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → 𝑍𝑋)
11319eqcomd 2743 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 𝐶) = (𝐸 𝑌))
114113adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑋) → (𝐸 𝐶) = (𝐸 𝑌))
11560adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑋) → 𝐸𝐶)
1161, 2, 3, 42, 43, 46, 43, 44, 114, 115tgcgrneq 26574 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑋) → 𝐸𝑌)
117116necomd 2996 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑋) → 𝑌𝐸)
1181, 2, 3, 5, 10, 6, 10, 13, 113, 60tgcgrneq 26574 . . . . . . . . . . . . . . 15 (𝜑𝐸𝑌)
1191, 3, 4, 5, 10, 13, 14, 118, 21btwnlng3 26712 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝐸𝐿𝑌))
120119adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝐸𝐿𝑌))
1211, 3, 4, 42, 44, 43, 52, 117, 120lncom 26713 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝑌𝐿𝐸))
12248oveq1d 7228 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑋) → (𝑌𝐿𝐸) = (𝑋𝐿𝐸))
123121, 122eleqtrd 2840 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑋) → 𝑍 ∈ (𝑋𝐿𝐸))
124123orcd 873 . . . . . . . . . 10 ((𝜑𝑌 = 𝑋) → (𝑍 ∈ (𝑋𝐿𝐸) ∨ 𝑋 = 𝐸))
1251, 2, 3, 4, 41, 42, 52, 51, 46, 43, 107, 112, 124ragcol 26790 . . . . . . . . 9 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑋𝐶”⟩ ∈ (∟G‘𝐺))
1261, 2, 3, 4, 41, 42, 43, 51, 46, 125ragcom 26789 . . . . . . . 8 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑋𝐸”⟩ ∈ (∟G‘𝐺))
12750, 126eqeltrd 2838 . . . . . . 7 ((𝜑𝑌 = 𝑋) → ⟨“𝐶𝑌𝐸”⟩ ∈ (∟G‘𝐺))
12866adantr 484 . . . . . . 7 ((𝜑𝑌 = 𝑋) → 𝐶𝑌)
1291, 2, 3, 5, 6, 12, 13, 74tgbtwncom 26579 . . . . . . . . 9 (𝜑𝑅 ∈ (𝑌𝐼𝐶))
1301, 4, 3, 5, 13, 12, 6, 129btwncolg3 26648 . . . . . . . 8 (𝜑 → (𝐶 ∈ (𝑌𝐿𝑅) ∨ 𝑌 = 𝑅))
131130adantr 484 . . . . . . 7 ((𝜑𝑌 = 𝑋) → (𝐶 ∈ (𝑌𝐿𝑅) ∨ 𝑌 = 𝑅))
1321, 2, 3, 4, 41, 42, 46, 44, 43, 45, 127, 128, 131ragcol 26790 . . . . . 6 ((𝜑𝑌 = 𝑋) → ⟨“𝑅𝑌𝐸”⟩ ∈ (∟G‘𝐺))
1331, 2, 3, 4, 41, 42, 45, 44, 43, 132ragcom 26789 . . . . 5 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑌𝑅”⟩ ∈ (∟G‘𝐺))
13481adantr 484 . . . . 5 ((𝜑𝑌 = 𝑋) → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
1351, 2, 3, 4, 41, 42, 43, 44, 45, 133, 134ragflat 26795 . . . 4 ((𝜑𝑌 = 𝑋) → 𝑌 = 𝑅)
136108adantr 484 . . . . 5 ((𝜑𝑌 = 𝑋) → 𝑌𝑅)
137136neneqd 2945 . . . 4 ((𝜑𝑌 = 𝑋) → ¬ 𝑌 = 𝑅)
138135, 137pm2.65da 817 . . 3 (𝜑 → ¬ 𝑌 = 𝑋)
139138neqned 2947 . 2 (𝜑𝑌𝑋)
14028oveq2d 7229 . . . . 5 (𝜑 → (𝑌 𝐷) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
14196, 140eqtrd 2777 . . . 4 (𝜑 → (𝑌 𝐶) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶)))
1421, 2, 3, 4, 41, 5, 13, 7, 6israg 26788 . . . 4 (𝜑 → (⟨“𝑌𝑋𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝐶) = (𝑌 (((pInvG‘𝐺)‘𝑋)‘𝐶))))
143141, 142mpbird 260 . . 3 (𝜑 → ⟨“𝑌𝑋𝐶”⟩ ∈ (∟G‘𝐺))
1441, 2, 3, 4, 41, 5, 13, 7, 6, 143ragcom 26789 . 2 (𝜑 → ⟨“𝐶𝑋𝑌”⟩ ∈ (∟G‘𝐺))
1451, 2, 3, 4, 5, 33, 8, 35, 36, 40, 32, 139, 144ragperp 26808 1 (𝜑 → (𝐶𝐿𝑋)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2940   class class class wbr 5053  ran crn 5552  cfv 6380  (class class class)co 7213  ⟨“cs3 14407  Basecbs 16760  distcds 16811  TarskiGcstrkg 26521  Itvcitv 26527  LineGclng 26528  cgrGccgrg 26601  pInvGcmir 26743  ∟Gcrag 26784  ⟂Gcperpg 26786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-concat 14126  df-s1 14153  df-s2 14413  df-s3 14414  df-trkgc 26539  df-trkgb 26540  df-trkgcb 26541  df-trkg 26544  df-cgrg 26602  df-leg 26674  df-mir 26744  df-rag 26785  df-perpg 26787
This theorem is referenced by:  footex  26812
  Copyright terms: Public domain W3C validator