MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-2 Structured version   Visualization version   GIF version

Theorem tz7.44-2 8238
Description: The value of 𝐹 at a successor ordinal. Part 2 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44.3 (𝑦𝑋 → (𝐹𝑦) ∈ V)
tz7.44.4 𝐹 Fn 𝑋
tz7.44.5 Ord 𝑋
Assertion
Ref Expression
tz7.44-2 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-2
StepHypRef Expression
1 fveq2 6774 . . . 4 (𝑦 = suc 𝐵 → (𝐹𝑦) = (𝐹‘suc 𝐵))
2 reseq2 5886 . . . . 5 (𝑦 = suc 𝐵 → (𝐹𝑦) = (𝐹 ↾ suc 𝐵))
32fveq2d 6778 . . . 4 (𝑦 = suc 𝐵 → (𝐺‘(𝐹𝑦)) = (𝐺‘(𝐹 ↾ suc 𝐵)))
41, 3eqeq12d 2754 . . 3 (𝑦 = suc 𝐵 → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵))))
5 tz7.44.2 . . 3 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
64, 5vtoclga 3513 . 2 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵)))
7 tz7.44.1 . . 3 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
8 eqeq1 2742 . . . 4 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 = ∅ ↔ (𝐹 ↾ suc 𝐵) = ∅))
9 dmeq 5812 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → dom 𝑥 = dom (𝐹 ↾ suc 𝐵))
10 limeq 6278 . . . . . 6 (dom 𝑥 = dom (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵)))
119, 10syl 17 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵)))
12 rneq 5845 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → ran 𝑥 = ran (𝐹 ↾ suc 𝐵))
1312unieqd 4853 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → ran 𝑥 = ran (𝐹 ↾ suc 𝐵))
14 fveq1 6773 . . . . . . 7 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom 𝑥))
159unieqd 4853 . . . . . . . 8 (𝑥 = (𝐹 ↾ suc 𝐵) → dom 𝑥 = dom (𝐹 ↾ suc 𝐵))
1615fveq2d 6778 . . . . . . 7 (𝑥 = (𝐹 ↾ suc 𝐵) → ((𝐹 ↾ suc 𝐵)‘ dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))
1714, 16eqtrd 2778 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))
1817fveq2d 6778 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝐻‘(𝑥 dom 𝑥)) = (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))
1911, 13, 18ifbieq12d 4487 . . . 4 (𝑥 = (𝐹 ↾ suc 𝐵) → if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥))) = if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))))
208, 19ifbieq2d 4485 . . 3 (𝑥 = (𝐹 ↾ suc 𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))))
212eleq1d 2823 . . . 4 (𝑦 = suc 𝐵 → ((𝐹𝑦) ∈ V ↔ (𝐹 ↾ suc 𝐵) ∈ V))
22 tz7.44.3 . . . 4 (𝑦𝑋 → (𝐹𝑦) ∈ V)
2321, 22vtoclga 3513 . . 3 (suc 𝐵𝑋 → (𝐹 ↾ suc 𝐵) ∈ V)
24 noel 4264 . . . . . . 7 ¬ 𝐵 ∈ ∅
25 dmeq 5812 . . . . . . . . 9 ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = dom ∅)
26 dm0 5829 . . . . . . . . 9 dom ∅ = ∅
2725, 26eqtrdi 2794 . . . . . . . 8 ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = ∅)
28 tz7.44.5 . . . . . . . . . . . . 13 Ord 𝑋
29 ordsson 7633 . . . . . . . . . . . . 13 (Ord 𝑋𝑋 ⊆ On)
3028, 29ax-mp 5 . . . . . . . . . . . 12 𝑋 ⊆ On
31 ordtr 6280 . . . . . . . . . . . . . 14 (Ord 𝑋 → Tr 𝑋)
3228, 31ax-mp 5 . . . . . . . . . . . . 13 Tr 𝑋
33 trsuc 6350 . . . . . . . . . . . . 13 ((Tr 𝑋 ∧ suc 𝐵𝑋) → 𝐵𝑋)
3432, 33mpan 687 . . . . . . . . . . . 12 (suc 𝐵𝑋𝐵𝑋)
3530, 34sselid 3919 . . . . . . . . . . 11 (suc 𝐵𝑋𝐵 ∈ On)
36 sucidg 6344 . . . . . . . . . . 11 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
3735, 36syl 17 . . . . . . . . . 10 (suc 𝐵𝑋𝐵 ∈ suc 𝐵)
38 dmres 5913 . . . . . . . . . . 11 dom (𝐹 ↾ suc 𝐵) = (suc 𝐵 ∩ dom 𝐹)
39 ordelss 6282 . . . . . . . . . . . . . 14 ((Ord 𝑋 ∧ suc 𝐵𝑋) → suc 𝐵𝑋)
4028, 39mpan 687 . . . . . . . . . . . . 13 (suc 𝐵𝑋 → suc 𝐵𝑋)
41 tz7.44.4 . . . . . . . . . . . . . 14 𝐹 Fn 𝑋
4241fndmi 6537 . . . . . . . . . . . . 13 dom 𝐹 = 𝑋
4340, 42sseqtrrdi 3972 . . . . . . . . . . . 12 (suc 𝐵𝑋 → suc 𝐵 ⊆ dom 𝐹)
44 df-ss 3904 . . . . . . . . . . . 12 (suc 𝐵 ⊆ dom 𝐹 ↔ (suc 𝐵 ∩ dom 𝐹) = suc 𝐵)
4543, 44sylib 217 . . . . . . . . . . 11 (suc 𝐵𝑋 → (suc 𝐵 ∩ dom 𝐹) = suc 𝐵)
4638, 45eqtrid 2790 . . . . . . . . . 10 (suc 𝐵𝑋 → dom (𝐹 ↾ suc 𝐵) = suc 𝐵)
4737, 46eleqtrrd 2842 . . . . . . . . 9 (suc 𝐵𝑋𝐵 ∈ dom (𝐹 ↾ suc 𝐵))
48 eleq2 2827 . . . . . . . . 9 (dom (𝐹 ↾ suc 𝐵) = ∅ → (𝐵 ∈ dom (𝐹 ↾ suc 𝐵) ↔ 𝐵 ∈ ∅))
4947, 48syl5ibcom 244 . . . . . . . 8 (suc 𝐵𝑋 → (dom (𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅))
5027, 49syl5 34 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅))
5124, 50mtoi 198 . . . . . 6 (suc 𝐵𝑋 → ¬ (𝐹 ↾ suc 𝐵) = ∅)
5251iffalsed 4470 . . . . 5 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) = if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))))
53 nlimsucg 7689 . . . . . . . 8 (𝐵 ∈ On → ¬ Lim suc 𝐵)
5435, 53syl 17 . . . . . . 7 (suc 𝐵𝑋 → ¬ Lim suc 𝐵)
55 limeq 6278 . . . . . . . 8 (dom (𝐹 ↾ suc 𝐵) = suc 𝐵 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵))
5646, 55syl 17 . . . . . . 7 (suc 𝐵𝑋 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵))
5754, 56mtbird 325 . . . . . 6 (suc 𝐵𝑋 → ¬ Lim dom (𝐹 ↾ suc 𝐵))
5857iffalsed 4470 . . . . 5 (suc 𝐵𝑋 → if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))) = (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))
5946unieqd 4853 . . . . . . . . 9 (suc 𝐵𝑋 dom (𝐹 ↾ suc 𝐵) = suc 𝐵)
60 eloni 6276 . . . . . . . . . 10 (𝐵 ∈ On → Ord 𝐵)
61 ordunisuc 7679 . . . . . . . . . 10 (Ord 𝐵 suc 𝐵 = 𝐵)
6235, 60, 613syl 18 . . . . . . . . 9 (suc 𝐵𝑋 suc 𝐵 = 𝐵)
6359, 62eqtrd 2778 . . . . . . . 8 (suc 𝐵𝑋 dom (𝐹 ↾ suc 𝐵) = 𝐵)
6463fveq2d 6778 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)) = ((𝐹 ↾ suc 𝐵)‘𝐵))
6537fvresd 6794 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘𝐵) = (𝐹𝐵))
6664, 65eqtrd 2778 . . . . . 6 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)) = (𝐹𝐵))
6766fveq2d 6778 . . . . 5 (suc 𝐵𝑋 → (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))) = (𝐻‘(𝐹𝐵)))
6852, 58, 673eqtrd 2782 . . . 4 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) = (𝐻‘(𝐹𝐵)))
69 fvex 6787 . . . 4 (𝐻‘(𝐹𝐵)) ∈ V
7068, 69eqeltrdi 2847 . . 3 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) ∈ V)
717, 20, 23, 70fvmptd3 6898 . 2 (suc 𝐵𝑋 → (𝐺‘(𝐹 ↾ suc 𝐵)) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))))
726, 71, 683eqtrd 2782 1 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  c0 4256  ifcif 4459   cuni 4839  cmpt 5157  Tr wtr 5191  dom cdm 5589  ran crn 5590  cres 5591  Ord word 6265  Oncon0 6266  Lim wlim 6267  suc csuc 6268   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  rdgsucg  8254
  Copyright terms: Public domain W3C validator