MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footexlem1 Structured version   Visualization version   GIF version

Theorem footexlem1 28668
Description: Lemma for footex 28670. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
footexlem.e (𝜑𝐸𝑃)
footexlem.f (𝜑𝐹𝑃)
footexlem.r (𝜑𝑅𝑃)
footexlem.x (𝜑𝑋𝑃)
footexlem.y (𝜑𝑌𝑃)
footexlem.z (𝜑𝑍𝑃)
footexlem.d (𝜑𝐷𝑃)
footexlem.1 (𝜑𝐴 = (𝐸𝐿𝐹))
footexlem.2 (𝜑𝐸𝐹)
footexlem.3 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
footexlem.4 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
footexlem.5 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
footexlem.6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
footexlem.7 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
footexlem.q (𝜑𝑄𝑃)
footexlem.8 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
footexlem.9 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
footexlem.10 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
footexlem.11 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
footexlem.12 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
Assertion
Ref Expression
footexlem1 (𝜑𝑋𝐴)

Proof of Theorem footexlem1
StepHypRef Expression
1 isperp.p . . 3 𝑃 = (Base‘𝐺)
2 isperp.i . . 3 𝐼 = (Itv‘𝐺)
3 isperp.l . . 3 𝐿 = (LineG‘𝐺)
4 isperp.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 footexlem.y . . 3 (𝜑𝑌𝑃)
6 footexlem.z . . 3 (𝜑𝑍𝑃)
7 footexlem.x . . 3 (𝜑𝑋𝑃)
8 isperp.d . . . 4 = (dist‘𝐺)
9 footexlem.r . . . 4 (𝜑𝑅𝑃)
10 footexlem.7 . . . . 5 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
1110eqcomd 2735 . . . 4 (𝜑 → (𝑌 𝑅) = (𝑌 𝑍))
12 footexlem.5 . . . . . . 7 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
13 footexlem.e . . . . . . . . . . 11 (𝜑𝐸𝑃)
14 footexlem.f . . . . . . . . . . 11 (𝜑𝐹𝑃)
15 footexlem.2 . . . . . . . . . . 11 (𝜑𝐸𝐹)
1615necomd 2980 . . . . . . . . . . . 12 (𝜑𝐹𝐸)
17 footexlem.3 . . . . . . . . . . . 12 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
181, 2, 3, 4, 14, 13, 5, 16, 17btwnlng3 28570 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐹𝐿𝐸))
191, 2, 3, 4, 13, 14, 5, 15, 18lncom 28571 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐸𝐿𝐹))
20 footexlem.1 . . . . . . . . . 10 (𝜑𝐴 = (𝐸𝐿𝐹))
2119, 20eleqtrrd 2831 . . . . . . . . 9 (𝜑𝑌𝐴)
22 foot.y . . . . . . . . 9 (𝜑 → ¬ 𝐶𝐴)
23 nelne2 3023 . . . . . . . . 9 ((𝑌𝐴 ∧ ¬ 𝐶𝐴) → 𝑌𝐶)
2421, 22, 23syl2anc 584 . . . . . . . 8 (𝜑𝑌𝐶)
2524necomd 2980 . . . . . . 7 (𝜑𝐶𝑌)
2612, 25eqnetrrd 2993 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌)
27 eqid 2729 . . . . . . . 8 (pInvG‘𝐺) = (pInvG‘𝐺)
28 eqid 2729 . . . . . . . 8 ((pInvG‘𝐺)‘𝑅) = ((pInvG‘𝐺)‘𝑅)
291, 8, 2, 3, 27, 4, 9, 28, 5mirinv 28615 . . . . . . 7 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) = 𝑌𝑅 = 𝑌))
3029necon3bid 2969 . . . . . 6 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌𝑅𝑌))
3126, 30mpbid 232 . . . . 5 (𝜑𝑅𝑌)
3231necomd 2980 . . . 4 (𝜑𝑌𝑅)
331, 8, 2, 4, 5, 9, 5, 6, 11, 32tgcgrneq 28432 . . 3 (𝜑𝑌𝑍)
3433necomd 2980 . . . 4 (𝜑𝑍𝑌)
35 eqid 2729 . . . . 5 ((pInvG‘𝐺)‘𝑍) = ((pInvG‘𝐺)‘𝑍)
36 eqid 2729 . . . . 5 ((pInvG‘𝐺)‘𝑋) = ((pInvG‘𝐺)‘𝑋)
37 footexlem.q . . . . 5 (𝜑𝑄𝑃)
381, 8, 2, 3, 27, 4, 6, 35, 37mircl 28610 . . . . 5 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) ∈ 𝑃)
39 foot.x . . . . 5 (𝜑𝐶𝑃)
40 footexlem.d . . . . 5 (𝜑𝐷𝑃)
411, 8, 2, 3, 27, 4, 9, 28, 5mirbtwn 28607 . . . . . . . 8 (𝜑𝑅 ∈ ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
4212oveq1d 7364 . . . . . . . 8 (𝜑 → (𝐶𝐼𝑌) = ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
4341, 42eleqtrrd 2831 . . . . . . 7 (𝜑𝑅 ∈ (𝐶𝐼𝑌))
44 footexlem.8 . . . . . . 7 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
451, 8, 2, 4, 39, 9, 5, 37, 31, 43, 44tgbtwnouttr2 28444 . . . . . 6 (𝜑𝑌 ∈ (𝐶𝐼𝑄))
461, 8, 2, 4, 39, 5, 37, 45tgbtwncom 28437 . . . . 5 (𝜑𝑌 ∈ (𝑄𝐼𝐶))
47 footexlem.10 . . . . 5 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
48 eqid 2729 . . . . . . . 8 (cgrG‘𝐺) = (cgrG‘𝐺)
49 footexlem.4 . . . . . . . . . 10 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
5012oveq2d 7365 . . . . . . . . . 10 (𝜑 → (𝐸 𝐶) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
5149, 50eqtrd 2764 . . . . . . . . 9 (𝜑 → (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
521, 8, 2, 3, 27, 4, 13, 9, 5israg 28646 . . . . . . . . 9 (𝜑 → (⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌))))
5351, 52mpbird 257 . . . . . . . 8 (𝜑 → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
54 footexlem.9 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
551, 8, 2, 4, 13, 5, 13, 39, 49tgcgrcomlr 28429 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 𝐸) = (𝐶 𝐸))
5654, 55eqtr2d 2765 . . . . . . . . . . . . 13 (𝜑 → (𝐶 𝐸) = (𝑌 𝑄))
571, 2, 3, 4, 13, 14, 15tglinerflx1 28582 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ (𝐸𝐿𝐹))
5857, 20eleqtrrd 2831 . . . . . . . . . . . . . . 15 (𝜑𝐸𝐴)
59 nelne2 3023 . . . . . . . . . . . . . . 15 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → 𝐸𝐶)
6058, 22, 59syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝐸𝐶)
6160necomd 2980 . . . . . . . . . . . . 13 (𝜑𝐶𝐸)
621, 8, 2, 4, 39, 13, 5, 37, 56, 61tgcgrneq 28432 . . . . . . . . . . . 12 (𝜑𝑌𝑄)
6362necomd 2980 . . . . . . . . . . 11 (𝜑𝑄𝑌)
641, 8, 2, 4, 9, 5, 37, 44tgbtwncom 28437 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝑄𝐼𝑅))
65 footexlem.6 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
661, 8, 2, 4, 5, 37, 5, 13, 54tgcgrcomlr 28429 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑌) = (𝐸 𝑌))
671, 8, 2, 4, 37, 13axtgcgrrflx 28411 . . . . . . . . . . 11 (𝜑 → (𝑄 𝐸) = (𝐸 𝑄))
6854eqcomd 2735 . . . . . . . . . . 11 (𝜑 → (𝑌 𝐸) = (𝑌 𝑄))
691, 8, 2, 4, 37, 5, 9, 13, 5, 6, 13, 37, 63, 64, 65, 66, 11, 67, 68axtg5seg 28414 . . . . . . . . . 10 (𝜑 → (𝑅 𝐸) = (𝑍 𝑄))
701, 8, 2, 4, 9, 13, 6, 37, 69tgcgrcomlr 28429 . . . . . . . . 9 (𝜑 → (𝐸 𝑅) = (𝑄 𝑍))
711, 8, 2, 4, 5, 9, 5, 6, 11tgcgrcomlr 28429 . . . . . . . . 9 (𝜑 → (𝑅 𝑌) = (𝑍 𝑌))
721, 8, 48, 4, 13, 9, 5, 37, 6, 5, 70, 71, 68trgcgr 28465 . . . . . . . 8 (𝜑 → ⟨“𝐸𝑅𝑌”⟩(cgrG‘𝐺)⟨“𝑄𝑍𝑌”⟩)
731, 8, 2, 3, 27, 4, 13, 9, 5, 48, 37, 6, 5, 53, 72ragcgr 28656 . . . . . . 7 (𝜑 → ⟨“𝑄𝑍𝑌”⟩ ∈ (∟G‘𝐺))
741, 8, 2, 3, 27, 4, 37, 6, 5, 73ragcom 28647 . . . . . 6 (𝜑 → ⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺))
751, 8, 2, 3, 27, 4, 5, 6, 37israg 28646 . . . . . 6 (𝜑 → (⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄))))
7674, 75mpbid 232 . . . . 5 (𝜑 → (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
77 footexlem.11 . . . . . 6 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
7877eqcomd 2735 . . . . 5 (𝜑 → (𝑌 𝐶) = (𝑌 𝐷))
79 eqidd 2730 . . . . 5 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) = (((pInvG‘𝐺)‘𝑍)‘𝑄))
80 footexlem.12 . . . . 5 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
811, 8, 2, 3, 27, 4, 35, 36, 37, 38, 5, 39, 40, 6, 7, 46, 47, 76, 78, 79, 80krippen 28640 . . . 4 (𝜑𝑌 ∈ (𝑍𝐼𝑋))
821, 2, 3, 4, 6, 5, 7, 34, 81btwnlng3 28570 . . 3 (𝜑𝑋 ∈ (𝑍𝐿𝑌))
831, 2, 3, 4, 5, 6, 7, 33, 82lncom 28571 . 2 (𝜑𝑋 ∈ (𝑌𝐿𝑍))
84 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
8549eqcomd 2735 . . . . . 6 (𝜑 → (𝐸 𝐶) = (𝐸 𝑌))
861, 8, 2, 4, 13, 39, 13, 5, 85, 60tgcgrneq 28432 . . . . 5 (𝜑𝐸𝑌)
871, 2, 3, 4, 13, 5, 6, 86, 65btwnlng3 28570 . . . 4 (𝜑𝑍 ∈ (𝐸𝐿𝑌))
881, 2, 3, 4, 13, 5, 86, 86, 84, 58, 21tglinethru 28585 . . . 4 (𝜑𝐴 = (𝐸𝐿𝑌))
8987, 88eleqtrrd 2831 . . 3 (𝜑𝑍𝐴)
901, 2, 3, 4, 5, 6, 33, 33, 84, 21, 89tglinethru 28585 . 2 (𝜑𝐴 = (𝑌𝐿𝑍))
9183, 90eleqtrrd 2831 1 (𝜑𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2925  ran crn 5620  cfv 6482  (class class class)co 7349  ⟨“cs3 14749  Basecbs 17120  distcds 17170  TarskiGcstrkg 28376  Itvcitv 28382  LineGclng 28383  cgrGccgrg 28459  pInvGcmir 28601  ∟Gcrag 28642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28397  df-trkgb 28398  df-trkgcb 28399  df-trkg 28402  df-cgrg 28460  df-leg 28532  df-mir 28602  df-rag 28643
This theorem is referenced by:  footexlem2  28669  footex  28670
  Copyright terms: Public domain W3C validator