Proof of Theorem tz7.44-2
Step | Hyp | Ref
| Expression |
1 | | fveq2 6545 |
. . . 4
⊢ (𝑦 = suc 𝐵 → (𝐹‘𝑦) = (𝐹‘suc 𝐵)) |
2 | | reseq2 5736 |
. . . . 5
⊢ (𝑦 = suc 𝐵 → (𝐹 ↾ 𝑦) = (𝐹 ↾ suc 𝐵)) |
3 | 2 | fveq2d 6549 |
. . . 4
⊢ (𝑦 = suc 𝐵 → (𝐺‘(𝐹 ↾ 𝑦)) = (𝐺‘(𝐹 ↾ suc 𝐵))) |
4 | 1, 3 | eqeq12d 2812 |
. . 3
⊢ (𝑦 = suc 𝐵 → ((𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦)) ↔ (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵)))) |
5 | | tz7.44.2 |
. . 3
⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) |
6 | 4, 5 | vtoclga 3519 |
. 2
⊢ (suc
𝐵 ∈ 𝑋 → (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵))) |
7 | 2 | eleq1d 2869 |
. . . 4
⊢ (𝑦 = suc 𝐵 → ((𝐹 ↾ 𝑦) ∈ V ↔ (𝐹 ↾ suc 𝐵) ∈ V)) |
8 | | tz7.44.3 |
. . . 4
⊢ (𝑦 ∈ 𝑋 → (𝐹 ↾ 𝑦) ∈ V) |
9 | 7, 8 | vtoclga 3519 |
. . 3
⊢ (suc
𝐵 ∈ 𝑋 → (𝐹 ↾ suc 𝐵) ∈ V) |
10 | | noel 4222 |
. . . . . . 7
⊢ ¬
𝐵 ∈
∅ |
11 | | dmeq 5665 |
. . . . . . . . 9
⊢ ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = dom ∅) |
12 | | dm0 5683 |
. . . . . . . . 9
⊢ dom
∅ = ∅ |
13 | 11, 12 | syl6eq 2849 |
. . . . . . . 8
⊢ ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = ∅) |
14 | | tz7.44.5 |
. . . . . . . . . . . . 13
⊢ Ord 𝑋 |
15 | | ordsson 7367 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑋 → 𝑋 ⊆ On) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 𝑋 ⊆ On |
17 | | ordtr 6087 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝑋 → Tr 𝑋) |
18 | 14, 17 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ Tr 𝑋 |
19 | | trsuc 6157 |
. . . . . . . . . . . . 13
⊢ ((Tr
𝑋 ∧ suc 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) |
20 | 18, 19 | mpan 686 |
. . . . . . . . . . . 12
⊢ (suc
𝐵 ∈ 𝑋 → 𝐵 ∈ 𝑋) |
21 | 16, 20 | sseldi 3893 |
. . . . . . . . . . 11
⊢ (suc
𝐵 ∈ 𝑋 → 𝐵 ∈ On) |
22 | | sucidg 6151 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ On → 𝐵 ∈ suc 𝐵) |
23 | 21, 22 | syl 17 |
. . . . . . . . . 10
⊢ (suc
𝐵 ∈ 𝑋 → 𝐵 ∈ suc 𝐵) |
24 | | dmres 5763 |
. . . . . . . . . . 11
⊢ dom
(𝐹 ↾ suc 𝐵) = (suc 𝐵 ∩ dom 𝐹) |
25 | | ordelss 6089 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝑋 ∧ suc 𝐵 ∈ 𝑋) → suc 𝐵 ⊆ 𝑋) |
26 | 14, 25 | mpan 686 |
. . . . . . . . . . . . 13
⊢ (suc
𝐵 ∈ 𝑋 → suc 𝐵 ⊆ 𝑋) |
27 | | tz7.44.4 |
. . . . . . . . . . . . . 14
⊢ 𝐹 Fn 𝑋 |
28 | | fndm 6332 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
29 | 27, 28 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ dom 𝐹 = 𝑋 |
30 | 26, 29 | syl6sseqr 3945 |
. . . . . . . . . . . 12
⊢ (suc
𝐵 ∈ 𝑋 → suc 𝐵 ⊆ dom 𝐹) |
31 | | df-ss 3880 |
. . . . . . . . . . . 12
⊢ (suc
𝐵 ⊆ dom 𝐹 ↔ (suc 𝐵 ∩ dom 𝐹) = suc 𝐵) |
32 | 30, 31 | sylib 219 |
. . . . . . . . . . 11
⊢ (suc
𝐵 ∈ 𝑋 → (suc 𝐵 ∩ dom 𝐹) = suc 𝐵) |
33 | 24, 32 | syl5eq 2845 |
. . . . . . . . . 10
⊢ (suc
𝐵 ∈ 𝑋 → dom (𝐹 ↾ suc 𝐵) = suc 𝐵) |
34 | 23, 33 | eleqtrrd 2888 |
. . . . . . . . 9
⊢ (suc
𝐵 ∈ 𝑋 → 𝐵 ∈ dom (𝐹 ↾ suc 𝐵)) |
35 | | eleq2 2873 |
. . . . . . . . 9
⊢ (dom
(𝐹 ↾ suc 𝐵) = ∅ → (𝐵 ∈ dom (𝐹 ↾ suc 𝐵) ↔ 𝐵 ∈ ∅)) |
36 | 34, 35 | syl5ibcom 246 |
. . . . . . . 8
⊢ (suc
𝐵 ∈ 𝑋 → (dom (𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅)) |
37 | 13, 36 | syl5 34 |
. . . . . . 7
⊢ (suc
𝐵 ∈ 𝑋 → ((𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅)) |
38 | 10, 37 | mtoi 200 |
. . . . . 6
⊢ (suc
𝐵 ∈ 𝑋 → ¬ (𝐹 ↾ suc 𝐵) = ∅) |
39 | 38 | iffalsed 4398 |
. . . . 5
⊢ (suc
𝐵 ∈ 𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) = if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) |
40 | | nlimsucg 7420 |
. . . . . . . 8
⊢ (𝐵 ∈ On → ¬ Lim suc
𝐵) |
41 | 21, 40 | syl 17 |
. . . . . . 7
⊢ (suc
𝐵 ∈ 𝑋 → ¬ Lim suc 𝐵) |
42 | | limeq 6085 |
. . . . . . . 8
⊢ (dom
(𝐹 ↾ suc 𝐵) = suc 𝐵 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵)) |
43 | 33, 42 | syl 17 |
. . . . . . 7
⊢ (suc
𝐵 ∈ 𝑋 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵)) |
44 | 41, 43 | mtbird 326 |
. . . . . 6
⊢ (suc
𝐵 ∈ 𝑋 → ¬ Lim dom (𝐹 ↾ suc 𝐵)) |
45 | 44 | iffalsed 4398 |
. . . . 5
⊢ (suc
𝐵 ∈ 𝑋 → if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))) = (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))) |
46 | 33 | unieqd 4761 |
. . . . . . . . 9
⊢ (suc
𝐵 ∈ 𝑋 → ∪ dom
(𝐹 ↾ suc 𝐵) = ∪
suc 𝐵) |
47 | | eloni 6083 |
. . . . . . . . . 10
⊢ (𝐵 ∈ On → Ord 𝐵) |
48 | | ordunisuc 7410 |
. . . . . . . . . 10
⊢ (Ord
𝐵 → ∪ suc 𝐵 = 𝐵) |
49 | 21, 47, 48 | 3syl 18 |
. . . . . . . . 9
⊢ (suc
𝐵 ∈ 𝑋 → ∪ suc
𝐵 = 𝐵) |
50 | 46, 49 | eqtrd 2833 |
. . . . . . . 8
⊢ (suc
𝐵 ∈ 𝑋 → ∪ dom
(𝐹 ↾ suc 𝐵) = 𝐵) |
51 | 50 | fveq2d 6549 |
. . . . . . 7
⊢ (suc
𝐵 ∈ 𝑋 → ((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)) = ((𝐹 ↾ suc 𝐵)‘𝐵)) |
52 | 23 | fvresd 6565 |
. . . . . . 7
⊢ (suc
𝐵 ∈ 𝑋 → ((𝐹 ↾ suc 𝐵)‘𝐵) = (𝐹‘𝐵)) |
53 | 51, 52 | eqtrd 2833 |
. . . . . 6
⊢ (suc
𝐵 ∈ 𝑋 → ((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)) = (𝐹‘𝐵)) |
54 | 53 | fveq2d 6549 |
. . . . 5
⊢ (suc
𝐵 ∈ 𝑋 → (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))) = (𝐻‘(𝐹‘𝐵))) |
55 | 39, 45, 54 | 3eqtrd 2837 |
. . . 4
⊢ (suc
𝐵 ∈ 𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) = (𝐻‘(𝐹‘𝐵))) |
56 | | fvex 6558 |
. . . 4
⊢ (𝐻‘(𝐹‘𝐵)) ∈ V |
57 | 55, 56 | syl6eqel 2893 |
. . 3
⊢ (suc
𝐵 ∈ 𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) ∈ V) |
58 | | eqeq1 2801 |
. . . . 5
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 = ∅ ↔ (𝐹 ↾ suc 𝐵) = ∅)) |
59 | | dmeq 5665 |
. . . . . . 7
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → dom 𝑥 = dom (𝐹 ↾ suc 𝐵)) |
60 | | limeq 6085 |
. . . . . . 7
⊢ (dom
𝑥 = dom (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵))) |
61 | 59, 60 | syl 17 |
. . . . . 6
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵))) |
62 | | rneq 5695 |
. . . . . . 7
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → ran 𝑥 = ran (𝐹 ↾ suc 𝐵)) |
63 | 62 | unieqd 4761 |
. . . . . 6
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → ∪ ran
𝑥 = ∪ ran (𝐹 ↾ suc 𝐵)) |
64 | | fveq1 6544 |
. . . . . . . 8
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥‘∪ dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘∪ dom
𝑥)) |
65 | 59 | unieqd 4761 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → ∪ dom
𝑥 = ∪ dom (𝐹 ↾ suc 𝐵)) |
66 | 65 | fveq2d 6549 |
. . . . . . . 8
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → ((𝐹 ↾ suc 𝐵)‘∪ dom
𝑥) = ((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))) |
67 | 64, 66 | eqtrd 2833 |
. . . . . . 7
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥‘∪ dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))) |
68 | 67 | fveq2d 6549 |
. . . . . 6
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → (𝐻‘(𝑥‘∪ dom 𝑥)) = (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))) |
69 | 61, 63, 68 | ifbieq12d 4414 |
. . . . 5
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))) = if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) |
70 | 58, 69 | ifbieq2d 4412 |
. . . 4
⊢ (𝑥 = (𝐹 ↾ suc 𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥)))) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))))) |
71 | | tz7.44.1 |
. . . 4
⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) |
72 | 70, 71 | fvmptg 6640 |
. . 3
⊢ (((𝐹 ↾ suc 𝐵) ∈ V ∧ if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵))))) ∈ V) → (𝐺‘(𝐹 ↾ suc 𝐵)) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))))) |
73 | 9, 57, 72 | syl2anc 584 |
. 2
⊢ (suc
𝐵 ∈ 𝑋 → (𝐺‘(𝐹 ↾ suc 𝐵)) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ∪ ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘∪ dom
(𝐹 ↾ suc 𝐵)))))) |
74 | 6, 73, 55 | 3eqtrd 2837 |
1
⊢ (suc
𝐵 ∈ 𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹‘𝐵))) |