Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincfth Structured version   Visualization version   GIF version

Theorem thincfth 46329
Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
thincfth.c (𝜑𝐶 ∈ ThinCat)
thincfth.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
thincfth (𝜑𝐹(𝐶 Faith 𝐷)𝐺)

Proof of Theorem thincfth
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thincfth.f . 2 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
2 thincfth.c . . . . . 6 (𝜑𝐶 ∈ ThinCat)
32adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat)
4 simprl 768 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
5 simprr 770 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
6 eqid 2738 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2738 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
83, 4, 5, 6, 7thincmo 46310 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
9 eqid 2738 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
101adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺)
116, 7, 9, 10, 4, 5funcf2 17583 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
12 f1mo 46180 . . . 4 ((∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
138, 11, 12syl2anc 584 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
1413ralrimivva 3123 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
156, 7, 9isfth2 17631 . 2 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
161, 14, 15sylanbrc 583 1 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  ∃*wmo 2538  wral 3064   class class class wbr 5074  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973   Func cfunc 17569   Faith cfth 17619  ThinCatcthinc 46300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-ixp 8686  df-func 17573  df-fth 17621  df-thinc 46301
This theorem is referenced by:  thincciso  46330
  Copyright terms: Public domain W3C validator