![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincfth | Structured version Visualization version GIF version |
Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
thincfth.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincfth.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
Ref | Expression |
---|---|
thincfth | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincfth.f | . 2 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
2 | thincfth.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat) |
4 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
5 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
6 | eqid 2728 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
7 | eqid 2728 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
8 | 3, 4, 5, 6, 7 | thincmo 48035 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
9 | eqid 2728 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
10 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺) |
11 | 6, 7, 9, 10, 4, 5 | funcf2 17854 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
12 | f1mo 47905 | . . . 4 ⊢ ((∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) | |
13 | 8, 11, 12 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
14 | 13 | ralrimivva 3197 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
15 | 6, 7, 9 | isfth2 17904 | . 2 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
16 | 1, 14, 15 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∃*wmo 2528 ∀wral 3058 class class class wbr 5148 ⟶wf 6544 –1-1→wf1 6545 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 Hom chom 17244 Func cfunc 17840 Faith cfth 17892 ThinCatcthinc 48025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-map 8847 df-ixp 8917 df-func 17844 df-fth 17894 df-thinc 48026 |
This theorem is referenced by: thincciso 48055 |
Copyright terms: Public domain | W3C validator |