Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincfth Structured version   Visualization version   GIF version

Theorem thincfth 49067
Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
thincfth.c (𝜑𝐶 ∈ ThinCat)
thincfth.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
Assertion
Ref Expression
thincfth (𝜑𝐹(𝐶 Faith 𝐷)𝐺)

Proof of Theorem thincfth
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 thincfth.f . 2 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
2 thincfth.c . . . . . 6 (𝜑𝐶 ∈ ThinCat)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ ThinCat)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
5 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
6 eqid 2734 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2734 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
83, 4, 5, 6, 7thincmo 49043 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
9 eqid 2734 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
101adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Func 𝐷)𝐺)
116, 7, 9, 10, 4, 5funcf2 17889 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
12 f1mo 48708 . . . 4 ((∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
138, 11, 12syl2anc 584 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
1413ralrimivva 3189 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
156, 7, 9isfth2 17938 . 2 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
161, 14, 15sylanbrc 583 1 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  ∃*wmo 2536  wral 3050   class class class wbr 5125  wf 6538  1-1wf1 6539  cfv 6542  (class class class)co 7414  Basecbs 17230  Hom chom 17288   Func cfunc 17875   Faith cfth 17926  ThinCatcthinc 49032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-map 8851  df-ixp 8921  df-func 17879  df-fth 17928  df-thinc 49033
This theorem is referenced by:  thincciso  49068
  Copyright terms: Public domain W3C validator