Proof of Theorem footexlem1
Step | Hyp | Ref
| Expression |
1 | | isperp.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
2 | | isperp.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
3 | | isperp.l |
. . 3
⊢ 𝐿 = (LineG‘𝐺) |
4 | | isperp.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | | footexlem.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
6 | | footexlem.z |
. . 3
⊢ (𝜑 → 𝑍 ∈ 𝑃) |
7 | | footexlem.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
8 | | isperp.d |
. . . 4
⊢ − =
(dist‘𝐺) |
9 | | footexlem.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑃) |
10 | | footexlem.7 |
. . . . 5
⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝑅)) |
11 | 10 | eqcomd 2746 |
. . . 4
⊢ (𝜑 → (𝑌 − 𝑅) = (𝑌 − 𝑍)) |
12 | | footexlem.5 |
. . . . . . 7
⊢ (𝜑 → 𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌)) |
13 | | footexlem.e |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
14 | | footexlem.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
15 | | footexlem.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ≠ 𝐹) |
16 | 15 | necomd 3001 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ≠ 𝐸) |
17 | | footexlem.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ (𝐹𝐼𝑌)) |
18 | 1, 2, 3, 4, 14, 13, 5, 16, 17 | btwnlng3 26980 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (𝐹𝐿𝐸)) |
19 | 1, 2, 3, 4, 13, 14, 5, 15, 18 | lncom 26981 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝐸𝐿𝐹)) |
20 | | footexlem.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 = (𝐸𝐿𝐹)) |
21 | 19, 20 | eleqtrrd 2844 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
22 | | foot.y |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
23 | | nelne2 3044 |
. . . . . . . . 9
⊢ ((𝑌 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) → 𝑌 ≠ 𝐶) |
24 | 21, 22, 23 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ≠ 𝐶) |
25 | 24 | necomd 3001 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ≠ 𝑌) |
26 | 12, 25 | eqnetrrd 3014 |
. . . . . 6
⊢ (𝜑 → (((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌) |
27 | | eqid 2740 |
. . . . . . . 8
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
28 | | eqid 2740 |
. . . . . . . 8
⊢
((pInvG‘𝐺)‘𝑅) = ((pInvG‘𝐺)‘𝑅) |
29 | 1, 8, 2, 3, 27, 4,
9, 28, 5 | mirinv 27025 |
. . . . . . 7
⊢ (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) = 𝑌 ↔ 𝑅 = 𝑌)) |
30 | 29 | necon3bid 2990 |
. . . . . 6
⊢ (𝜑 → ((((pInvG‘𝐺)‘𝑅)‘𝑌) ≠ 𝑌 ↔ 𝑅 ≠ 𝑌)) |
31 | 26, 30 | mpbid 231 |
. . . . 5
⊢ (𝜑 → 𝑅 ≠ 𝑌) |
32 | 31 | necomd 3001 |
. . . 4
⊢ (𝜑 → 𝑌 ≠ 𝑅) |
33 | 1, 8, 2, 4, 5, 9, 5, 6, 11, 32 | tgcgrneq 26842 |
. . 3
⊢ (𝜑 → 𝑌 ≠ 𝑍) |
34 | 33 | necomd 3001 |
. . . 4
⊢ (𝜑 → 𝑍 ≠ 𝑌) |
35 | | eqid 2740 |
. . . . 5
⊢
((pInvG‘𝐺)‘𝑍) = ((pInvG‘𝐺)‘𝑍) |
36 | | eqid 2740 |
. . . . 5
⊢
((pInvG‘𝐺)‘𝑋) = ((pInvG‘𝐺)‘𝑋) |
37 | | footexlem.q |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ 𝑃) |
38 | 1, 8, 2, 3, 27, 4,
6, 35, 37 | mircl 27020 |
. . . . 5
⊢ (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) ∈ 𝑃) |
39 | | foot.x |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
40 | | footexlem.d |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
41 | 1, 8, 2, 3, 27, 4,
9, 28, 5 | mirbtwn 27017 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌)) |
42 | 12 | oveq1d 7286 |
. . . . . . . 8
⊢ (𝜑 → (𝐶𝐼𝑌) = ((((pInvG‘𝐺)‘𝑅)‘𝑌)𝐼𝑌)) |
43 | 41, 42 | eleqtrrd 2844 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ (𝐶𝐼𝑌)) |
44 | | footexlem.8 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (𝑅𝐼𝑄)) |
45 | 1, 8, 2, 4, 39, 9,
5, 37, 31, 43, 44 | tgbtwnouttr2 26854 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ (𝐶𝐼𝑄)) |
46 | 1, 8, 2, 4, 39, 5,
37, 45 | tgbtwncom 26847 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (𝑄𝐼𝐶)) |
47 | | footexlem.10 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷)) |
48 | | eqid 2740 |
. . . . . . . 8
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
49 | | footexlem.4 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 − 𝑌) = (𝐸 − 𝐶)) |
50 | 12 | oveq2d 7287 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 − 𝐶) = (𝐸 − (((pInvG‘𝐺)‘𝑅)‘𝑌))) |
51 | 49, 50 | eqtrd 2780 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 − 𝑌) = (𝐸 − (((pInvG‘𝐺)‘𝑅)‘𝑌))) |
52 | 1, 8, 2, 3, 27, 4,
13, 9, 5 | israg 27056 |
. . . . . . . . 9
⊢ (𝜑 → (〈“𝐸𝑅𝑌”〉 ∈ (∟G‘𝐺) ↔ (𝐸 − 𝑌) = (𝐸 − (((pInvG‘𝐺)‘𝑅)‘𝑌)))) |
53 | 51, 52 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → 〈“𝐸𝑅𝑌”〉 ∈ (∟G‘𝐺)) |
54 | | footexlem.9 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑌 − 𝑄) = (𝑌 − 𝐸)) |
55 | 1, 8, 2, 4, 13, 5,
13, 39, 49 | tgcgrcomlr 26839 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑌 − 𝐸) = (𝐶 − 𝐸)) |
56 | 54, 55 | eqtr2d 2781 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶 − 𝐸) = (𝑌 − 𝑄)) |
57 | 1, 2, 3, 4, 13, 14, 15 | tglinerflx1 26992 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 ∈ (𝐸𝐿𝐹)) |
58 | 57, 20 | eleqtrrd 2844 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 ∈ 𝐴) |
59 | | nelne2 3044 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐸 ≠ 𝐶) |
60 | 58, 22, 59 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ≠ 𝐶) |
61 | 60 | necomd 3001 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ≠ 𝐸) |
62 | 1, 8, 2, 4, 39, 13, 5, 37, 56, 61 | tgcgrneq 26842 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ≠ 𝑄) |
63 | 62 | necomd 3001 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ≠ 𝑌) |
64 | 1, 8, 2, 4, 9, 5, 37, 44 | tgbtwncom 26847 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (𝑄𝐼𝑅)) |
65 | | footexlem.6 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (𝐸𝐼𝑍)) |
66 | 1, 8, 2, 4, 5, 37,
5, 13, 54 | tgcgrcomlr 26839 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 − 𝑌) = (𝐸 − 𝑌)) |
67 | 1, 8, 2, 4, 37, 13 | axtgcgrrflx 26821 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 − 𝐸) = (𝐸 − 𝑄)) |
68 | 54 | eqcomd 2746 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑌 − 𝐸) = (𝑌 − 𝑄)) |
69 | 1, 8, 2, 4, 37, 5,
9, 13, 5, 6, 13, 37, 63, 64, 65, 66, 11, 67, 68 | axtg5seg 26824 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 − 𝐸) = (𝑍 − 𝑄)) |
70 | 1, 8, 2, 4, 9, 13,
6, 37, 69 | tgcgrcomlr 26839 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 − 𝑅) = (𝑄 − 𝑍)) |
71 | 1, 8, 2, 4, 5, 9, 5, 6, 11 | tgcgrcomlr 26839 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 − 𝑌) = (𝑍 − 𝑌)) |
72 | 1, 8, 48, 4, 13, 9, 5, 37, 6,
5, 70, 71, 68 | trgcgr 26875 |
. . . . . . . 8
⊢ (𝜑 → 〈“𝐸𝑅𝑌”〉(cgrG‘𝐺)〈“𝑄𝑍𝑌”〉) |
73 | 1, 8, 2, 3, 27, 4,
13, 9, 5, 48, 37, 6, 5, 53, 72 | ragcgr 27066 |
. . . . . . 7
⊢ (𝜑 → 〈“𝑄𝑍𝑌”〉 ∈ (∟G‘𝐺)) |
74 | 1, 8, 2, 3, 27, 4,
37, 6, 5, 73 | ragcom 27057 |
. . . . . 6
⊢ (𝜑 → 〈“𝑌𝑍𝑄”〉 ∈ (∟G‘𝐺)) |
75 | 1, 8, 2, 3, 27, 4,
5, 6, 37 | israg 27056 |
. . . . . 6
⊢ (𝜑 → (〈“𝑌𝑍𝑄”〉 ∈ (∟G‘𝐺) ↔ (𝑌 − 𝑄) = (𝑌 − (((pInvG‘𝐺)‘𝑍)‘𝑄)))) |
76 | 74, 75 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑌 − 𝑄) = (𝑌 − (((pInvG‘𝐺)‘𝑍)‘𝑄))) |
77 | | footexlem.11 |
. . . . . 6
⊢ (𝜑 → (𝑌 − 𝐷) = (𝑌 − 𝐶)) |
78 | 77 | eqcomd 2746 |
. . . . 5
⊢ (𝜑 → (𝑌 − 𝐶) = (𝑌 − 𝐷)) |
79 | | eqidd 2741 |
. . . . 5
⊢ (𝜑 → (((pInvG‘𝐺)‘𝑍)‘𝑄) = (((pInvG‘𝐺)‘𝑍)‘𝑄)) |
80 | | footexlem.12 |
. . . . 5
⊢ (𝜑 → 𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶)) |
81 | 1, 8, 2, 3, 27, 4,
35, 36, 37, 38, 5, 39, 40, 6, 7, 46, 47, 76, 78, 79, 80 | krippen 27050 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (𝑍𝐼𝑋)) |
82 | 1, 2, 3, 4, 6, 5, 7, 34, 81 | btwnlng3 26980 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝑍𝐿𝑌)) |
83 | 1, 2, 3, 4, 5, 6, 7, 33, 82 | lncom 26981 |
. 2
⊢ (𝜑 → 𝑋 ∈ (𝑌𝐿𝑍)) |
84 | | isperp.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
85 | 49 | eqcomd 2746 |
. . . . . 6
⊢ (𝜑 → (𝐸 − 𝐶) = (𝐸 − 𝑌)) |
86 | 1, 8, 2, 4, 13, 39, 13, 5, 85, 60 | tgcgrneq 26842 |
. . . . 5
⊢ (𝜑 → 𝐸 ≠ 𝑌) |
87 | 1, 2, 3, 4, 13, 5,
6, 86, 65 | btwnlng3 26980 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ (𝐸𝐿𝑌)) |
88 | 1, 2, 3, 4, 13, 5,
86, 86, 84, 58, 21 | tglinethru 26995 |
. . . 4
⊢ (𝜑 → 𝐴 = (𝐸𝐿𝑌)) |
89 | 87, 88 | eleqtrrd 2844 |
. . 3
⊢ (𝜑 → 𝑍 ∈ 𝐴) |
90 | 1, 2, 3, 4, 5, 6, 33, 33, 84, 21, 89 | tglinethru 26995 |
. 2
⊢ (𝜑 → 𝐴 = (𝑌𝐿𝑍)) |
91 | 83, 90 | eleqtrrd 2844 |
1
⊢ (𝜑 → 𝑋 ∈ 𝐴) |