![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincfth | Structured version Visualization version GIF version |
Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
thincfth.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincfth.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
Ref | Expression |
---|---|
thincfth | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincfth.f | . 2 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
2 | thincfth.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
3 | 2 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat) |
4 | simprl 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
5 | simprr 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
6 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
7 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
8 | 3, 4, 5, 6, 7 | thincmo 47736 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
9 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
10 | 1 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺) |
11 | 6, 7, 9, 10, 4, 5 | funcf2 17822 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
12 | f1mo 47606 | . . . 4 ⊢ ((∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) | |
13 | 8, 11, 12 | syl2anc 582 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
14 | 13 | ralrimivva 3198 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
15 | 6, 7, 9 | isfth2 17870 | . 2 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
16 | 1, 14, 15 | sylanbrc 581 | 1 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 ∃*wmo 2530 ∀wral 3059 class class class wbr 5147 ⟶wf 6538 –1-1→wf1 6539 ‘cfv 6542 (class class class)co 7411 Basecbs 17148 Hom chom 17212 Func cfunc 17808 Faith cfth 17858 ThinCatcthinc 47726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-map 8824 df-ixp 8894 df-func 17812 df-fth 17860 df-thinc 47727 |
This theorem is referenced by: thincciso 47756 |
Copyright terms: Public domain | W3C validator |