MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-2 Structured version   Visualization version   GIF version

Theorem tz7.44-2 8375
Description: The value of 𝐹 at a successor ordinal. Part 2 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44.3 (𝑦𝑋 → (𝐹𝑦) ∈ V)
tz7.44.4 𝐹 Fn 𝑋
tz7.44.5 Ord 𝑋
Assertion
Ref Expression
tz7.44-2 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-2
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑦 = suc 𝐵 → (𝐹𝑦) = (𝐹‘suc 𝐵))
2 reseq2 5945 . . . . 5 (𝑦 = suc 𝐵 → (𝐹𝑦) = (𝐹 ↾ suc 𝐵))
32fveq2d 6862 . . . 4 (𝑦 = suc 𝐵 → (𝐺‘(𝐹𝑦)) = (𝐺‘(𝐹 ↾ suc 𝐵)))
41, 3eqeq12d 2745 . . 3 (𝑦 = suc 𝐵 → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵))))
5 tz7.44.2 . . 3 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
64, 5vtoclga 3543 . 2 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵)))
7 tz7.44.1 . . 3 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
8 eqeq1 2733 . . . 4 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 = ∅ ↔ (𝐹 ↾ suc 𝐵) = ∅))
9 dmeq 5867 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → dom 𝑥 = dom (𝐹 ↾ suc 𝐵))
10 limeq 6344 . . . . . 6 (dom 𝑥 = dom (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵)))
119, 10syl 17 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵)))
12 rneq 5900 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → ran 𝑥 = ran (𝐹 ↾ suc 𝐵))
1312unieqd 4884 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → ran 𝑥 = ran (𝐹 ↾ suc 𝐵))
14 fveq1 6857 . . . . . . 7 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom 𝑥))
159unieqd 4884 . . . . . . . 8 (𝑥 = (𝐹 ↾ suc 𝐵) → dom 𝑥 = dom (𝐹 ↾ suc 𝐵))
1615fveq2d 6862 . . . . . . 7 (𝑥 = (𝐹 ↾ suc 𝐵) → ((𝐹 ↾ suc 𝐵)‘ dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))
1714, 16eqtrd 2764 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))
1817fveq2d 6862 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝐻‘(𝑥 dom 𝑥)) = (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))
1911, 13, 18ifbieq12d 4517 . . . 4 (𝑥 = (𝐹 ↾ suc 𝐵) → if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥))) = if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))))
208, 19ifbieq2d 4515 . . 3 (𝑥 = (𝐹 ↾ suc 𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))))
212eleq1d 2813 . . . 4 (𝑦 = suc 𝐵 → ((𝐹𝑦) ∈ V ↔ (𝐹 ↾ suc 𝐵) ∈ V))
22 tz7.44.3 . . . 4 (𝑦𝑋 → (𝐹𝑦) ∈ V)
2321, 22vtoclga 3543 . . 3 (suc 𝐵𝑋 → (𝐹 ↾ suc 𝐵) ∈ V)
24 noel 4301 . . . . . . 7 ¬ 𝐵 ∈ ∅
25 dmeq 5867 . . . . . . . . 9 ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = dom ∅)
26 dm0 5884 . . . . . . . . 9 dom ∅ = ∅
2725, 26eqtrdi 2780 . . . . . . . 8 ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = ∅)
28 tz7.44.5 . . . . . . . . . . . . 13 Ord 𝑋
29 ordsson 7759 . . . . . . . . . . . . 13 (Ord 𝑋𝑋 ⊆ On)
3028, 29ax-mp 5 . . . . . . . . . . . 12 𝑋 ⊆ On
31 ordtr 6346 . . . . . . . . . . . . . 14 (Ord 𝑋 → Tr 𝑋)
3228, 31ax-mp 5 . . . . . . . . . . . . 13 Tr 𝑋
33 trsuc 6421 . . . . . . . . . . . . 13 ((Tr 𝑋 ∧ suc 𝐵𝑋) → 𝐵𝑋)
3432, 33mpan 690 . . . . . . . . . . . 12 (suc 𝐵𝑋𝐵𝑋)
3530, 34sselid 3944 . . . . . . . . . . 11 (suc 𝐵𝑋𝐵 ∈ On)
36 sucidg 6415 . . . . . . . . . . 11 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
3735, 36syl 17 . . . . . . . . . 10 (suc 𝐵𝑋𝐵 ∈ suc 𝐵)
38 dmres 5983 . . . . . . . . . . 11 dom (𝐹 ↾ suc 𝐵) = (suc 𝐵 ∩ dom 𝐹)
39 ordelss 6348 . . . . . . . . . . . . . 14 ((Ord 𝑋 ∧ suc 𝐵𝑋) → suc 𝐵𝑋)
4028, 39mpan 690 . . . . . . . . . . . . 13 (suc 𝐵𝑋 → suc 𝐵𝑋)
41 tz7.44.4 . . . . . . . . . . . . . 14 𝐹 Fn 𝑋
4241fndmi 6622 . . . . . . . . . . . . 13 dom 𝐹 = 𝑋
4340, 42sseqtrrdi 3988 . . . . . . . . . . . 12 (suc 𝐵𝑋 → suc 𝐵 ⊆ dom 𝐹)
44 dfss2 3932 . . . . . . . . . . . 12 (suc 𝐵 ⊆ dom 𝐹 ↔ (suc 𝐵 ∩ dom 𝐹) = suc 𝐵)
4543, 44sylib 218 . . . . . . . . . . 11 (suc 𝐵𝑋 → (suc 𝐵 ∩ dom 𝐹) = suc 𝐵)
4638, 45eqtrid 2776 . . . . . . . . . 10 (suc 𝐵𝑋 → dom (𝐹 ↾ suc 𝐵) = suc 𝐵)
4737, 46eleqtrrd 2831 . . . . . . . . 9 (suc 𝐵𝑋𝐵 ∈ dom (𝐹 ↾ suc 𝐵))
48 eleq2 2817 . . . . . . . . 9 (dom (𝐹 ↾ suc 𝐵) = ∅ → (𝐵 ∈ dom (𝐹 ↾ suc 𝐵) ↔ 𝐵 ∈ ∅))
4947, 48syl5ibcom 245 . . . . . . . 8 (suc 𝐵𝑋 → (dom (𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅))
5027, 49syl5 34 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅))
5124, 50mtoi 199 . . . . . 6 (suc 𝐵𝑋 → ¬ (𝐹 ↾ suc 𝐵) = ∅)
5251iffalsed 4499 . . . . 5 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) = if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))))
53 nlimsucg 7818 . . . . . . . 8 (𝐵 ∈ On → ¬ Lim suc 𝐵)
5435, 53syl 17 . . . . . . 7 (suc 𝐵𝑋 → ¬ Lim suc 𝐵)
55 limeq 6344 . . . . . . . 8 (dom (𝐹 ↾ suc 𝐵) = suc 𝐵 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵))
5646, 55syl 17 . . . . . . 7 (suc 𝐵𝑋 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵))
5754, 56mtbird 325 . . . . . 6 (suc 𝐵𝑋 → ¬ Lim dom (𝐹 ↾ suc 𝐵))
5857iffalsed 4499 . . . . 5 (suc 𝐵𝑋 → if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))) = (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))
5946unieqd 4884 . . . . . . . . 9 (suc 𝐵𝑋 dom (𝐹 ↾ suc 𝐵) = suc 𝐵)
60 eloni 6342 . . . . . . . . . 10 (𝐵 ∈ On → Ord 𝐵)
61 ordunisuc 7807 . . . . . . . . . 10 (Ord 𝐵 suc 𝐵 = 𝐵)
6235, 60, 613syl 18 . . . . . . . . 9 (suc 𝐵𝑋 suc 𝐵 = 𝐵)
6359, 62eqtrd 2764 . . . . . . . 8 (suc 𝐵𝑋 dom (𝐹 ↾ suc 𝐵) = 𝐵)
6463fveq2d 6862 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)) = ((𝐹 ↾ suc 𝐵)‘𝐵))
6537fvresd 6878 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘𝐵) = (𝐹𝐵))
6664, 65eqtrd 2764 . . . . . 6 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)) = (𝐹𝐵))
6766fveq2d 6862 . . . . 5 (suc 𝐵𝑋 → (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))) = (𝐻‘(𝐹𝐵)))
6852, 58, 673eqtrd 2768 . . . 4 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) = (𝐻‘(𝐹𝐵)))
69 fvex 6871 . . . 4 (𝐻‘(𝐹𝐵)) ∈ V
7068, 69eqeltrdi 2836 . . 3 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) ∈ V)
717, 20, 23, 70fvmptd3 6991 . 2 (suc 𝐵𝑋 → (𝐺‘(𝐹 ↾ suc 𝐵)) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))))
726, 71, 683eqtrd 2768 1 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  c0 4296  ifcif 4488   cuni 4871  cmpt 5188  Tr wtr 5214  dom cdm 5638  ran crn 5639  cres 5640  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  rdgsucg  8391
  Copyright terms: Public domain W3C validator