MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footexlem1 Structured version   Visualization version   GIF version

Theorem footexlem1 26782
Description: Lemma for footex 26784. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
footexlem.e (𝜑𝐸𝑃)
footexlem.f (𝜑𝐹𝑃)
footexlem.r (𝜑𝑅𝑃)
footexlem.x (𝜑𝑋𝑃)
footexlem.y (𝜑𝑌𝑃)
footexlem.z (𝜑𝑍𝑃)
footexlem.d (𝜑𝐷𝑃)
footexlem.1 (𝜑𝐴 = (𝐸𝐿𝐹))
footexlem.2 (𝜑𝐸𝐹)
footexlem.3 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
footexlem.4 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
footexlem.5 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
footexlem.6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
footexlem.7 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
footexlem.q (𝜑𝑄𝑃)
footexlem.8 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
footexlem.9 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
footexlem.10 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
footexlem.11 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
footexlem.12 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
Assertion
Ref Expression
footexlem1 (𝜑𝑋𝐴)

Proof of Theorem footexlem1
StepHypRef Expression
1 isperp.p . . 3 𝑃 = (Base‘𝐺)
2 isperp.i . . 3 𝐼 = (Itv‘𝐺)
3 isperp.l . . 3 𝐿 = (LineG‘𝐺)
4 isperp.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 footexlem.y . . 3 (𝜑𝑌𝑃)
6 footexlem.z . . 3 (𝜑𝑍𝑃)
7 footexlem.x . . 3 (𝜑𝑋𝑃)
8 isperp.d . . . 4 = (dist‘𝐺)
9 footexlem.r . . . 4 (𝜑𝑅𝑃)
10 footexlem.7 . . . . 5 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
1110eqcomd 2740 . . . 4 (𝜑 → (𝑌 𝑅) = (𝑌 𝑍))
12 footexlem.5 . . . . . . 7 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
13 footexlem.e . . . . . . . . . . 11 (𝜑𝐸𝑃)
14 footexlem.f . . . . . . . . . . 11 (𝜑𝐹𝑃)
15 footexlem.2 . . . . . . . . . . 11 (𝜑𝐸𝐹)
1615necomd 2990 . . . . . . . . . . . 12 (𝜑𝐹𝐸)
17 footexlem.3 . . . . . . . . . . . 12 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
181, 2, 3, 4, 14, 13, 5, 16, 17btwnlng3 26684 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐹𝐿𝐸))
191, 2, 3, 4, 13, 14, 5, 15, 18lncom 26685 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐸𝐿𝐹))
20 footexlem.1 . . . . . . . . . 10 (𝜑𝐴 = (𝐸𝐿𝐹))
2119, 20eleqtrrd 2837 . . . . . . . . 9 (𝜑𝑌𝐴)
22 foot.y . . . . . . . . 9 (𝜑 → ¬ 𝐶𝐴)
23 nelne2 3032 . . . . . . . . 9 ((𝑌𝐴 ∧ ¬ 𝐶𝐴) → 𝑌𝐶)
2421, 22, 23syl2anc 587 . . . . . . . 8 (𝜑𝑌𝐶)
2524necomd 2990 . . . . . . 7 (𝜑𝐶𝑌)
2612, 25eqnetrrd 3003 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌)
27 eqid 2734 . . . . . . . 8 (pInvG‘𝐺) = (pInvG‘𝐺)
28 eqid 2734 . . . . . . . 8 ((pInvG‘𝐺)‘𝑅) = ((pInvG‘𝐺)‘𝑅)
291, 8, 2, 3, 27, 4, 9, 28, 5mirinv 26729 . . . . . . 7 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) = 𝑌𝑅 = 𝑌))
3029necon3bid 2979 . . . . . 6 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌𝑅𝑌))
3126, 30mpbid 235 . . . . 5 (𝜑𝑅𝑌)
3231necomd 2990 . . . 4 (𝜑𝑌𝑅)
331, 8, 2, 4, 5, 9, 5, 6, 11, 32tgcgrneq 26546 . . 3 (𝜑𝑌𝑍)
3433necomd 2990 . . . 4 (𝜑𝑍𝑌)
35 eqid 2734 . . . . 5 ((pInvG‘𝐺)‘𝑍) = ((pInvG‘𝐺)‘𝑍)
36 eqid 2734 . . . . 5 ((pInvG‘𝐺)‘𝑋) = ((pInvG‘𝐺)‘𝑋)
37 footexlem.q . . . . 5 (𝜑𝑄𝑃)
381, 8, 2, 3, 27, 4, 6, 35, 37mircl 26724 . . . . 5 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) ∈ 𝑃)
39 foot.x . . . . 5 (𝜑𝐶𝑃)
40 footexlem.d . . . . 5 (𝜑𝐷𝑃)
411, 8, 2, 3, 27, 4, 9, 28, 5mirbtwn 26721 . . . . . . . 8 (𝜑𝑅 ∈ ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
4212oveq1d 7217 . . . . . . . 8 (𝜑 → (𝐶𝐼𝑌) = ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
4341, 42eleqtrrd 2837 . . . . . . 7 (𝜑𝑅 ∈ (𝐶𝐼𝑌))
44 footexlem.8 . . . . . . 7 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
451, 8, 2, 4, 39, 9, 5, 37, 31, 43, 44tgbtwnouttr2 26558 . . . . . 6 (𝜑𝑌 ∈ (𝐶𝐼𝑄))
461, 8, 2, 4, 39, 5, 37, 45tgbtwncom 26551 . . . . 5 (𝜑𝑌 ∈ (𝑄𝐼𝐶))
47 footexlem.10 . . . . 5 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
48 eqid 2734 . . . . . . . 8 (cgrG‘𝐺) = (cgrG‘𝐺)
49 footexlem.4 . . . . . . . . . 10 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
5012oveq2d 7218 . . . . . . . . . 10 (𝜑 → (𝐸 𝐶) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
5149, 50eqtrd 2774 . . . . . . . . 9 (𝜑 → (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
521, 8, 2, 3, 27, 4, 13, 9, 5israg 26760 . . . . . . . . 9 (𝜑 → (⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌))))
5351, 52mpbird 260 . . . . . . . 8 (𝜑 → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
54 footexlem.9 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
551, 8, 2, 4, 13, 5, 13, 39, 49tgcgrcomlr 26543 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 𝐸) = (𝐶 𝐸))
5654, 55eqtr2d 2775 . . . . . . . . . . . . 13 (𝜑 → (𝐶 𝐸) = (𝑌 𝑄))
571, 2, 3, 4, 13, 14, 15tglinerflx1 26696 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ (𝐸𝐿𝐹))
5857, 20eleqtrrd 2837 . . . . . . . . . . . . . . 15 (𝜑𝐸𝐴)
59 nelne2 3032 . . . . . . . . . . . . . . 15 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → 𝐸𝐶)
6058, 22, 59syl2anc 587 . . . . . . . . . . . . . 14 (𝜑𝐸𝐶)
6160necomd 2990 . . . . . . . . . . . . 13 (𝜑𝐶𝐸)
621, 8, 2, 4, 39, 13, 5, 37, 56, 61tgcgrneq 26546 . . . . . . . . . . . 12 (𝜑𝑌𝑄)
6362necomd 2990 . . . . . . . . . . 11 (𝜑𝑄𝑌)
641, 8, 2, 4, 9, 5, 37, 44tgbtwncom 26551 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝑄𝐼𝑅))
65 footexlem.6 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
661, 8, 2, 4, 5, 37, 5, 13, 54tgcgrcomlr 26543 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑌) = (𝐸 𝑌))
671, 8, 2, 4, 37, 13axtgcgrrflx 26525 . . . . . . . . . . 11 (𝜑 → (𝑄 𝐸) = (𝐸 𝑄))
6854eqcomd 2740 . . . . . . . . . . 11 (𝜑 → (𝑌 𝐸) = (𝑌 𝑄))
691, 8, 2, 4, 37, 5, 9, 13, 5, 6, 13, 37, 63, 64, 65, 66, 11, 67, 68axtg5seg 26528 . . . . . . . . . 10 (𝜑 → (𝑅 𝐸) = (𝑍 𝑄))
701, 8, 2, 4, 9, 13, 6, 37, 69tgcgrcomlr 26543 . . . . . . . . 9 (𝜑 → (𝐸 𝑅) = (𝑄 𝑍))
711, 8, 2, 4, 5, 9, 5, 6, 11tgcgrcomlr 26543 . . . . . . . . 9 (𝜑 → (𝑅 𝑌) = (𝑍 𝑌))
721, 8, 48, 4, 13, 9, 5, 37, 6, 5, 70, 71, 68trgcgr 26579 . . . . . . . 8 (𝜑 → ⟨“𝐸𝑅𝑌”⟩(cgrG‘𝐺)⟨“𝑄𝑍𝑌”⟩)
731, 8, 2, 3, 27, 4, 13, 9, 5, 48, 37, 6, 5, 53, 72ragcgr 26770 . . . . . . 7 (𝜑 → ⟨“𝑄𝑍𝑌”⟩ ∈ (∟G‘𝐺))
741, 8, 2, 3, 27, 4, 37, 6, 5, 73ragcom 26761 . . . . . 6 (𝜑 → ⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺))
751, 8, 2, 3, 27, 4, 5, 6, 37israg 26760 . . . . . 6 (𝜑 → (⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄))))
7674, 75mpbid 235 . . . . 5 (𝜑 → (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
77 footexlem.11 . . . . . 6 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
7877eqcomd 2740 . . . . 5 (𝜑 → (𝑌 𝐶) = (𝑌 𝐷))
79 eqidd 2735 . . . . 5 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) = (((pInvG‘𝐺)‘𝑍)‘𝑄))
80 footexlem.12 . . . . 5 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
811, 8, 2, 3, 27, 4, 35, 36, 37, 38, 5, 39, 40, 6, 7, 46, 47, 76, 78, 79, 80krippen 26754 . . . 4 (𝜑𝑌 ∈ (𝑍𝐼𝑋))
821, 2, 3, 4, 6, 5, 7, 34, 81btwnlng3 26684 . . 3 (𝜑𝑋 ∈ (𝑍𝐿𝑌))
831, 2, 3, 4, 5, 6, 7, 33, 82lncom 26685 . 2 (𝜑𝑋 ∈ (𝑌𝐿𝑍))
84 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
8549eqcomd 2740 . . . . . 6 (𝜑 → (𝐸 𝐶) = (𝐸 𝑌))
861, 8, 2, 4, 13, 39, 13, 5, 85, 60tgcgrneq 26546 . . . . 5 (𝜑𝐸𝑌)
871, 2, 3, 4, 13, 5, 6, 86, 65btwnlng3 26684 . . . 4 (𝜑𝑍 ∈ (𝐸𝐿𝑌))
881, 2, 3, 4, 13, 5, 86, 86, 84, 58, 21tglinethru 26699 . . . 4 (𝜑𝐴 = (𝐸𝐿𝑌))
8987, 88eleqtrrd 2837 . . 3 (𝜑𝑍𝐴)
901, 2, 3, 4, 5, 6, 33, 33, 84, 21, 89tglinethru 26699 . 2 (𝜑𝐴 = (𝑌𝐿𝑍))
9183, 90eleqtrrd 2837 1 (𝜑𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2110  wne 2935  ran crn 5541  cfv 6369  (class class class)co 7202  ⟨“cs3 14390  Basecbs 16684  distcds 16776  TarskiGcstrkg 26493  Itvcitv 26499  LineGclng 26500  cgrGccgrg 26573  pInvGcmir 26715  ∟Gcrag 26756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-concat 14109  df-s1 14136  df-s2 14396  df-s3 14397  df-trkgc 26511  df-trkgb 26512  df-trkgcb 26513  df-trkg 26516  df-cgrg 26574  df-leg 26646  df-mir 26716  df-rag 26757
This theorem is referenced by:  footexlem2  26783  footex  26784
  Copyright terms: Public domain W3C validator