Proof of Theorem tz7.44-2
Step | Hyp | Ref
| Expression |
1 | | fveq2 6769 |
. . . 4
⊢ (𝑦 = suc 𝐵 → (𝐹‘𝑦) = (𝐹‘suc 𝐵)) |
2 | | reseq2 5884 |
. . . . 5
⊢ (𝑦 = suc 𝐵 → (𝐹 ↾ 𝑦) = (𝐹 ↾ suc 𝐵)) |
3 | 2 | fveq2d 6773 |
. . . 4
⊢ (𝑦 = suc 𝐵 → (𝐺‘(𝐹 ↾ 𝑦)) = (𝐺‘(𝐹 ↾ suc 𝐵))) |
4 | 1, 3 | eqeq12d 2756 |
. . 3
⊢ (𝑦 = suc 𝐵 → ((𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦)) ↔ (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵)))) |
5 | | tz7.44.2 |
. . 3
⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) |
6 | 4, 5 | vtoclga 3512 |
. 2
⊢ (suc
𝐵 ∈ 𝑋 → (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵))) |
7 | | tz7.44.1 |
. . 3
⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) |
8 | | eqeq1 2744 |
. . . 4
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 = ∅ ↔ (𝐹 ↾ suc 𝐵) = ∅)) |
9 | | dmeq 5810 |
. . . . . 6
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → dom 𝑥 = dom (𝐹 ↾ suc 𝐵)) |
10 | | limeq 6276 |
. . . . . 6
⊢ (dom
𝑥 = dom (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵))) |
11 | 9, 10 | syl 17 |
. . . . 5
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵))) |
12 | | rneq 5843 |
. . . . . 6
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → ran 𝑥 = ran (𝐹 ↾ suc 𝐵)) |
13 | 12 | unieqd 4859 |
. . . . 5
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → ∪ ran
𝑥 = ∪ ran (𝐹 ↾ suc 𝐵)) |
14 | | fveq1 6768 |
. . . . . . 7
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥‘∪ dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘∪ dom
𝑥)) |
15 | 9 | unieqd 4859 |
. . . . . . . 8
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → ∪ dom
𝑥 = ∪ dom (𝐹 ↾ suc 𝐵)) |
16 | 15 | fveq2d 6773 |
. . . . . . 7
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → ((𝐹 ↾ suc 𝐵)‘∪ dom
𝑥) = ((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))) |
17 | 14, 16 | eqtrd 2780 |
. . . . . 6
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥‘∪ dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))) |
18 | 17 | fveq2d 6773 |
. . . . 5
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → (𝐻‘(𝑥‘∪ dom 𝑥)) = (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))) |
19 | 11, 13, 18 | ifbieq12d 4493 |
. . . 4
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))) = if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) |
20 | 8, 19 | ifbieq2d 4491 |
. . 3
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥)))) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))))) |
21 | 2 | eleq1d 2825 |
. . . 4
⊢ (𝑦 = suc 𝐵 → ((𝐹 ↾ 𝑦) ∈ V ↔ (𝐹 ↾ suc 𝐵) ∈ V)) |
22 | | tz7.44.3 |
. . . 4
⊢ (𝑦 ∈ 𝑋 → (𝐹 ↾ 𝑦) ∈ V) |
23 | 21, 22 | vtoclga 3512 |
. . 3
⊢ (suc
𝐵 ∈ 𝑋 → (𝐹 ↾ suc 𝐵) ∈ V) |
24 | | noel 4270 |
. . . . . . 7
⊢ ¬
𝐵 ∈
∅ |
25 | | dmeq 5810 |
. . . . . . . . 9
⊢ ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = dom ∅) |
26 | | dm0 5827 |
. . . . . . . . 9
⊢ dom
∅ = ∅ |
27 | 25, 26 | eqtrdi 2796 |
. . . . . . . 8
⊢ ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = ∅) |
28 | | tz7.44.5 |
. . . . . . . . . . . . 13
⊢ Ord 𝑋 |
29 | | ordsson 7625 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑋 → 𝑋 ⊆ On) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 𝑋 ⊆ On |
31 | | ordtr 6278 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝑋 → Tr 𝑋) |
32 | 28, 31 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ Tr 𝑋 |
33 | | trsuc 6348 |
. . . . . . . . . . . . 13
⊢ ((Tr
𝑋 ∧ suc 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) |
34 | 32, 33 | mpan 687 |
. . . . . . . . . . . 12
⊢ (suc
𝐵 ∈ 𝑋 → 𝐵 ∈ 𝑋) |
35 | 30, 34 | sselid 3924 |
. . . . . . . . . . 11
⊢ (suc
𝐵 ∈ 𝑋 → 𝐵 ∈ On) |
36 | | sucidg 6342 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ On → 𝐵 ∈ suc 𝐵) |
37 | 35, 36 | syl 17 |
. . . . . . . . . 10
⊢ (suc
𝐵 ∈ 𝑋 → 𝐵 ∈ suc 𝐵) |
38 | | dmres 5911 |
. . . . . . . . . . 11
⊢ dom
(𝐹 ↾ suc 𝐵) = (suc 𝐵 ∩ dom 𝐹) |
39 | | ordelss 6280 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝑋 ∧ suc 𝐵 ∈ 𝑋) → suc 𝐵 ⊆ 𝑋) |
40 | 28, 39 | mpan 687 |
. . . . . . . . . . . . 13
⊢ (suc
𝐵 ∈ 𝑋 → suc 𝐵 ⊆ 𝑋) |
41 | | tz7.44.4 |
. . . . . . . . . . . . . 14
⊢ 𝐹 Fn 𝑋 |
42 | 41 | fndmi 6534 |
. . . . . . . . . . . . 13
⊢ dom 𝐹 = 𝑋 |
43 | 40, 42 | sseqtrrdi 3977 |
. . . . . . . . . . . 12
⊢ (suc
𝐵 ∈ 𝑋 → suc 𝐵 ⊆ dom 𝐹) |
44 | | df-ss 3909 |
. . . . . . . . . . . 12
⊢ (suc
𝐵 ⊆ dom 𝐹 ↔ (suc 𝐵 ∩ dom 𝐹) = suc 𝐵) |
45 | 43, 44 | sylib 217 |
. . . . . . . . . . 11
⊢ (suc
𝐵 ∈ 𝑋 → (suc 𝐵 ∩ dom 𝐹) = suc 𝐵) |
46 | 38, 45 | eqtrid 2792 |
. . . . . . . . . 10
⊢ (suc
𝐵 ∈ 𝑋 → dom (𝐹 ↾ suc 𝐵) = suc 𝐵) |
47 | 37, 46 | eleqtrrd 2844 |
. . . . . . . . 9
⊢ (suc
𝐵 ∈ 𝑋 → 𝐵 ∈ dom (𝐹 ↾ suc 𝐵)) |
48 | | eleq2 2829 |
. . . . . . . . 9
⊢ (dom
(𝐹 ↾ suc 𝐵) = ∅ → (𝐵 ∈ dom (𝐹 ↾ suc 𝐵) ↔ 𝐵 ∈ ∅)) |
49 | 47, 48 | syl5ibcom 244 |
. . . . . . . 8
⊢ (suc
𝐵 ∈ 𝑋 → (dom (𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅)) |
50 | 27, 49 | syl5 34 |
. . . . . . 7
⊢ (suc
𝐵 ∈ 𝑋 → ((𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅)) |
51 | 24, 50 | mtoi 198 |
. . . . . 6
⊢ (suc
𝐵 ∈ 𝑋 → ¬ (𝐹 ↾ suc 𝐵) = ∅) |
52 | 51 | iffalsed 4476 |
. . . . 5
⊢ (suc
𝐵 ∈ 𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) = if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) |
53 | | nlimsucg 7681 |
. . . . . . . 8
⊢ (𝐵 ∈ On → ¬ Lim suc
𝐵) |
54 | 35, 53 | syl 17 |
. . . . . . 7
⊢ (suc
𝐵 ∈ 𝑋 → ¬ Lim suc 𝐵) |
55 | | limeq 6276 |
. . . . . . . 8
⊢ (dom
(𝐹 ↾ suc 𝐵) = suc 𝐵 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵)) |
56 | 46, 55 | syl 17 |
. . . . . . 7
⊢ (suc
𝐵 ∈ 𝑋 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵)) |
57 | 54, 56 | mtbird 325 |
. . . . . 6
⊢ (suc
𝐵 ∈ 𝑋 → ¬ Lim dom (𝐹 ↾ suc 𝐵)) |
58 | 57 | iffalsed 4476 |
. . . . 5
⊢ (suc
𝐵 ∈ 𝑋 → if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))) = (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))) |
59 | 46 | unieqd 4859 |
. . . . . . . . 9
⊢ (suc
𝐵 ∈ 𝑋 → ∪ dom
(𝐹 ↾ suc 𝐵) = ∪
suc 𝐵) |
60 | | eloni 6274 |
. . . . . . . . . 10
⊢ (𝐵 ∈ On → Ord 𝐵) |
61 | | ordunisuc 7671 |
. . . . . . . . . 10
⊢ (Ord
𝐵 → ∪ suc 𝐵 = 𝐵) |
62 | 35, 60, 61 | 3syl 18 |
. . . . . . . . 9
⊢ (suc
𝐵 ∈ 𝑋 → ∪ suc
𝐵 = 𝐵) |
63 | 59, 62 | eqtrd 2780 |
. . . . . . . 8
⊢ (suc
𝐵 ∈ 𝑋 → ∪ dom
(𝐹 ↾ suc 𝐵) = 𝐵) |
64 | 63 | fveq2d 6773 |
. . . . . . 7
⊢ (suc
𝐵 ∈ 𝑋 → ((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)) = ((𝐹 ↾ suc 𝐵)‘𝐵)) |
65 | 37 | fvresd 6789 |
. . . . . . 7
⊢ (suc
𝐵 ∈ 𝑋 → ((𝐹 ↾ suc 𝐵)‘𝐵) = (𝐹‘𝐵)) |
66 | 64, 65 | eqtrd 2780 |
. . . . . 6
⊢ (suc
𝐵 ∈ 𝑋 → ((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)) = (𝐹‘𝐵)) |
67 | 66 | fveq2d 6773 |
. . . . 5
⊢ (suc
𝐵 ∈ 𝑋 → (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))) = (𝐻‘(𝐹‘𝐵))) |
68 | 52, 58, 67 | 3eqtrd 2784 |
. . . 4
⊢ (suc
𝐵 ∈ 𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) = (𝐻‘(𝐹‘𝐵))) |
69 | | fvex 6782 |
. . . 4
⊢ (𝐻‘(𝐹‘𝐵)) ∈ V |
70 | 68, 69 | eqeltrdi 2849 |
. . 3
⊢ (suc
𝐵 ∈ 𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) ∈ V) |
71 | 7, 20, 23, 70 | fvmptd3 6893 |
. 2
⊢ (suc
𝐵 ∈ 𝑋 → (𝐺‘(𝐹 ↾ suc 𝐵)) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))))) |
72 | 6, 71, 68 | 3eqtrd 2784 |
1
⊢ (suc
𝐵 ∈ 𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹‘𝐵))) |