Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincfth Structured version   Visualization version   GIF version

Theorem thincfth 47755
Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
thincfth.c (𝜑𝐶 ∈ ThinCat)
thincfth.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
thincfth (𝜑𝐹(𝐶 Faith 𝐷)𝐺)

Proof of Theorem thincfth
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thincfth.f . 2 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
2 thincfth.c . . . . . 6 (𝜑𝐶 ∈ ThinCat)
32adantr 479 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat)
4 simprl 767 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
5 simprr 769 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
6 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2730 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
83, 4, 5, 6, 7thincmo 47736 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
9 eqid 2730 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
101adantr 479 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺)
116, 7, 9, 10, 4, 5funcf2 17822 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
12 f1mo 47606 . . . 4 ((∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
138, 11, 12syl2anc 582 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
1413ralrimivva 3198 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
156, 7, 9isfth2 17870 . 2 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
161, 14, 15sylanbrc 581 1 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2104  ∃*wmo 2530  wral 3059   class class class wbr 5147  wf 6538  1-1wf1 6539  cfv 6542  (class class class)co 7411  Basecbs 17148  Hom chom 17212   Func cfunc 17808   Faith cfth 17858  ThinCatcthinc 47726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-ixp 8894  df-func 17812  df-fth 17860  df-thinc 47727
This theorem is referenced by:  thincciso  47756
  Copyright terms: Public domain W3C validator