MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-2 Structured version   Visualization version   GIF version

Theorem tz7.44-2 8037
Description: The value of 𝐹 at a successor ordinal. Part 2 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44.3 (𝑦𝑋 → (𝐹𝑦) ∈ V)
tz7.44.4 𝐹 Fn 𝑋
tz7.44.5 Ord 𝑋
Assertion
Ref Expression
tz7.44-2 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-2
StepHypRef Expression
1 fveq2 6665 . . . 4 (𝑦 = suc 𝐵 → (𝐹𝑦) = (𝐹‘suc 𝐵))
2 reseq2 5843 . . . . 5 (𝑦 = suc 𝐵 → (𝐹𝑦) = (𝐹 ↾ suc 𝐵))
32fveq2d 6669 . . . 4 (𝑦 = suc 𝐵 → (𝐺‘(𝐹𝑦)) = (𝐺‘(𝐹 ↾ suc 𝐵)))
41, 3eqeq12d 2837 . . 3 (𝑦 = suc 𝐵 → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵))))
5 tz7.44.2 . . 3 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
64, 5vtoclga 3574 . 2 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵)))
7 tz7.44.1 . . 3 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
8 eqeq1 2825 . . . 4 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 = ∅ ↔ (𝐹 ↾ suc 𝐵) = ∅))
9 dmeq 5767 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → dom 𝑥 = dom (𝐹 ↾ suc 𝐵))
10 limeq 6198 . . . . . 6 (dom 𝑥 = dom (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵)))
119, 10syl 17 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵)))
12 rneq 5801 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → ran 𝑥 = ran (𝐹 ↾ suc 𝐵))
1312unieqd 4842 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → ran 𝑥 = ran (𝐹 ↾ suc 𝐵))
14 fveq1 6664 . . . . . . 7 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom 𝑥))
159unieqd 4842 . . . . . . . 8 (𝑥 = (𝐹 ↾ suc 𝐵) → dom 𝑥 = dom (𝐹 ↾ suc 𝐵))
1615fveq2d 6669 . . . . . . 7 (𝑥 = (𝐹 ↾ suc 𝐵) → ((𝐹 ↾ suc 𝐵)‘ dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))
1714, 16eqtrd 2856 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))
1817fveq2d 6669 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝐻‘(𝑥 dom 𝑥)) = (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))
1911, 13, 18ifbieq12d 4494 . . . 4 (𝑥 = (𝐹 ↾ suc 𝐵) → if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥))) = if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))))
208, 19ifbieq2d 4492 . . 3 (𝑥 = (𝐹 ↾ suc 𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))))
212eleq1d 2897 . . . 4 (𝑦 = suc 𝐵 → ((𝐹𝑦) ∈ V ↔ (𝐹 ↾ suc 𝐵) ∈ V))
22 tz7.44.3 . . . 4 (𝑦𝑋 → (𝐹𝑦) ∈ V)
2321, 22vtoclga 3574 . . 3 (suc 𝐵𝑋 → (𝐹 ↾ suc 𝐵) ∈ V)
24 noel 4296 . . . . . . 7 ¬ 𝐵 ∈ ∅
25 dmeq 5767 . . . . . . . . 9 ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = dom ∅)
26 dm0 5785 . . . . . . . . 9 dom ∅ = ∅
2725, 26syl6eq 2872 . . . . . . . 8 ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = ∅)
28 tz7.44.5 . . . . . . . . . . . . 13 Ord 𝑋
29 ordsson 7498 . . . . . . . . . . . . 13 (Ord 𝑋𝑋 ⊆ On)
3028, 29ax-mp 5 . . . . . . . . . . . 12 𝑋 ⊆ On
31 ordtr 6200 . . . . . . . . . . . . . 14 (Ord 𝑋 → Tr 𝑋)
3228, 31ax-mp 5 . . . . . . . . . . . . 13 Tr 𝑋
33 trsuc 6270 . . . . . . . . . . . . 13 ((Tr 𝑋 ∧ suc 𝐵𝑋) → 𝐵𝑋)
3432, 33mpan 688 . . . . . . . . . . . 12 (suc 𝐵𝑋𝐵𝑋)
3530, 34sseldi 3965 . . . . . . . . . . 11 (suc 𝐵𝑋𝐵 ∈ On)
36 sucidg 6264 . . . . . . . . . . 11 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
3735, 36syl 17 . . . . . . . . . 10 (suc 𝐵𝑋𝐵 ∈ suc 𝐵)
38 dmres 5870 . . . . . . . . . . 11 dom (𝐹 ↾ suc 𝐵) = (suc 𝐵 ∩ dom 𝐹)
39 ordelss 6202 . . . . . . . . . . . . . 14 ((Ord 𝑋 ∧ suc 𝐵𝑋) → suc 𝐵𝑋)
4028, 39mpan 688 . . . . . . . . . . . . 13 (suc 𝐵𝑋 → suc 𝐵𝑋)
41 tz7.44.4 . . . . . . . . . . . . . 14 𝐹 Fn 𝑋
42 fndm 6450 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
4341, 42ax-mp 5 . . . . . . . . . . . . 13 dom 𝐹 = 𝑋
4440, 43sseqtrrdi 4018 . . . . . . . . . . . 12 (suc 𝐵𝑋 → suc 𝐵 ⊆ dom 𝐹)
45 df-ss 3952 . . . . . . . . . . . 12 (suc 𝐵 ⊆ dom 𝐹 ↔ (suc 𝐵 ∩ dom 𝐹) = suc 𝐵)
4644, 45sylib 220 . . . . . . . . . . 11 (suc 𝐵𝑋 → (suc 𝐵 ∩ dom 𝐹) = suc 𝐵)
4738, 46syl5eq 2868 . . . . . . . . . 10 (suc 𝐵𝑋 → dom (𝐹 ↾ suc 𝐵) = suc 𝐵)
4837, 47eleqtrrd 2916 . . . . . . . . 9 (suc 𝐵𝑋𝐵 ∈ dom (𝐹 ↾ suc 𝐵))
49 eleq2 2901 . . . . . . . . 9 (dom (𝐹 ↾ suc 𝐵) = ∅ → (𝐵 ∈ dom (𝐹 ↾ suc 𝐵) ↔ 𝐵 ∈ ∅))
5048, 49syl5ibcom 247 . . . . . . . 8 (suc 𝐵𝑋 → (dom (𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅))
5127, 50syl5 34 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅))
5224, 51mtoi 201 . . . . . 6 (suc 𝐵𝑋 → ¬ (𝐹 ↾ suc 𝐵) = ∅)
5352iffalsed 4478 . . . . 5 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) = if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))))
54 nlimsucg 7551 . . . . . . . 8 (𝐵 ∈ On → ¬ Lim suc 𝐵)
5535, 54syl 17 . . . . . . 7 (suc 𝐵𝑋 → ¬ Lim suc 𝐵)
56 limeq 6198 . . . . . . . 8 (dom (𝐹 ↾ suc 𝐵) = suc 𝐵 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵))
5747, 56syl 17 . . . . . . 7 (suc 𝐵𝑋 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵))
5855, 57mtbird 327 . . . . . 6 (suc 𝐵𝑋 → ¬ Lim dom (𝐹 ↾ suc 𝐵))
5958iffalsed 4478 . . . . 5 (suc 𝐵𝑋 → if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))) = (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))
6047unieqd 4842 . . . . . . . . 9 (suc 𝐵𝑋 dom (𝐹 ↾ suc 𝐵) = suc 𝐵)
61 eloni 6196 . . . . . . . . . 10 (𝐵 ∈ On → Ord 𝐵)
62 ordunisuc 7541 . . . . . . . . . 10 (Ord 𝐵 suc 𝐵 = 𝐵)
6335, 61, 623syl 18 . . . . . . . . 9 (suc 𝐵𝑋 suc 𝐵 = 𝐵)
6460, 63eqtrd 2856 . . . . . . . 8 (suc 𝐵𝑋 dom (𝐹 ↾ suc 𝐵) = 𝐵)
6564fveq2d 6669 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)) = ((𝐹 ↾ suc 𝐵)‘𝐵))
6637fvresd 6685 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘𝐵) = (𝐹𝐵))
6765, 66eqtrd 2856 . . . . . 6 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)) = (𝐹𝐵))
6867fveq2d 6669 . . . . 5 (suc 𝐵𝑋 → (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))) = (𝐻‘(𝐹𝐵)))
6953, 59, 683eqtrd 2860 . . . 4 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) = (𝐻‘(𝐹𝐵)))
70 fvex 6678 . . . 4 (𝐻‘(𝐹𝐵)) ∈ V
7169, 70eqeltrdi 2921 . . 3 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) ∈ V)
727, 20, 23, 71fvmptd3 6786 . 2 (suc 𝐵𝑋 → (𝐺‘(𝐹 ↾ suc 𝐵)) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))))
736, 72, 693eqtrd 2860 1 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208   = wceq 1533  wcel 2110  Vcvv 3495  cin 3935  wss 3936  c0 4291  ifcif 4467   cuni 4832  cmpt 5139  Tr wtr 5165  dom cdm 5550  ran crn 5551  cres 5552  Ord word 6185  Oncon0 6186  Lim wlim 6187  suc csuc 6188   Fn wfn 6345  cfv 6350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-fv 6358
This theorem is referenced by:  rdgsucg  8053
  Copyright terms: Public domain W3C validator