Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincfth | Structured version Visualization version GIF version |
Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
thincfth.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincfth.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
Ref | Expression |
---|---|
thincfth | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincfth.f | . 2 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
2 | thincfth.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
3 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat) |
4 | simprl 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
5 | simprr 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
6 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
7 | eqid 2738 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
8 | 3, 4, 5, 6, 7 | thincmo 46267 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
9 | eqid 2738 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
10 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺) |
11 | 6, 7, 9, 10, 4, 5 | funcf2 17572 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
12 | f1mo 46137 | . . . 4 ⊢ ((∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) | |
13 | 8, 11, 12 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
14 | 13 | ralrimivva 3111 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
15 | 6, 7, 9 | isfth2 17620 | . 2 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
16 | 1, 14, 15 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃*wmo 2538 ∀wral 3064 class class class wbr 5075 ⟶wf 6424 –1-1→wf1 6425 ‘cfv 6428 (class class class)co 7269 Basecbs 16901 Hom chom 16962 Func cfunc 17558 Faith cfth 17608 ThinCatcthinc 46257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5486 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-map 8606 df-ixp 8675 df-func 17562 df-fth 17610 df-thinc 46258 |
This theorem is referenced by: thincciso 46287 |
Copyright terms: Public domain | W3C validator |