MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footexlem1 Structured version   Visualization version   GIF version

Theorem footexlem1 28703
Description: Lemma for footex 28705. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
footexlem.e (𝜑𝐸𝑃)
footexlem.f (𝜑𝐹𝑃)
footexlem.r (𝜑𝑅𝑃)
footexlem.x (𝜑𝑋𝑃)
footexlem.y (𝜑𝑌𝑃)
footexlem.z (𝜑𝑍𝑃)
footexlem.d (𝜑𝐷𝑃)
footexlem.1 (𝜑𝐴 = (𝐸𝐿𝐹))
footexlem.2 (𝜑𝐸𝐹)
footexlem.3 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
footexlem.4 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
footexlem.5 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
footexlem.6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
footexlem.7 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
footexlem.q (𝜑𝑄𝑃)
footexlem.8 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
footexlem.9 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
footexlem.10 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
footexlem.11 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
footexlem.12 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
Assertion
Ref Expression
footexlem1 (𝜑𝑋𝐴)

Proof of Theorem footexlem1
StepHypRef Expression
1 isperp.p . . 3 𝑃 = (Base‘𝐺)
2 isperp.i . . 3 𝐼 = (Itv‘𝐺)
3 isperp.l . . 3 𝐿 = (LineG‘𝐺)
4 isperp.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 footexlem.y . . 3 (𝜑𝑌𝑃)
6 footexlem.z . . 3 (𝜑𝑍𝑃)
7 footexlem.x . . 3 (𝜑𝑋𝑃)
8 isperp.d . . . 4 = (dist‘𝐺)
9 footexlem.r . . . 4 (𝜑𝑅𝑃)
10 footexlem.7 . . . . 5 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
1110eqcomd 2737 . . . 4 (𝜑 → (𝑌 𝑅) = (𝑌 𝑍))
12 footexlem.5 . . . . . . 7 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
13 footexlem.e . . . . . . . . . . 11 (𝜑𝐸𝑃)
14 footexlem.f . . . . . . . . . . 11 (𝜑𝐹𝑃)
15 footexlem.2 . . . . . . . . . . 11 (𝜑𝐸𝐹)
1615necomd 2983 . . . . . . . . . . . 12 (𝜑𝐹𝐸)
17 footexlem.3 . . . . . . . . . . . 12 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
181, 2, 3, 4, 14, 13, 5, 16, 17btwnlng3 28605 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐹𝐿𝐸))
191, 2, 3, 4, 13, 14, 5, 15, 18lncom 28606 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐸𝐿𝐹))
20 footexlem.1 . . . . . . . . . 10 (𝜑𝐴 = (𝐸𝐿𝐹))
2119, 20eleqtrrd 2834 . . . . . . . . 9 (𝜑𝑌𝐴)
22 foot.y . . . . . . . . 9 (𝜑 → ¬ 𝐶𝐴)
23 nelne2 3026 . . . . . . . . 9 ((𝑌𝐴 ∧ ¬ 𝐶𝐴) → 𝑌𝐶)
2421, 22, 23syl2anc 584 . . . . . . . 8 (𝜑𝑌𝐶)
2524necomd 2983 . . . . . . 7 (𝜑𝐶𝑌)
2612, 25eqnetrrd 2996 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌)
27 eqid 2731 . . . . . . . 8 (pInvG‘𝐺) = (pInvG‘𝐺)
28 eqid 2731 . . . . . . . 8 ((pInvG‘𝐺)‘𝑅) = ((pInvG‘𝐺)‘𝑅)
291, 8, 2, 3, 27, 4, 9, 28, 5mirinv 28650 . . . . . . 7 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) = 𝑌𝑅 = 𝑌))
3029necon3bid 2972 . . . . . 6 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌𝑅𝑌))
3126, 30mpbid 232 . . . . 5 (𝜑𝑅𝑌)
3231necomd 2983 . . . 4 (𝜑𝑌𝑅)
331, 8, 2, 4, 5, 9, 5, 6, 11, 32tgcgrneq 28467 . . 3 (𝜑𝑌𝑍)
3433necomd 2983 . . . 4 (𝜑𝑍𝑌)
35 eqid 2731 . . . . 5 ((pInvG‘𝐺)‘𝑍) = ((pInvG‘𝐺)‘𝑍)
36 eqid 2731 . . . . 5 ((pInvG‘𝐺)‘𝑋) = ((pInvG‘𝐺)‘𝑋)
37 footexlem.q . . . . 5 (𝜑𝑄𝑃)
381, 8, 2, 3, 27, 4, 6, 35, 37mircl 28645 . . . . 5 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) ∈ 𝑃)
39 foot.x . . . . 5 (𝜑𝐶𝑃)
40 footexlem.d . . . . 5 (𝜑𝐷𝑃)
411, 8, 2, 3, 27, 4, 9, 28, 5mirbtwn 28642 . . . . . . . 8 (𝜑𝑅 ∈ ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
4212oveq1d 7367 . . . . . . . 8 (𝜑 → (𝐶𝐼𝑌) = ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
4341, 42eleqtrrd 2834 . . . . . . 7 (𝜑𝑅 ∈ (𝐶𝐼𝑌))
44 footexlem.8 . . . . . . 7 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
451, 8, 2, 4, 39, 9, 5, 37, 31, 43, 44tgbtwnouttr2 28479 . . . . . 6 (𝜑𝑌 ∈ (𝐶𝐼𝑄))
461, 8, 2, 4, 39, 5, 37, 45tgbtwncom 28472 . . . . 5 (𝜑𝑌 ∈ (𝑄𝐼𝐶))
47 footexlem.10 . . . . 5 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
48 eqid 2731 . . . . . . . 8 (cgrG‘𝐺) = (cgrG‘𝐺)
49 footexlem.4 . . . . . . . . . 10 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
5012oveq2d 7368 . . . . . . . . . 10 (𝜑 → (𝐸 𝐶) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
5149, 50eqtrd 2766 . . . . . . . . 9 (𝜑 → (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
521, 8, 2, 3, 27, 4, 13, 9, 5israg 28681 . . . . . . . . 9 (𝜑 → (⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌))))
5351, 52mpbird 257 . . . . . . . 8 (𝜑 → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
54 footexlem.9 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
551, 8, 2, 4, 13, 5, 13, 39, 49tgcgrcomlr 28464 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 𝐸) = (𝐶 𝐸))
5654, 55eqtr2d 2767 . . . . . . . . . . . . 13 (𝜑 → (𝐶 𝐸) = (𝑌 𝑄))
571, 2, 3, 4, 13, 14, 15tglinerflx1 28617 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ (𝐸𝐿𝐹))
5857, 20eleqtrrd 2834 . . . . . . . . . . . . . . 15 (𝜑𝐸𝐴)
59 nelne2 3026 . . . . . . . . . . . . . . 15 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → 𝐸𝐶)
6058, 22, 59syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝐸𝐶)
6160necomd 2983 . . . . . . . . . . . . 13 (𝜑𝐶𝐸)
621, 8, 2, 4, 39, 13, 5, 37, 56, 61tgcgrneq 28467 . . . . . . . . . . . 12 (𝜑𝑌𝑄)
6362necomd 2983 . . . . . . . . . . 11 (𝜑𝑄𝑌)
641, 8, 2, 4, 9, 5, 37, 44tgbtwncom 28472 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝑄𝐼𝑅))
65 footexlem.6 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
661, 8, 2, 4, 5, 37, 5, 13, 54tgcgrcomlr 28464 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑌) = (𝐸 𝑌))
671, 8, 2, 4, 37, 13axtgcgrrflx 28446 . . . . . . . . . . 11 (𝜑 → (𝑄 𝐸) = (𝐸 𝑄))
6854eqcomd 2737 . . . . . . . . . . 11 (𝜑 → (𝑌 𝐸) = (𝑌 𝑄))
691, 8, 2, 4, 37, 5, 9, 13, 5, 6, 13, 37, 63, 64, 65, 66, 11, 67, 68axtg5seg 28449 . . . . . . . . . 10 (𝜑 → (𝑅 𝐸) = (𝑍 𝑄))
701, 8, 2, 4, 9, 13, 6, 37, 69tgcgrcomlr 28464 . . . . . . . . 9 (𝜑 → (𝐸 𝑅) = (𝑄 𝑍))
711, 8, 2, 4, 5, 9, 5, 6, 11tgcgrcomlr 28464 . . . . . . . . 9 (𝜑 → (𝑅 𝑌) = (𝑍 𝑌))
721, 8, 48, 4, 13, 9, 5, 37, 6, 5, 70, 71, 68trgcgr 28500 . . . . . . . 8 (𝜑 → ⟨“𝐸𝑅𝑌”⟩(cgrG‘𝐺)⟨“𝑄𝑍𝑌”⟩)
731, 8, 2, 3, 27, 4, 13, 9, 5, 48, 37, 6, 5, 53, 72ragcgr 28691 . . . . . . 7 (𝜑 → ⟨“𝑄𝑍𝑌”⟩ ∈ (∟G‘𝐺))
741, 8, 2, 3, 27, 4, 37, 6, 5, 73ragcom 28682 . . . . . 6 (𝜑 → ⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺))
751, 8, 2, 3, 27, 4, 5, 6, 37israg 28681 . . . . . 6 (𝜑 → (⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄))))
7674, 75mpbid 232 . . . . 5 (𝜑 → (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
77 footexlem.11 . . . . . 6 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
7877eqcomd 2737 . . . . 5 (𝜑 → (𝑌 𝐶) = (𝑌 𝐷))
79 eqidd 2732 . . . . 5 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) = (((pInvG‘𝐺)‘𝑍)‘𝑄))
80 footexlem.12 . . . . 5 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
811, 8, 2, 3, 27, 4, 35, 36, 37, 38, 5, 39, 40, 6, 7, 46, 47, 76, 78, 79, 80krippen 28675 . . . 4 (𝜑𝑌 ∈ (𝑍𝐼𝑋))
821, 2, 3, 4, 6, 5, 7, 34, 81btwnlng3 28605 . . 3 (𝜑𝑋 ∈ (𝑍𝐿𝑌))
831, 2, 3, 4, 5, 6, 7, 33, 82lncom 28606 . 2 (𝜑𝑋 ∈ (𝑌𝐿𝑍))
84 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
8549eqcomd 2737 . . . . . 6 (𝜑 → (𝐸 𝐶) = (𝐸 𝑌))
861, 8, 2, 4, 13, 39, 13, 5, 85, 60tgcgrneq 28467 . . . . 5 (𝜑𝐸𝑌)
871, 2, 3, 4, 13, 5, 6, 86, 65btwnlng3 28605 . . . 4 (𝜑𝑍 ∈ (𝐸𝐿𝑌))
881, 2, 3, 4, 13, 5, 86, 86, 84, 58, 21tglinethru 28620 . . . 4 (𝜑𝐴 = (𝐸𝐿𝑌))
8987, 88eleqtrrd 2834 . . 3 (𝜑𝑍𝐴)
901, 2, 3, 4, 5, 6, 33, 33, 84, 21, 89tglinethru 28620 . 2 (𝜑𝐴 = (𝑌𝐿𝑍))
9183, 90eleqtrrd 2834 1 (𝜑𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  wne 2928  ran crn 5620  cfv 6487  (class class class)co 7352  ⟨“cs3 14755  Basecbs 17126  distcds 17176  TarskiGcstrkg 28411  Itvcitv 28417  LineGclng 28418  cgrGccgrg 28494  pInvGcmir 28636  ∟Gcrag 28677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9800  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-n0 12388  df-xnn0 12461  df-z 12475  df-uz 12739  df-fz 13414  df-fzo 13561  df-hash 14244  df-word 14427  df-concat 14484  df-s1 14510  df-s2 14761  df-s3 14762  df-trkgc 28432  df-trkgb 28433  df-trkgcb 28434  df-trkg 28437  df-cgrg 28495  df-leg 28567  df-mir 28637  df-rag 28678
This theorem is referenced by:  footexlem2  28704  footex  28705
  Copyright terms: Public domain W3C validator