MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflt Structured version   Visualization version   GIF version

Theorem cantnflt 9119
Description: An upper bound on the partial sums of the CNF function. Since each term dominates all previous terms, by induction we can bound the whole sum with any exponent 𝐴o 𝐶 where 𝐶 is larger than any exponent (𝐺𝑥), 𝑥𝐾 which has been summed so far. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
cantnflt.a (𝜑 → ∅ ∈ 𝐴)
cantnflt.k (𝜑𝐾 ∈ suc dom 𝐺)
cantnflt.c (𝜑𝐶 ∈ On)
cantnflt.s (𝜑 → (𝐺𝐾) ⊆ 𝐶)
Assertion
Ref Expression
cantnflt (𝜑 → (𝐻𝐾) ∈ (𝐴o 𝐶))
Distinct variable groups:   𝑧,𝑘,𝐵   𝑧,𝐶   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝑘,𝐾,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑘)   𝐻(𝑧,𝑘)

Proof of Theorem cantnflt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
2 cantnflt.c . . . 4 (𝜑𝐶 ∈ On)
3 cantnflt.a . . . 4 (𝜑 → ∅ ∈ 𝐴)
4 oen0 8195 . . . 4 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐶))
51, 2, 3, 4syl21anc 836 . . 3 (𝜑 → ∅ ∈ (𝐴o 𝐶))
6 fveq2 6645 . . . . 5 (𝐾 = ∅ → (𝐻𝐾) = (𝐻‘∅))
7 0ex 5175 . . . . . 6 ∅ ∈ V
8 cantnfval.h . . . . . . 7 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
98seqom0g 8075 . . . . . 6 (∅ ∈ V → (𝐻‘∅) = ∅)
107, 9ax-mp 5 . . . . 5 (𝐻‘∅) = ∅
116, 10eqtrdi 2849 . . . 4 (𝐾 = ∅ → (𝐻𝐾) = ∅)
1211eleq1d 2874 . . 3 (𝐾 = ∅ → ((𝐻𝐾) ∈ (𝐴o 𝐶) ↔ ∅ ∈ (𝐴o 𝐶)))
135, 12syl5ibrcom 250 . 2 (𝜑 → (𝐾 = ∅ → (𝐻𝐾) ∈ (𝐴o 𝐶)))
142adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐶 ∈ On)
15 eloni 6169 . . . . . . 7 (𝐶 ∈ On → Ord 𝐶)
1614, 15syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → Ord 𝐶)
17 cantnflt.s . . . . . . . 8 (𝜑 → (𝐺𝐾) ⊆ 𝐶)
1817adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝐾) ⊆ 𝐶)
19 cantnfcl.g . . . . . . . . . 10 𝐺 = OrdIso( E , (𝐹 supp ∅))
2019oif 8978 . . . . . . . . 9 𝐺:dom 𝐺⟶(𝐹 supp ∅)
21 ffn 6487 . . . . . . . . 9 (𝐺:dom 𝐺⟶(𝐹 supp ∅) → 𝐺 Fn dom 𝐺)
2220, 21mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐺 Fn dom 𝐺)
23 cantnflt.k . . . . . . . . . 10 (𝜑𝐾 ∈ suc dom 𝐺)
2419oicl 8977 . . . . . . . . . . . . 13 Ord dom 𝐺
25 ordsuc 7509 . . . . . . . . . . . . 13 (Ord dom 𝐺 ↔ Ord suc dom 𝐺)
2624, 25mpbi 233 . . . . . . . . . . . 12 Ord suc dom 𝐺
27 ordelon 6183 . . . . . . . . . . . 12 ((Ord suc dom 𝐺𝐾 ∈ suc dom 𝐺) → 𝐾 ∈ On)
2826, 23, 27sylancr 590 . . . . . . . . . . 11 (𝜑𝐾 ∈ On)
29 ordsssuc 6245 . . . . . . . . . . 11 ((𝐾 ∈ On ∧ Ord dom 𝐺) → (𝐾 ⊆ dom 𝐺𝐾 ∈ suc dom 𝐺))
3028, 24, 29sylancl 589 . . . . . . . . . 10 (𝜑 → (𝐾 ⊆ dom 𝐺𝐾 ∈ suc dom 𝐺))
3123, 30mpbird 260 . . . . . . . . 9 (𝜑𝐾 ⊆ dom 𝐺)
3231adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ⊆ dom 𝐺)
33 vex 3444 . . . . . . . . . 10 𝑥 ∈ V
3433sucid 6238 . . . . . . . . 9 𝑥 ∈ suc 𝑥
35 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 = suc 𝑥)
3634, 35eleqtrrid 2897 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥𝐾)
37 fnfvima 6973 . . . . . . . 8 ((𝐺 Fn dom 𝐺𝐾 ⊆ dom 𝐺𝑥𝐾) → (𝐺𝑥) ∈ (𝐺𝐾))
3822, 32, 36, 37syl3anc 1368 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ (𝐺𝐾))
3918, 38sseldd 3916 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ 𝐶)
40 ordsucss 7513 . . . . . 6 (Ord 𝐶 → ((𝐺𝑥) ∈ 𝐶 → suc (𝐺𝑥) ⊆ 𝐶))
4116, 39, 40sylc 65 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺𝑥) ⊆ 𝐶)
42 suppssdm 7826 . . . . . . . . . . 11 (𝐹 supp ∅) ⊆ dom 𝐹
43 cantnfcl.f . . . . . . . . . . . . 13 (𝜑𝐹𝑆)
44 cantnfs.s . . . . . . . . . . . . . 14 𝑆 = dom (𝐴 CNF 𝐵)
45 cantnfs.b . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ On)
4644, 1, 45cantnfs 9113 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
4743, 46mpbid 235 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
4847simpld 498 . . . . . . . . . . 11 (𝜑𝐹:𝐵𝐴)
4942, 48fssdm 6504 . . . . . . . . . 10 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
50 onss 7485 . . . . . . . . . . 11 (𝐵 ∈ On → 𝐵 ⊆ On)
5145, 50syl 17 . . . . . . . . . 10 (𝜑𝐵 ⊆ On)
5249, 51sstrd 3925 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ⊆ On)
5352adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐹 supp ∅) ⊆ On)
5423adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ∈ suc dom 𝐺)
5535, 54eqeltrrd 2891 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc 𝑥 ∈ suc dom 𝐺)
56 ordsucelsuc 7517 . . . . . . . . . . 11 (Ord dom 𝐺 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺))
5724, 56ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺)
5855, 57sylibr 237 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ dom 𝐺)
5920ffvelrni 6827 . . . . . . . . 9 (𝑥 ∈ dom 𝐺 → (𝐺𝑥) ∈ (𝐹 supp ∅))
6058, 59syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ (𝐹 supp ∅))
6153, 60sseldd 3916 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ On)
62 suceloni 7508 . . . . . . 7 ((𝐺𝑥) ∈ On → suc (𝐺𝑥) ∈ On)
6361, 62syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺𝑥) ∈ On)
641adantr 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐴 ∈ On)
653adantr 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → ∅ ∈ 𝐴)
66 oewordi 8200 . . . . . 6 (((suc (𝐺𝑥) ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺𝑥) ⊆ 𝐶 → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶)))
6763, 14, 64, 65, 66syl31anc 1370 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (suc (𝐺𝑥) ⊆ 𝐶 → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶)))
6841, 67mpd 15 . . . 4 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶))
6935fveq2d 6649 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) = (𝐻‘suc 𝑥))
70 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ ω)
71 simpl 486 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝜑)
72 eleq1 2877 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺))
73 suceq 6224 . . . . . . . . . 10 (𝑥 = ∅ → suc 𝑥 = suc ∅)
7473fveq2d 6649 . . . . . . . . 9 (𝑥 = ∅ → (𝐻‘suc 𝑥) = (𝐻‘suc ∅))
75 fveq2 6645 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐺𝑥) = (𝐺‘∅))
76 suceq 6224 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺‘∅) → suc (𝐺𝑥) = suc (𝐺‘∅))
7775, 76syl 17 . . . . . . . . . 10 (𝑥 = ∅ → suc (𝐺𝑥) = suc (𝐺‘∅))
7877oveq2d 7151 . . . . . . . . 9 (𝑥 = ∅ → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺‘∅)))
7974, 78eleq12d 2884 . . . . . . . 8 (𝑥 = ∅ → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅))))
8072, 79imbi12d 348 . . . . . . 7 (𝑥 = ∅ → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅)))))
81 eleq1 2877 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐺𝑦 ∈ dom 𝐺))
82 suceq 6224 . . . . . . . . . 10 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
8382fveq2d 6649 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc 𝑦))
84 fveq2 6645 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
85 suceq 6224 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺𝑦) → suc (𝐺𝑥) = suc (𝐺𝑦))
8684, 85syl 17 . . . . . . . . . 10 (𝑥 = 𝑦 → suc (𝐺𝑥) = suc (𝐺𝑦))
8786oveq2d 7151 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺𝑦)))
8883, 87eleq12d 2884 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))))
8981, 88imbi12d 348 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))))
90 eleq1 2877 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺))
91 suceq 6224 . . . . . . . . . 10 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
9291fveq2d 6649 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc suc 𝑦))
93 fveq2 6645 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐺𝑥) = (𝐺‘suc 𝑦))
94 suceq 6224 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺‘suc 𝑦) → suc (𝐺𝑥) = suc (𝐺‘suc 𝑦))
9593, 94syl 17 . . . . . . . . . 10 (𝑥 = suc 𝑦 → suc (𝐺𝑥) = suc (𝐺‘suc 𝑦))
9695oveq2d 7151 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺‘suc 𝑦)))
9792, 96eleq12d 2884 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦))))
9890, 97imbi12d 348 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
9948adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐹:𝐵𝐴)
10020ffvelrni 6827 . . . . . . . . . . . 12 (∅ ∈ dom 𝐺 → (𝐺‘∅) ∈ (𝐹 supp ∅))
10149sselda 3915 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ 𝐵)
102100, 101sylan2 595 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ 𝐵)
10399, 102ffvelrnd 6829 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ 𝐴)
1041adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐴 ∈ On)
105 onelon 6184 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘∅)) ∈ 𝐴) → (𝐹‘(𝐺‘∅)) ∈ On)
106104, 103, 105syl2anc 587 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ On)
10752sselda 3915 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ On)
108100, 107sylan2 595 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ On)
109 oecl 8145 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) → (𝐴o (𝐺‘∅)) ∈ On)
110104, 108, 109syl2anc 587 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴o (𝐺‘∅)) ∈ On)
1113adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ 𝐴)
112 oen0 8195 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o (𝐺‘∅)))
113104, 108, 111, 112syl21anc 836 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ (𝐴o (𝐺‘∅)))
114 omord2 8176 . . . . . . . . . . 11 ((((𝐹‘(𝐺‘∅)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o (𝐺‘∅)) ∈ On) ∧ ∅ ∈ (𝐴o (𝐺‘∅))) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴)))
115106, 104, 110, 113, 114syl31anc 1370 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴)))
116103, 115mpbid 235 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴))
117 peano1 7581 . . . . . . . . . . . 12 ∅ ∈ ω
118117a1i 11 . . . . . . . . . . 11 (∅ ∈ dom 𝐺 → ∅ ∈ ω)
11944, 1, 45, 19, 43, 8cantnfsuc 9117 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ ω) → (𝐻‘suc ∅) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)))
120118, 119sylan2 595 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)))
12110oveq2i 7146 . . . . . . . . . . 11 (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅)
122 omcl 8144 . . . . . . . . . . . . 13 (((𝐴o (𝐺‘∅)) ∈ On ∧ (𝐹‘(𝐺‘∅)) ∈ On) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On)
123110, 106, 122syl2anc 587 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On)
124 oa0 8124 . . . . . . . . . . . 12 (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
125123, 124syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
126121, 125syl5eq 2845 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
127120, 126eqtrd 2833 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
128 oesuc 8135 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) → (𝐴o suc (𝐺‘∅)) = ((𝐴o (𝐺‘∅)) ·o 𝐴))
129104, 108, 128syl2anc 587 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴o suc (𝐺‘∅)) = ((𝐴o (𝐺‘∅)) ·o 𝐴))
130116, 127, 1293eltr4d 2905 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅)))
131130ex 416 . . . . . . 7 (𝜑 → (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅))))
132 ordtr 6173 . . . . . . . . . . . 12 (Ord dom 𝐺 → Tr dom 𝐺)
13324, 132ax-mp 5 . . . . . . . . . . 11 Tr dom 𝐺
134 trsuc 6243 . . . . . . . . . . 11 ((Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺) → 𝑦 ∈ dom 𝐺)
135133, 134mpan 689 . . . . . . . . . 10 (suc 𝑦 ∈ dom 𝐺𝑦 ∈ dom 𝐺)
136135imim1i 63 . . . . . . . . 9 ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))))
1371ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐴 ∈ On)
138 eloni 6169 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → Ord 𝐴)
139137, 138syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → Ord 𝐴)
14048ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐹:𝐵𝐴)
14149ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹 supp ∅) ⊆ 𝐵)
14220ffvelrni 6827 . . . . . . . . . . . . . . . . . 18 (suc 𝑦 ∈ dom 𝐺 → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅))
143142ad2antrl 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅))
144141, 143sseldd 3916 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ 𝐵)
145140, 144ffvelrnd 6829 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴)
146 ordsucss 7513 . . . . . . . . . . . . . . 15 (Ord 𝐴 → ((𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴 → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴))
147139, 145, 146sylc 65 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴)
148 onelon 6184 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
149137, 145, 148syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
150 suceloni 7508 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐺‘suc 𝑦)) ∈ On → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
151149, 150syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
15252ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹 supp ∅) ⊆ On)
153152, 143sseldd 3916 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ On)
154 oecl 8145 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴o (𝐺‘suc 𝑦)) ∈ On)
155137, 153, 154syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o (𝐺‘suc 𝑦)) ∈ On)
156 omwordi 8180 . . . . . . . . . . . . . . 15 ((suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o (𝐺‘suc 𝑦)) ∈ On) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴)))
157151, 137, 155, 156syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴)))
158147, 157mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
159 oesuc 8135 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴o suc (𝐺‘suc 𝑦)) = ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
160137, 153, 159syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o suc (𝐺‘suc 𝑦)) = ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
161158, 160sseqtrrd 3956 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ (𝐴o suc (𝐺‘suc 𝑦)))
162 eloni 6169 . . . . . . . . . . . . . . . . . 18 ((𝐺‘suc 𝑦) ∈ On → Ord (𝐺‘suc 𝑦))
163153, 162syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → Ord (𝐺‘suc 𝑦))
164 vex 3444 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
165164sucid 6238 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ suc 𝑦
166164sucex 7506 . . . . . . . . . . . . . . . . . . . . 21 suc 𝑦 ∈ V
167166epeli 5432 . . . . . . . . . . . . . . . . . . . 20 (𝑦 E suc 𝑦𝑦 ∈ suc 𝑦)
168165, 167mpbir 234 . . . . . . . . . . . . . . . . . . 19 𝑦 E suc 𝑦
169 ovexd 7170 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 supp ∅) ∈ V)
17044, 1, 45, 19, 43cantnfcl 9114 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
171170simpld 498 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → E We (𝐹 supp ∅))
17219oiiso 8985 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
173169, 171, 172syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
174173ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
175135ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝑦 ∈ dom 𝐺)
176 simprl 770 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc 𝑦 ∈ dom 𝐺)
177 isorel 7058 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺)) → (𝑦 E suc 𝑦 ↔ (𝐺𝑦) E (𝐺‘suc 𝑦)))
178174, 175, 176, 177syl12anc 835 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝑦 E suc 𝑦 ↔ (𝐺𝑦) E (𝐺‘suc 𝑦)))
179168, 178mpbii 236 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) E (𝐺‘suc 𝑦))
180 fvex 6658 . . . . . . . . . . . . . . . . . . 19 (𝐺‘suc 𝑦) ∈ V
181180epeli 5432 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑦) E (𝐺‘suc 𝑦) ↔ (𝐺𝑦) ∈ (𝐺‘suc 𝑦))
182179, 181sylib 221 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ (𝐺‘suc 𝑦))
183 ordsucss 7513 . . . . . . . . . . . . . . . . 17 (Ord (𝐺‘suc 𝑦) → ((𝐺𝑦) ∈ (𝐺‘suc 𝑦) → suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)))
184163, 182, 183sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦))
18520ffvelrni 6827 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ dom 𝐺 → (𝐺𝑦) ∈ (𝐹 supp ∅))
186175, 185syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ (𝐹 supp ∅))
187152, 186sseldd 3916 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ On)
188 suceloni 7508 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑦) ∈ On → suc (𝐺𝑦) ∈ On)
189187, 188syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐺𝑦) ∈ On)
1903ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ∅ ∈ 𝐴)
191 oewordi 8200 . . . . . . . . . . . . . . . . 17 (((suc (𝐺𝑦) ∈ On ∧ (𝐺‘suc 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦))))
192189, 153, 137, 190, 191syl31anc 1370 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦))))
193184, 192mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦)))
194 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))
195193, 194sseldd 3916 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)))
196 peano2 7582 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
197196ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc 𝑦 ∈ ω)
1988cantnfvalf 9112 . . . . . . . . . . . . . . . . 17 𝐻:ω⟶On
199198ffvelrni 6827 . . . . . . . . . . . . . . . 16 (suc 𝑦 ∈ ω → (𝐻‘suc 𝑦) ∈ On)
200197, 199syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ On)
201 omcl 8144 . . . . . . . . . . . . . . . 16 (((𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On)
202155, 149, 201syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On)
203 oaord 8156 . . . . . . . . . . . . . . 15 (((𝐻‘suc 𝑦) ∈ On ∧ (𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On) → ((𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)) ↔ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦)))))
204200, 155, 202, 203syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)) ↔ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦)))))
205195, 204mpbid 235 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
20644, 1, 45, 19, 43, 8cantnfsuc 9117 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
207196, 206sylan2 595 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
208207adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
209 omsuc 8134 . . . . . . . . . . . . . 14 (((𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
210155, 149, 209syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
211205, 208, 2103eltr4d 2905 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) ∈ ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))))
212161, 211sseldd 3916 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))
213212exp32 424 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → (suc 𝑦 ∈ dom 𝐺 → ((𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)) → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
214213a2d 29 . . . . . . . . 9 ((𝜑𝑦 ∈ ω) → ((suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
215136, 214syl5 34 . . . . . . . 8 ((𝜑𝑦 ∈ ω) → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
216215expcom 417 . . . . . . 7 (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦))))))
21780, 89, 98, 131, 216finds2 7591 . . . . . 6 (𝑥 ∈ ω → (𝜑 → (𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)))))
21870, 71, 58, 217syl3c 66 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)))
21969, 218eqeltrd 2890 . . . 4 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) ∈ (𝐴o suc (𝐺𝑥)))
22068, 219sseldd 3916 . . 3 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) ∈ (𝐴o 𝐶))
221220rexlimdvaa 3244 . 2 (𝜑 → (∃𝑥 ∈ ω 𝐾 = suc 𝑥 → (𝐻𝐾) ∈ (𝐴o 𝐶)))
222 peano2 7582 . . . . 5 (dom 𝐺 ∈ ω → suc dom 𝐺 ∈ ω)
223170, 222simpl2im 507 . . . 4 (𝜑 → suc dom 𝐺 ∈ ω)
224 elnn 7570 . . . 4 ((𝐾 ∈ suc dom 𝐺 ∧ suc dom 𝐺 ∈ ω) → 𝐾 ∈ ω)
22523, 223, 224syl2anc 587 . . 3 (𝜑𝐾 ∈ ω)
226 nn0suc 7586 . . 3 (𝐾 ∈ ω → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥))
227225, 226syl 17 . 2 (𝜑 → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥))
22813, 221, 227mpjaod 857 1 (𝜑 → (𝐻𝐾) ∈ (𝐴o 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  wss 3881  c0 4243   class class class wbr 5030  Tr wtr 5136   E cep 5429   We wwe 5477  dom cdm 5519  cima 5522  Ord word 6158  Oncon0 6159  suc csuc 6161   Fn wfn 6319  wf 6320  cfv 6324   Isom wiso 6325  (class class class)co 7135  cmpo 7137  ωcom 7560   supp csupp 7813  seqωcseqom 8066   +o coa 8082   ·o comu 8083  o coe 8084   finSupp cfsupp 8817  OrdIsocoi 8957   CNF ccnf 9108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-seqom 8067  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-oexp 8091  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-cnf 9109
This theorem is referenced by:  cantnflt2  9120  cnfcomlem  9146
  Copyright terms: Public domain W3C validator