MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footexlem1 Structured version   Visualization version   GIF version

Theorem footexlem1 26191
Description: Lemma for footex 26193 (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
footexlem.e (𝜑𝐸𝑃)
footexlem.f (𝜑𝐹𝑃)
footexlem.r (𝜑𝑅𝑃)
footexlem.x (𝜑𝑋𝑃)
footexlem.y (𝜑𝑌𝑃)
footexlem.z (𝜑𝑍𝑃)
footexlem.d (𝜑𝐷𝑃)
footexlem.1 (𝜑𝐴 = (𝐸𝐿𝐹))
footexlem.2 (𝜑𝐸𝐹)
footexlem.3 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
footexlem.4 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
footexlem.5 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
footexlem.6 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
footexlem.7 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
footexlem.q (𝜑𝑄𝑃)
footexlem.8 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
footexlem.9 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
footexlem.10 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
footexlem.11 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
footexlem.12 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
Assertion
Ref Expression
footexlem1 (𝜑𝑋𝐴)

Proof of Theorem footexlem1
StepHypRef Expression
1 isperp.p . . 3 𝑃 = (Base‘𝐺)
2 isperp.i . . 3 𝐼 = (Itv‘𝐺)
3 isperp.l . . 3 𝐿 = (LineG‘𝐺)
4 isperp.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 footexlem.y . . 3 (𝜑𝑌𝑃)
6 footexlem.z . . 3 (𝜑𝑍𝑃)
7 footexlem.x . . 3 (𝜑𝑋𝑃)
8 isperp.d . . . 4 = (dist‘𝐺)
9 footexlem.r . . . 4 (𝜑𝑅𝑃)
10 footexlem.7 . . . . 5 (𝜑 → (𝑌 𝑍) = (𝑌 𝑅))
1110eqcomd 2803 . . . 4 (𝜑 → (𝑌 𝑅) = (𝑌 𝑍))
12 footexlem.5 . . . . . . 7 (𝜑𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌))
13 footexlem.e . . . . . . . . . . 11 (𝜑𝐸𝑃)
14 footexlem.f . . . . . . . . . . 11 (𝜑𝐹𝑃)
15 footexlem.2 . . . . . . . . . . 11 (𝜑𝐸𝐹)
1615necomd 3041 . . . . . . . . . . . 12 (𝜑𝐹𝐸)
17 footexlem.3 . . . . . . . . . . . 12 (𝜑𝐸 ∈ (𝐹𝐼𝑌))
181, 2, 3, 4, 14, 13, 5, 16, 17btwnlng3 26093 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐹𝐿𝐸))
191, 2, 3, 4, 13, 14, 5, 15, 18lncom 26094 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐸𝐿𝐹))
20 footexlem.1 . . . . . . . . . 10 (𝜑𝐴 = (𝐸𝐿𝐹))
2119, 20eleqtrrd 2888 . . . . . . . . 9 (𝜑𝑌𝐴)
22 foot.y . . . . . . . . 9 (𝜑 → ¬ 𝐶𝐴)
23 nelne2 3085 . . . . . . . . 9 ((𝑌𝐴 ∧ ¬ 𝐶𝐴) → 𝑌𝐶)
2421, 22, 23syl2anc 584 . . . . . . . 8 (𝜑𝑌𝐶)
2524necomd 3041 . . . . . . 7 (𝜑𝐶𝑌)
2612, 25eqnetrrd 3054 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌)
27 eqid 2797 . . . . . . . 8 (pInvG‘𝐺) = (pInvG‘𝐺)
28 eqid 2797 . . . . . . . 8 ((pInvG‘𝐺)‘𝑅) = ((pInvG‘𝐺)‘𝑅)
291, 8, 2, 3, 27, 4, 9, 28, 5mirinv 26138 . . . . . . 7 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) = 𝑌𝑅 = 𝑌))
3029necon3bid 3030 . . . . . 6 (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌𝑅𝑌))
3126, 30mpbid 233 . . . . 5 (𝜑𝑅𝑌)
3231necomd 3041 . . . 4 (𝜑𝑌𝑅)
331, 8, 2, 4, 5, 9, 5, 6, 11, 32tgcgrneq 25955 . . 3 (𝜑𝑌𝑍)
3433necomd 3041 . . . 4 (𝜑𝑍𝑌)
35 eqid 2797 . . . . 5 ((pInvG‘𝐺)‘𝑍) = ((pInvG‘𝐺)‘𝑍)
36 eqid 2797 . . . . 5 ((pInvG‘𝐺)‘𝑋) = ((pInvG‘𝐺)‘𝑋)
37 footexlem.q . . . . 5 (𝜑𝑄𝑃)
381, 8, 2, 3, 27, 4, 6, 35, 37mircl 26133 . . . . 5 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) ∈ 𝑃)
39 foot.x . . . . 5 (𝜑𝐶𝑃)
40 footexlem.d . . . . 5 (𝜑𝐷𝑃)
411, 8, 2, 3, 27, 4, 9, 28, 5mirbtwn 26130 . . . . . . . 8 (𝜑𝑅 ∈ ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
4212oveq1d 7038 . . . . . . . 8 (𝜑 → (𝐶𝐼𝑌) = ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌))
4341, 42eleqtrrd 2888 . . . . . . 7 (𝜑𝑅 ∈ (𝐶𝐼𝑌))
44 footexlem.8 . . . . . . 7 (𝜑𝑌 ∈ (𝑅𝐼𝑄))
451, 8, 2, 4, 39, 9, 5, 37, 31, 43, 44tgbtwnouttr2 25967 . . . . . 6 (𝜑𝑌 ∈ (𝐶𝐼𝑄))
461, 8, 2, 4, 39, 5, 37, 45tgbtwncom 25960 . . . . 5 (𝜑𝑌 ∈ (𝑄𝐼𝐶))
47 footexlem.10 . . . . 5 (𝜑𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷))
48 eqid 2797 . . . . . . . 8 (cgrG‘𝐺) = (cgrG‘𝐺)
49 footexlem.4 . . . . . . . . . 10 (𝜑 → (𝐸 𝑌) = (𝐸 𝐶))
5012oveq2d 7039 . . . . . . . . . 10 (𝜑 → (𝐸 𝐶) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
5149, 50eqtrd 2833 . . . . . . . . 9 (𝜑 → (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌)))
521, 8, 2, 3, 27, 4, 13, 9, 5israg 26169 . . . . . . . . 9 (𝜑 → (⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑌) = (𝐸 (((pInvG‘𝐺)‘𝑅)‘𝑌))))
5351, 52mpbird 258 . . . . . . . 8 (𝜑 → ⟨“𝐸𝑅𝑌”⟩ ∈ (∟G‘𝐺))
54 footexlem.9 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 𝑄) = (𝑌 𝐸))
551, 8, 2, 4, 13, 5, 13, 39, 49tgcgrcomlr 25952 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 𝐸) = (𝐶 𝐸))
5654, 55eqtr2d 2834 . . . . . . . . . . . . 13 (𝜑 → (𝐶 𝐸) = (𝑌 𝑄))
571, 2, 3, 4, 13, 14, 15tglinerflx1 26105 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ (𝐸𝐿𝐹))
5857, 20eleqtrrd 2888 . . . . . . . . . . . . . . 15 (𝜑𝐸𝐴)
59 nelne2 3085 . . . . . . . . . . . . . . 15 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → 𝐸𝐶)
6058, 22, 59syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝐸𝐶)
6160necomd 3041 . . . . . . . . . . . . 13 (𝜑𝐶𝐸)
621, 8, 2, 4, 39, 13, 5, 37, 56, 61tgcgrneq 25955 . . . . . . . . . . . 12 (𝜑𝑌𝑄)
6362necomd 3041 . . . . . . . . . . 11 (𝜑𝑄𝑌)
641, 8, 2, 4, 9, 5, 37, 44tgbtwncom 25960 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝑄𝐼𝑅))
65 footexlem.6 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐸𝐼𝑍))
661, 8, 2, 4, 5, 37, 5, 13, 54tgcgrcomlr 25952 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑌) = (𝐸 𝑌))
671, 8, 2, 4, 37, 13axtgcgrrflx 25934 . . . . . . . . . . 11 (𝜑 → (𝑄 𝐸) = (𝐸 𝑄))
6854eqcomd 2803 . . . . . . . . . . 11 (𝜑 → (𝑌 𝐸) = (𝑌 𝑄))
691, 8, 2, 4, 37, 5, 9, 13, 5, 6, 13, 37, 63, 64, 65, 66, 11, 67, 68axtg5seg 25937 . . . . . . . . . 10 (𝜑 → (𝑅 𝐸) = (𝑍 𝑄))
701, 8, 2, 4, 9, 13, 6, 37, 69tgcgrcomlr 25952 . . . . . . . . 9 (𝜑 → (𝐸 𝑅) = (𝑄 𝑍))
711, 8, 2, 4, 5, 9, 5, 6, 11tgcgrcomlr 25952 . . . . . . . . 9 (𝜑 → (𝑅 𝑌) = (𝑍 𝑌))
721, 8, 48, 4, 13, 9, 5, 37, 6, 5, 70, 71, 68trgcgr 25988 . . . . . . . 8 (𝜑 → ⟨“𝐸𝑅𝑌”⟩(cgrG‘𝐺)⟨“𝑄𝑍𝑌”⟩)
731, 8, 2, 3, 27, 4, 13, 9, 5, 48, 37, 6, 5, 53, 72ragcgr 26179 . . . . . . 7 (𝜑 → ⟨“𝑄𝑍𝑌”⟩ ∈ (∟G‘𝐺))
741, 8, 2, 3, 27, 4, 37, 6, 5, 73ragcom 26170 . . . . . 6 (𝜑 → ⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺))
751, 8, 2, 3, 27, 4, 5, 6, 37israg 26169 . . . . . 6 (𝜑 → (⟨“𝑌𝑍𝑄”⟩ ∈ (∟G‘𝐺) ↔ (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄))))
7674, 75mpbid 233 . . . . 5 (𝜑 → (𝑌 𝑄) = (𝑌 (((pInvG‘𝐺)‘𝑍)‘𝑄)))
77 footexlem.11 . . . . . 6 (𝜑 → (𝑌 𝐷) = (𝑌 𝐶))
7877eqcomd 2803 . . . . 5 (𝜑 → (𝑌 𝐶) = (𝑌 𝐷))
79 eqidd 2798 . . . . 5 (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) = (((pInvG‘𝐺)‘𝑍)‘𝑄))
80 footexlem.12 . . . . 5 (𝜑𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶))
811, 8, 2, 3, 27, 4, 35, 36, 37, 38, 5, 39, 40, 6, 7, 46, 47, 76, 78, 79, 80krippen 26163 . . . 4 (𝜑𝑌 ∈ (𝑍𝐼𝑋))
821, 2, 3, 4, 6, 5, 7, 34, 81btwnlng3 26093 . . 3 (𝜑𝑋 ∈ (𝑍𝐿𝑌))
831, 2, 3, 4, 5, 6, 7, 33, 82lncom 26094 . 2 (𝜑𝑋 ∈ (𝑌𝐿𝑍))
84 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
8549eqcomd 2803 . . . . . 6 (𝜑 → (𝐸 𝐶) = (𝐸 𝑌))
861, 8, 2, 4, 13, 39, 13, 5, 85, 60tgcgrneq 25955 . . . . 5 (𝜑𝐸𝑌)
871, 2, 3, 4, 13, 5, 6, 86, 65btwnlng3 26093 . . . 4 (𝜑𝑍 ∈ (𝐸𝐿𝑌))
881, 2, 3, 4, 13, 5, 86, 86, 84, 58, 21tglinethru 26108 . . . 4 (𝜑𝐴 = (𝐸𝐿𝑌))
8987, 88eleqtrrd 2888 . . 3 (𝜑𝑍𝐴)
901, 2, 3, 4, 5, 6, 33, 33, 84, 21, 89tglinethru 26108 . 2 (𝜑𝐴 = (𝑌𝐿𝑍))
9183, 90eleqtrrd 2888 1 (𝜑𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1525  wcel 2083  wne 2986  ran crn 5451  cfv 6232  (class class class)co 7023  ⟨“cs3 14044  Basecbs 16316  distcds 16407  TarskiGcstrkg 25902  Itvcitv 25908  LineGclng 25909  cgrGccgrg 25982  pInvGcmir 26124  ∟Gcrag 26165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-dju 9183  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-xnn0 11822  df-z 11836  df-uz 12098  df-fz 12747  df-fzo 12888  df-hash 13545  df-word 13712  df-concat 13773  df-s1 13798  df-s2 14050  df-s3 14051  df-trkgc 25920  df-trkgb 25921  df-trkgcb 25922  df-trkg 25925  df-cgrg 25983  df-leg 26055  df-mir 26125  df-rag 26166
This theorem is referenced by:  footexlem2  26192  footex  26193
  Copyright terms: Public domain W3C validator