Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincfth Structured version   Visualization version   GIF version

Theorem thincfth 49318
Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
thincfth.c (𝜑𝐶 ∈ ThinCat)
thincfth.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
thincfth (𝜑𝐹(𝐶 Faith 𝐷)𝐺)

Proof of Theorem thincfth
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thincfth.f . 2 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
2 thincfth.c . . . . . 6 (𝜑𝐶 ∈ ThinCat)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
5 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
6 eqid 2736 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2736 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
83, 4, 5, 6, 7thincmo 49294 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
9 eqid 2736 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
101adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺)
116, 7, 9, 10, 4, 5funcf2 17886 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
12 f1mo 48811 . . . 4 ((∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
138, 11, 12syl2anc 584 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
1413ralrimivva 3188 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
156, 7, 9isfth2 17935 . 2 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
161, 14, 15sylanbrc 583 1 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  ∃*wmo 2538  wral 3052   class class class wbr 5124  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287   Func cfunc 17872   Faith cfth 17923  ThinCatcthinc 49283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-ixp 8917  df-func 17876  df-fth 17925  df-thinc 49284
This theorem is referenced by:  thincciso  49319
  Copyright terms: Public domain W3C validator