| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincfth | Structured version Visualization version GIF version | ||
| Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| thincfth.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincfth.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| Ref | Expression |
|---|---|
| thincfth | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincfth.f | . 2 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 2 | thincfth.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat) |
| 4 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
| 5 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
| 6 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 7 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 8 | 3, 4, 5, 6, 7 | thincmo 49294 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 9 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 11 | 6, 7, 9, 10, 4, 5 | funcf2 17886 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 12 | f1mo 48811 | . . . 4 ⊢ ((∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) | |
| 13 | 8, 11, 12 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 14 | 13 | ralrimivva 3188 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 15 | 6, 7, 9 | isfth2 17935 | . 2 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
| 16 | 1, 14, 15 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃*wmo 2538 ∀wral 3052 class class class wbr 5124 ⟶wf 6532 –1-1→wf1 6533 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 Func cfunc 17872 Faith cfth 17923 ThinCatcthinc 49283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-ixp 8917 df-func 17876 df-fth 17925 df-thinc 49284 |
| This theorem is referenced by: thincciso 49319 |
| Copyright terms: Public domain | W3C validator |