Step | Hyp | Ref
| Expression |
1 | | cantnfs.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ On) |
2 | | cantnflt.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ On) |
3 | | cantnflt.a |
. . . 4
⊢ (𝜑 → ∅ ∈ 𝐴) |
4 | | oen0 8417 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐴) → ∅ ∈
(𝐴 ↑o 𝐶)) |
5 | 1, 2, 3, 4 | syl21anc 835 |
. . 3
⊢ (𝜑 → ∅ ∈ (𝐴 ↑o 𝐶)) |
6 | | fveq2 6774 |
. . . . 5
⊢ (𝐾 = ∅ → (𝐻‘𝐾) = (𝐻‘∅)) |
7 | | 0ex 5231 |
. . . . . 6
⊢ ∅
∈ V |
8 | | cantnfval.h |
. . . . . . 7
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
9 | 8 | seqom0g 8287 |
. . . . . 6
⊢ (∅
∈ V → (𝐻‘∅) = ∅) |
10 | 7, 9 | ax-mp 5 |
. . . . 5
⊢ (𝐻‘∅) =
∅ |
11 | 6, 10 | eqtrdi 2794 |
. . . 4
⊢ (𝐾 = ∅ → (𝐻‘𝐾) = ∅) |
12 | 11 | eleq1d 2823 |
. . 3
⊢ (𝐾 = ∅ → ((𝐻‘𝐾) ∈ (𝐴 ↑o 𝐶) ↔ ∅ ∈ (𝐴 ↑o 𝐶))) |
13 | 5, 12 | syl5ibrcom 246 |
. 2
⊢ (𝜑 → (𝐾 = ∅ → (𝐻‘𝐾) ∈ (𝐴 ↑o 𝐶))) |
14 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐶 ∈ On) |
15 | | eloni 6276 |
. . . . . . 7
⊢ (𝐶 ∈ On → Ord 𝐶) |
16 | 14, 15 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → Ord 𝐶) |
17 | | cantnflt.s |
. . . . . . . 8
⊢ (𝜑 → (𝐺 “ 𝐾) ⊆ 𝐶) |
18 | 17 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺 “ 𝐾) ⊆ 𝐶) |
19 | | cantnfcl.g |
. . . . . . . . . 10
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
20 | 19 | oif 9289 |
. . . . . . . . 9
⊢ 𝐺:dom 𝐺⟶(𝐹 supp ∅) |
21 | | ffn 6600 |
. . . . . . . . 9
⊢ (𝐺:dom 𝐺⟶(𝐹 supp ∅) → 𝐺 Fn dom 𝐺) |
22 | 20, 21 | mp1i 13 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐺 Fn dom 𝐺) |
23 | | cantnflt.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ suc dom 𝐺) |
24 | 19 | oicl 9288 |
. . . . . . . . . . . . 13
⊢ Ord dom
𝐺 |
25 | | ordsuc 7661 |
. . . . . . . . . . . . 13
⊢ (Ord dom
𝐺 ↔ Ord suc dom 𝐺) |
26 | 24, 25 | mpbi 229 |
. . . . . . . . . . . 12
⊢ Ord suc
dom 𝐺 |
27 | | ordelon 6290 |
. . . . . . . . . . . 12
⊢ ((Ord suc
dom 𝐺 ∧ 𝐾 ∈ suc dom 𝐺) → 𝐾 ∈ On) |
28 | 26, 23, 27 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ On) |
29 | | ordsssuc 6352 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ On ∧ Ord dom 𝐺) → (𝐾 ⊆ dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺)) |
30 | 28, 24, 29 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 ⊆ dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺)) |
31 | 23, 30 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ⊆ dom 𝐺) |
32 | 31 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ⊆ dom 𝐺) |
33 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
34 | 33 | sucid 6345 |
. . . . . . . . 9
⊢ 𝑥 ∈ suc 𝑥 |
35 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 = suc 𝑥) |
36 | 34, 35 | eleqtrrid 2846 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ 𝐾) |
37 | | fnfvima 7109 |
. . . . . . . 8
⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐾 ⊆ dom 𝐺 ∧ 𝑥 ∈ 𝐾) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐾)) |
38 | 22, 32, 36, 37 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺‘𝑥) ∈ (𝐺 “ 𝐾)) |
39 | 18, 38 | sseldd 3922 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺‘𝑥) ∈ 𝐶) |
40 | | ordsucss 7665 |
. . . . . 6
⊢ (Ord
𝐶 → ((𝐺‘𝑥) ∈ 𝐶 → suc (𝐺‘𝑥) ⊆ 𝐶)) |
41 | 16, 39, 40 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺‘𝑥) ⊆ 𝐶) |
42 | | suppssdm 7993 |
. . . . . . . . . . 11
⊢ (𝐹 supp ∅) ⊆ dom 𝐹 |
43 | | cantnfcl.f |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
44 | | cantnfs.s |
. . . . . . . . . . . . . 14
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
45 | | cantnfs.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ On) |
46 | 44, 1, 45 | cantnfs 9424 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
47 | 43, 46 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
48 | 47 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
49 | 42, 48 | fssdm 6620 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
50 | | onss 7634 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
51 | 45, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ⊆ On) |
52 | 49, 51 | sstrd 3931 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) |
53 | 52 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐹 supp ∅) ⊆ On) |
54 | 23 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ∈ suc dom 𝐺) |
55 | 35, 54 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc 𝑥 ∈ suc dom 𝐺) |
56 | | ordsucelsuc 7669 |
. . . . . . . . . . 11
⊢ (Ord dom
𝐺 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺)) |
57 | 24, 56 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺) |
58 | 55, 57 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ dom 𝐺) |
59 | 20 | ffvelrni 6960 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝐺 → (𝐺‘𝑥) ∈ (𝐹 supp ∅)) |
60 | 58, 59 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺‘𝑥) ∈ (𝐹 supp ∅)) |
61 | 53, 60 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺‘𝑥) ∈ On) |
62 | | suceloni 7659 |
. . . . . . 7
⊢ ((𝐺‘𝑥) ∈ On → suc (𝐺‘𝑥) ∈ On) |
63 | 61, 62 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺‘𝑥) ∈ On) |
64 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐴 ∈ On) |
65 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → ∅ ∈ 𝐴) |
66 | | oewordi 8422 |
. . . . . 6
⊢ (((suc
(𝐺‘𝑥) ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺‘𝑥) ⊆ 𝐶 → (𝐴 ↑o suc (𝐺‘𝑥)) ⊆ (𝐴 ↑o 𝐶))) |
67 | 63, 14, 64, 65, 66 | syl31anc 1372 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (suc (𝐺‘𝑥) ⊆ 𝐶 → (𝐴 ↑o suc (𝐺‘𝑥)) ⊆ (𝐴 ↑o 𝐶))) |
68 | 41, 67 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐴 ↑o suc (𝐺‘𝑥)) ⊆ (𝐴 ↑o 𝐶)) |
69 | 35 | fveq2d 6778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘𝐾) = (𝐻‘suc 𝑥)) |
70 | | simprl 768 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ ω) |
71 | | simpl 483 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝜑) |
72 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑥 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺)) |
73 | | suceq 6331 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → suc 𝑥 = suc ∅) |
74 | 73 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝐻‘suc 𝑥) = (𝐻‘suc ∅)) |
75 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝐺‘𝑥) = (𝐺‘∅)) |
76 | | suceq 6331 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑥) = (𝐺‘∅) → suc (𝐺‘𝑥) = suc (𝐺‘∅)) |
77 | 75, 76 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → suc (𝐺‘𝑥) = suc (𝐺‘∅)) |
78 | 77 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝐴 ↑o suc (𝐺‘𝑥)) = (𝐴 ↑o suc (𝐺‘∅))) |
79 | 74, 78 | eleq12d 2833 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ((𝐻‘suc 𝑥) ∈ (𝐴 ↑o suc (𝐺‘𝑥)) ↔ (𝐻‘suc ∅) ∈ (𝐴 ↑o suc (𝐺‘∅)))) |
80 | 72, 79 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴 ↑o suc (𝐺‘𝑥))) ↔ (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴 ↑o suc (𝐺‘∅))))) |
81 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐺 ↔ 𝑦 ∈ dom 𝐺)) |
82 | | suceq 6331 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) |
83 | 82 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc 𝑦)) |
84 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) |
85 | | suceq 6331 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑥) = (𝐺‘𝑦) → suc (𝐺‘𝑥) = suc (𝐺‘𝑦)) |
86 | 84, 85 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → suc (𝐺‘𝑥) = suc (𝐺‘𝑦)) |
87 | 86 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐴 ↑o suc (𝐺‘𝑥)) = (𝐴 ↑o suc (𝐺‘𝑦))) |
88 | 83, 87 | eleq12d 2833 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴 ↑o suc (𝐺‘𝑥)) ↔ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) |
89 | 81, 88 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴 ↑o suc (𝐺‘𝑥))) ↔ (𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦))))) |
90 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺)) |
91 | | suceq 6331 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦) |
92 | 91 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc suc 𝑦)) |
93 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑦 → (𝐺‘𝑥) = (𝐺‘suc 𝑦)) |
94 | | suceq 6331 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑥) = (𝐺‘suc 𝑦) → suc (𝐺‘𝑥) = suc (𝐺‘suc 𝑦)) |
95 | 93, 94 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑦 → suc (𝐺‘𝑥) = suc (𝐺‘suc 𝑦)) |
96 | 95 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → (𝐴 ↑o suc (𝐺‘𝑥)) = (𝐴 ↑o suc (𝐺‘suc 𝑦))) |
97 | 92, 96 | eleq12d 2833 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴 ↑o suc (𝐺‘𝑥)) ↔ (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘suc 𝑦)))) |
98 | 90, 97 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴 ↑o suc (𝐺‘𝑥))) ↔ (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘suc 𝑦))))) |
99 | 48 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐹:𝐵⟶𝐴) |
100 | 20 | ffvelrni 6960 |
. . . . . . . . . . . 12
⊢ (∅
∈ dom 𝐺 → (𝐺‘∅) ∈ (𝐹 supp ∅)) |
101 | 49 | sselda 3921 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ 𝐵) |
102 | 100, 101 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ 𝐵) |
103 | 99, 102 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ 𝐴) |
104 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐴 ∈ On) |
105 | | onelon 6291 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘∅)) ∈ 𝐴) → (𝐹‘(𝐺‘∅)) ∈ On) |
106 | 104, 103,
105 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ On) |
107 | 52 | sselda 3921 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ On) |
108 | 100, 107 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ On) |
109 | | oecl 8367 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On)
→ (𝐴
↑o (𝐺‘∅)) ∈ On) |
110 | 104, 108,
109 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴 ↑o (𝐺‘∅)) ∈ On) |
111 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ 𝐴) |
112 | | oen0 8417 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) ∧
∅ ∈ 𝐴) →
∅ ∈ (𝐴
↑o (𝐺‘∅))) |
113 | 104, 108,
111, 112 | syl21anc 835 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ (𝐴 ↑o (𝐺‘∅))) |
114 | | omord2 8398 |
. . . . . . . . . . 11
⊢ ((((𝐹‘(𝐺‘∅)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ↑o (𝐺‘∅)) ∈ On)
∧ ∅ ∈ (𝐴
↑o (𝐺‘∅))) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴 ↑o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴 ↑o (𝐺‘∅)) ·o 𝐴))) |
115 | 106, 104,
110, 113, 114 | syl31anc 1372 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴 ↑o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴 ↑o (𝐺‘∅)) ·o 𝐴))) |
116 | 103, 115 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴 ↑o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴 ↑o (𝐺‘∅)) ·o 𝐴)) |
117 | | peano1 7735 |
. . . . . . . . . . . 12
⊢ ∅
∈ ω |
118 | 117 | a1i 11 |
. . . . . . . . . . 11
⊢ (∅
∈ dom 𝐺 → ∅
∈ ω) |
119 | 44, 1, 45, 19, 43, 8 | cantnfsuc 9428 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ ω)
→ (𝐻‘suc
∅) = (((𝐴
↑o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅))) |
120 | 118, 119 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = (((𝐴 ↑o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅))) |
121 | 10 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ (((𝐴 ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)) = (((𝐴 ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅))) +o
∅) |
122 | | omcl 8366 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↑o (𝐺‘∅)) ∈ On ∧
(𝐹‘(𝐺‘∅)) ∈ On) → ((𝐴 ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅))) ∈
On) |
123 | 110, 106,
122 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴 ↑o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈
On) |
124 | | oa0 8346 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅))) ∈ On → (((𝐴 ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅))) +o ∅) =
((𝐴 ↑o
(𝐺‘∅))
·o (𝐹‘(𝐺‘∅)))) |
125 | 123, 124 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴 ↑o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅) =
((𝐴 ↑o
(𝐺‘∅))
·o (𝐹‘(𝐺‘∅)))) |
126 | 121, 125 | eqtrid 2790 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴 ↑o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)) = ((𝐴 ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅)))) |
127 | 120, 126 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = ((𝐴 ↑o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅)))) |
128 | | oesuc 8357 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On)
→ (𝐴
↑o suc (𝐺‘∅)) = ((𝐴 ↑o (𝐺‘∅)) ·o 𝐴)) |
129 | 104, 108,
128 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴 ↑o suc (𝐺‘∅)) = ((𝐴 ↑o (𝐺‘∅)) ·o 𝐴)) |
130 | 116, 127,
129 | 3eltr4d 2854 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) ∈ (𝐴 ↑o suc (𝐺‘∅))) |
131 | 130 | ex 413 |
. . . . . . 7
⊢ (𝜑 → (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴 ↑o suc (𝐺‘∅)))) |
132 | | ordtr 6280 |
. . . . . . . . . . . 12
⊢ (Ord dom
𝐺 → Tr dom 𝐺) |
133 | 24, 132 | ax-mp 5 |
. . . . . . . . . . 11
⊢ Tr dom
𝐺 |
134 | | trsuc 6350 |
. . . . . . . . . . 11
⊢ ((Tr dom
𝐺 ∧ suc 𝑦 ∈ dom 𝐺) → 𝑦 ∈ dom 𝐺) |
135 | 133, 134 | mpan 687 |
. . . . . . . . . 10
⊢ (suc
𝑦 ∈ dom 𝐺 → 𝑦 ∈ dom 𝐺) |
136 | 135 | imim1i 63 |
. . . . . . . . 9
⊢ ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) |
137 | 1 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → 𝐴 ∈ On) |
138 | | eloni 6276 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On → Ord 𝐴) |
139 | 137, 138 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → Ord 𝐴) |
140 | 48 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → 𝐹:𝐵⟶𝐴) |
141 | 49 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐹 supp ∅) ⊆ 𝐵) |
142 | 20 | ffvelrni 6960 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
𝑦 ∈ dom 𝐺 → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅)) |
143 | 142 | ad2antrl 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅)) |
144 | 141, 143 | sseldd 3922 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐺‘suc 𝑦) ∈ 𝐵) |
145 | 140, 144 | ffvelrnd 6962 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴) |
146 | | ordsucss 7665 |
. . . . . . . . . . . . . . 15
⊢ (Ord
𝐴 → ((𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴 → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴)) |
147 | 139, 145,
146 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴) |
148 | | onelon 6291 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On) |
149 | 137, 145,
148 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On) |
150 | | suceloni 7659 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘(𝐺‘suc 𝑦)) ∈ On → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On) |
151 | 149, 150 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On) |
152 | 52 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐹 supp ∅) ⊆ On) |
153 | 152, 143 | sseldd 3922 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐺‘suc 𝑦) ∈ On) |
154 | | oecl 8367 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴 ↑o (𝐺‘suc 𝑦)) ∈ On) |
155 | 137, 153,
154 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐴 ↑o (𝐺‘suc 𝑦)) ∈ On) |
156 | | omwordi 8402 |
. . . . . . . . . . . . . . 15
⊢ ((suc
(𝐹‘(𝐺‘suc 𝑦)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ↑o (𝐺‘suc 𝑦)) ∈ On) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o 𝐴))) |
157 | 151, 137,
155, 156 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o 𝐴))) |
158 | 147, 157 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o 𝐴)) |
159 | | oesuc 8357 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴 ↑o suc (𝐺‘suc 𝑦)) = ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o 𝐴)) |
160 | 137, 153,
159 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐴 ↑o suc (𝐺‘suc 𝑦)) = ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o 𝐴)) |
161 | 158, 160 | sseqtrrd 3962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ (𝐴 ↑o suc (𝐺‘suc 𝑦))) |
162 | | eloni 6276 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘suc 𝑦) ∈ On → Ord (𝐺‘suc 𝑦)) |
163 | 153, 162 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → Ord (𝐺‘suc 𝑦)) |
164 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑦 ∈ V |
165 | 164 | sucid 6345 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ suc 𝑦 |
166 | 164 | sucex 7656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ suc 𝑦 ∈ V |
167 | 166 | epeli 5497 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 E suc 𝑦 ↔ 𝑦 ∈ suc 𝑦) |
168 | 165, 167 | mpbir 230 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑦 E suc 𝑦 |
169 | | ovexd 7310 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐹 supp ∅) ∈ V) |
170 | 44, 1, 45, 19, 43 | cantnfcl 9425 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
171 | 170 | simpld 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → E We (𝐹 supp ∅)) |
172 | 19 | oiiso 9296 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 supp ∅) ∈ V ∧ E
We (𝐹 supp ∅)) →
𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
173 | 169, 171,
172 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
174 | 173 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
175 | 135 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → 𝑦 ∈ dom 𝐺) |
176 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → suc 𝑦 ∈ dom 𝐺) |
177 | | isorel 7197 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺)) → (𝑦 E suc 𝑦 ↔ (𝐺‘𝑦) E (𝐺‘suc 𝑦))) |
178 | 174, 175,
176, 177 | syl12anc 834 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝑦 E suc 𝑦 ↔ (𝐺‘𝑦) E (𝐺‘suc 𝑦))) |
179 | 168, 178 | mpbii 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐺‘𝑦) E (𝐺‘suc 𝑦)) |
180 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺‘suc 𝑦) ∈ V |
181 | 180 | epeli 5497 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑦) E (𝐺‘suc 𝑦) ↔ (𝐺‘𝑦) ∈ (𝐺‘suc 𝑦)) |
182 | 179, 181 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐺‘𝑦) ∈ (𝐺‘suc 𝑦)) |
183 | | ordsucss 7665 |
. . . . . . . . . . . . . . . . 17
⊢ (Ord
(𝐺‘suc 𝑦) → ((𝐺‘𝑦) ∈ (𝐺‘suc 𝑦) → suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦))) |
184 | 163, 182,
183 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) |
185 | 20 | ffvelrni 6960 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ dom 𝐺 → (𝐺‘𝑦) ∈ (𝐹 supp ∅)) |
186 | 175, 185 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐺‘𝑦) ∈ (𝐹 supp ∅)) |
187 | 152, 186 | sseldd 3922 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐺‘𝑦) ∈ On) |
188 | | suceloni 7659 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑦) ∈ On → suc (𝐺‘𝑦) ∈ On) |
189 | 187, 188 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → suc (𝐺‘𝑦) ∈ On) |
190 | 3 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → ∅ ∈ 𝐴) |
191 | | oewordi 8422 |
. . . . . . . . . . . . . . . . 17
⊢ (((suc
(𝐺‘𝑦) ∈ On ∧ (𝐺‘suc 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴 ↑o suc (𝐺‘𝑦)) ⊆ (𝐴 ↑o (𝐺‘suc 𝑦)))) |
192 | 189, 153,
137, 190, 191 | syl31anc 1372 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴 ↑o suc (𝐺‘𝑦)) ⊆ (𝐴 ↑o (𝐺‘suc 𝑦)))) |
193 | 184, 192 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐴 ↑o suc (𝐺‘𝑦)) ⊆ (𝐴 ↑o (𝐺‘suc 𝑦))) |
194 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦))) |
195 | 193, 194 | sseldd 3922 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴 ↑o (𝐺‘suc 𝑦))) |
196 | | peano2 7737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
197 | 196 | ad2antlr 724 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → suc 𝑦 ∈ ω) |
198 | 8 | cantnfvalf 9423 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐻:ω⟶On |
199 | 198 | ffvelrni 6960 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑦 ∈ ω →
(𝐻‘suc 𝑦) ∈ On) |
200 | 197, 199 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐻‘suc 𝑦) ∈ On) |
201 | | omcl 8366 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ↑o (𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On) |
202 | 155, 149,
201 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On) |
203 | | oaord 8378 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻‘suc 𝑦) ∈ On ∧ (𝐴 ↑o (𝐺‘suc 𝑦)) ∈ On ∧ ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On) → ((𝐻‘suc 𝑦) ∈ (𝐴 ↑o (𝐺‘suc 𝑦)) ↔ (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴 ↑o (𝐺‘suc 𝑦))))) |
204 | 200, 155,
202, 203 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → ((𝐻‘suc 𝑦) ∈ (𝐴 ↑o (𝐺‘suc 𝑦)) ↔ (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴 ↑o (𝐺‘suc 𝑦))))) |
205 | 195, 204 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴 ↑o (𝐺‘suc 𝑦)))) |
206 | 44, 1, 45, 19, 43, 8 | cantnfsuc 9428 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ suc 𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦))) |
207 | 196, 206 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦))) |
208 | 207 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐻‘suc suc 𝑦) = (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦))) |
209 | | omsuc 8356 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ↑o (𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴 ↑o (𝐺‘suc 𝑦)))) |
210 | 155, 149,
209 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴 ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴 ↑o (𝐺‘suc 𝑦)))) |
211 | 205, 208,
210 | 3eltr4d 2854 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐻‘suc suc 𝑦) ∈ ((𝐴 ↑o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦)))) |
212 | 161, 211 | sseldd 3922 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)))) → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘suc 𝑦))) |
213 | 212 | exp32 421 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (suc 𝑦 ∈ dom 𝐺 → ((𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦)) → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘suc 𝑦))))) |
214 | 213 | a2d 29 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘suc 𝑦))))) |
215 | 136, 214 | syl5 34 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘suc 𝑦))))) |
216 | 215 | expcom 414 |
. . . . . . 7
⊢ (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴 ↑o suc (𝐺‘suc 𝑦)))))) |
217 | 80, 89, 98, 131, 216 | finds2 7747 |
. . . . . 6
⊢ (𝑥 ∈ ω → (𝜑 → (𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴 ↑o suc (𝐺‘𝑥))))) |
218 | 70, 71, 58, 217 | syl3c 66 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘suc 𝑥) ∈ (𝐴 ↑o suc (𝐺‘𝑥))) |
219 | 69, 218 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘𝐾) ∈ (𝐴 ↑o suc (𝐺‘𝑥))) |
220 | 68, 219 | sseldd 3922 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘𝐾) ∈ (𝐴 ↑o 𝐶)) |
221 | 220 | rexlimdvaa 3214 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ω 𝐾 = suc 𝑥 → (𝐻‘𝐾) ∈ (𝐴 ↑o 𝐶))) |
222 | | peano2 7737 |
. . . . 5
⊢ (dom
𝐺 ∈ ω → suc
dom 𝐺 ∈
ω) |
223 | 170, 222 | simpl2im 504 |
. . . 4
⊢ (𝜑 → suc dom 𝐺 ∈ ω) |
224 | | elnn 7723 |
. . . 4
⊢ ((𝐾 ∈ suc dom 𝐺 ∧ suc dom 𝐺 ∈ ω) → 𝐾 ∈ ω) |
225 | 23, 223, 224 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝐾 ∈ ω) |
226 | | nn0suc 7742 |
. . 3
⊢ (𝐾 ∈ ω → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥)) |
227 | 225, 226 | syl 17 |
. 2
⊢ (𝜑 → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥)) |
228 | 13, 221, 227 | mpjaod 857 |
1
⊢ (𝜑 → (𝐻‘𝐾) ∈ (𝐴 ↑o 𝐶)) |