MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflt Structured version   Visualization version   GIF version

Theorem cantnflt 9568
Description: An upper bound on the partial sums of the CNF function. Since each term dominates all previous terms, by induction we can bound the whole sum with any exponent 𝐴o 𝐶 where 𝐶 is larger than any exponent (𝐺𝑥), 𝑥𝐾 which has been summed so far. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
cantnflt.a (𝜑 → ∅ ∈ 𝐴)
cantnflt.k (𝜑𝐾 ∈ suc dom 𝐺)
cantnflt.c (𝜑𝐶 ∈ On)
cantnflt.s (𝜑 → (𝐺𝐾) ⊆ 𝐶)
Assertion
Ref Expression
cantnflt (𝜑 → (𝐻𝐾) ∈ (𝐴o 𝐶))
Distinct variable groups:   𝑧,𝑘,𝐵   𝑧,𝐶   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝑘,𝐾,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑘)   𝐻(𝑧,𝑘)

Proof of Theorem cantnflt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
2 cantnflt.c . . . 4 (𝜑𝐶 ∈ On)
3 cantnflt.a . . . 4 (𝜑 → ∅ ∈ 𝐴)
4 oen0 8504 . . . 4 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐶))
51, 2, 3, 4syl21anc 837 . . 3 (𝜑 → ∅ ∈ (𝐴o 𝐶))
6 fveq2 6822 . . . . 5 (𝐾 = ∅ → (𝐻𝐾) = (𝐻‘∅))
7 0ex 5246 . . . . . 6 ∅ ∈ V
8 cantnfval.h . . . . . . 7 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
98seqom0g 8378 . . . . . 6 (∅ ∈ V → (𝐻‘∅) = ∅)
107, 9ax-mp 5 . . . . 5 (𝐻‘∅) = ∅
116, 10eqtrdi 2780 . . . 4 (𝐾 = ∅ → (𝐻𝐾) = ∅)
1211eleq1d 2813 . . 3 (𝐾 = ∅ → ((𝐻𝐾) ∈ (𝐴o 𝐶) ↔ ∅ ∈ (𝐴o 𝐶)))
135, 12syl5ibrcom 247 . 2 (𝜑 → (𝐾 = ∅ → (𝐻𝐾) ∈ (𝐴o 𝐶)))
142adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐶 ∈ On)
15 eloni 6317 . . . . . . 7 (𝐶 ∈ On → Ord 𝐶)
1614, 15syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → Ord 𝐶)
17 cantnflt.s . . . . . . . 8 (𝜑 → (𝐺𝐾) ⊆ 𝐶)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝐾) ⊆ 𝐶)
19 cantnfcl.g . . . . . . . . . 10 𝐺 = OrdIso( E , (𝐹 supp ∅))
2019oif 9422 . . . . . . . . 9 𝐺:dom 𝐺⟶(𝐹 supp ∅)
21 ffn 6652 . . . . . . . . 9 (𝐺:dom 𝐺⟶(𝐹 supp ∅) → 𝐺 Fn dom 𝐺)
2220, 21mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐺 Fn dom 𝐺)
23 cantnflt.k . . . . . . . . . 10 (𝜑𝐾 ∈ suc dom 𝐺)
2419oicl 9421 . . . . . . . . . . . . 13 Ord dom 𝐺
25 ordsuc 7747 . . . . . . . . . . . . 13 (Ord dom 𝐺 ↔ Ord suc dom 𝐺)
2624, 25mpbi 230 . . . . . . . . . . . 12 Ord suc dom 𝐺
27 ordelon 6331 . . . . . . . . . . . 12 ((Ord suc dom 𝐺𝐾 ∈ suc dom 𝐺) → 𝐾 ∈ On)
2826, 23, 27sylancr 587 . . . . . . . . . . 11 (𝜑𝐾 ∈ On)
29 ordsssuc 6398 . . . . . . . . . . 11 ((𝐾 ∈ On ∧ Ord dom 𝐺) → (𝐾 ⊆ dom 𝐺𝐾 ∈ suc dom 𝐺))
3028, 24, 29sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐾 ⊆ dom 𝐺𝐾 ∈ suc dom 𝐺))
3123, 30mpbird 257 . . . . . . . . 9 (𝜑𝐾 ⊆ dom 𝐺)
3231adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ⊆ dom 𝐺)
33 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
3433sucid 6391 . . . . . . . . 9 𝑥 ∈ suc 𝑥
35 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 = suc 𝑥)
3634, 35eleqtrrid 2835 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥𝐾)
37 fnfvima 7169 . . . . . . . 8 ((𝐺 Fn dom 𝐺𝐾 ⊆ dom 𝐺𝑥𝐾) → (𝐺𝑥) ∈ (𝐺𝐾))
3822, 32, 36, 37syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ (𝐺𝐾))
3918, 38sseldd 3936 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ 𝐶)
40 ordsucss 7751 . . . . . 6 (Ord 𝐶 → ((𝐺𝑥) ∈ 𝐶 → suc (𝐺𝑥) ⊆ 𝐶))
4116, 39, 40sylc 65 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺𝑥) ⊆ 𝐶)
42 suppssdm 8110 . . . . . . . . . . 11 (𝐹 supp ∅) ⊆ dom 𝐹
43 cantnfcl.f . . . . . . . . . . . . 13 (𝜑𝐹𝑆)
44 cantnfs.s . . . . . . . . . . . . . 14 𝑆 = dom (𝐴 CNF 𝐵)
45 cantnfs.b . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ On)
4644, 1, 45cantnfs 9562 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
4743, 46mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
4847simpld 494 . . . . . . . . . . 11 (𝜑𝐹:𝐵𝐴)
4942, 48fssdm 6671 . . . . . . . . . 10 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
50 onss 7721 . . . . . . . . . . 11 (𝐵 ∈ On → 𝐵 ⊆ On)
5145, 50syl 17 . . . . . . . . . 10 (𝜑𝐵 ⊆ On)
5249, 51sstrd 3946 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ⊆ On)
5352adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐹 supp ∅) ⊆ On)
5423adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ∈ suc dom 𝐺)
5535, 54eqeltrrd 2829 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc 𝑥 ∈ suc dom 𝐺)
56 ordsucelsuc 7755 . . . . . . . . . . 11 (Ord dom 𝐺 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺))
5724, 56ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺)
5855, 57sylibr 234 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ dom 𝐺)
5920ffvelcdmi 7017 . . . . . . . . 9 (𝑥 ∈ dom 𝐺 → (𝐺𝑥) ∈ (𝐹 supp ∅))
6058, 59syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ (𝐹 supp ∅))
6153, 60sseldd 3936 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ On)
62 onsuc 7746 . . . . . . 7 ((𝐺𝑥) ∈ On → suc (𝐺𝑥) ∈ On)
6361, 62syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺𝑥) ∈ On)
641adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐴 ∈ On)
653adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → ∅ ∈ 𝐴)
66 oewordi 8509 . . . . . 6 (((suc (𝐺𝑥) ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺𝑥) ⊆ 𝐶 → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶)))
6763, 14, 64, 65, 66syl31anc 1375 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (suc (𝐺𝑥) ⊆ 𝐶 → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶)))
6841, 67mpd 15 . . . 4 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶))
6935fveq2d 6826 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) = (𝐻‘suc 𝑥))
70 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ ω)
71 simpl 482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝜑)
72 eleq1 2816 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺))
73 suceq 6375 . . . . . . . . . 10 (𝑥 = ∅ → suc 𝑥 = suc ∅)
7473fveq2d 6826 . . . . . . . . 9 (𝑥 = ∅ → (𝐻‘suc 𝑥) = (𝐻‘suc ∅))
75 fveq2 6822 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐺𝑥) = (𝐺‘∅))
76 suceq 6375 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺‘∅) → suc (𝐺𝑥) = suc (𝐺‘∅))
7775, 76syl 17 . . . . . . . . . 10 (𝑥 = ∅ → suc (𝐺𝑥) = suc (𝐺‘∅))
7877oveq2d 7365 . . . . . . . . 9 (𝑥 = ∅ → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺‘∅)))
7974, 78eleq12d 2822 . . . . . . . 8 (𝑥 = ∅ → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅))))
8072, 79imbi12d 344 . . . . . . 7 (𝑥 = ∅ → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅)))))
81 eleq1 2816 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐺𝑦 ∈ dom 𝐺))
82 suceq 6375 . . . . . . . . . 10 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
8382fveq2d 6826 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc 𝑦))
84 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
85 suceq 6375 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺𝑦) → suc (𝐺𝑥) = suc (𝐺𝑦))
8684, 85syl 17 . . . . . . . . . 10 (𝑥 = 𝑦 → suc (𝐺𝑥) = suc (𝐺𝑦))
8786oveq2d 7365 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺𝑦)))
8883, 87eleq12d 2822 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))))
8981, 88imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))))
90 eleq1 2816 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺))
91 suceq 6375 . . . . . . . . . 10 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
9291fveq2d 6826 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc suc 𝑦))
93 fveq2 6822 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐺𝑥) = (𝐺‘suc 𝑦))
94 suceq 6375 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺‘suc 𝑦) → suc (𝐺𝑥) = suc (𝐺‘suc 𝑦))
9593, 94syl 17 . . . . . . . . . 10 (𝑥 = suc 𝑦 → suc (𝐺𝑥) = suc (𝐺‘suc 𝑦))
9695oveq2d 7365 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺‘suc 𝑦)))
9792, 96eleq12d 2822 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦))))
9890, 97imbi12d 344 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
9948adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐹:𝐵𝐴)
10020ffvelcdmi 7017 . . . . . . . . . . . 12 (∅ ∈ dom 𝐺 → (𝐺‘∅) ∈ (𝐹 supp ∅))
10149sselda 3935 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ 𝐵)
102100, 101sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ 𝐵)
10399, 102ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ 𝐴)
1041adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐴 ∈ On)
105 onelon 6332 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘∅)) ∈ 𝐴) → (𝐹‘(𝐺‘∅)) ∈ On)
106104, 103, 105syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ On)
10752sselda 3935 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ On)
108100, 107sylan2 593 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ On)
109 oecl 8455 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) → (𝐴o (𝐺‘∅)) ∈ On)
110104, 108, 109syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴o (𝐺‘∅)) ∈ On)
1113adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ 𝐴)
112 oen0 8504 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o (𝐺‘∅)))
113104, 108, 111, 112syl21anc 837 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ (𝐴o (𝐺‘∅)))
114 omord2 8485 . . . . . . . . . . 11 ((((𝐹‘(𝐺‘∅)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o (𝐺‘∅)) ∈ On) ∧ ∅ ∈ (𝐴o (𝐺‘∅))) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴)))
115106, 104, 110, 113, 114syl31anc 1375 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴)))
116103, 115mpbid 232 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴))
117 peano1 7822 . . . . . . . . . . . 12 ∅ ∈ ω
118117a1i 11 . . . . . . . . . . 11 (∅ ∈ dom 𝐺 → ∅ ∈ ω)
11944, 1, 45, 19, 43, 8cantnfsuc 9566 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ ω) → (𝐻‘suc ∅) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)))
120118, 119sylan2 593 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)))
12110oveq2i 7360 . . . . . . . . . . 11 (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅)
122 omcl 8454 . . . . . . . . . . . . 13 (((𝐴o (𝐺‘∅)) ∈ On ∧ (𝐹‘(𝐺‘∅)) ∈ On) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On)
123110, 106, 122syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On)
124 oa0 8434 . . . . . . . . . . . 12 (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
125123, 124syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
126121, 125eqtrid 2776 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
127120, 126eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
128 oesuc 8445 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) → (𝐴o suc (𝐺‘∅)) = ((𝐴o (𝐺‘∅)) ·o 𝐴))
129104, 108, 128syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴o suc (𝐺‘∅)) = ((𝐴o (𝐺‘∅)) ·o 𝐴))
130116, 127, 1293eltr4d 2843 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅)))
131130ex 412 . . . . . . 7 (𝜑 → (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅))))
132 ordtr 6321 . . . . . . . . . . . 12 (Ord dom 𝐺 → Tr dom 𝐺)
13324, 132ax-mp 5 . . . . . . . . . . 11 Tr dom 𝐺
134 trsuc 6396 . . . . . . . . . . 11 ((Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺) → 𝑦 ∈ dom 𝐺)
135133, 134mpan 690 . . . . . . . . . 10 (suc 𝑦 ∈ dom 𝐺𝑦 ∈ dom 𝐺)
136135imim1i 63 . . . . . . . . 9 ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))))
1371ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐴 ∈ On)
138 eloni 6317 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → Ord 𝐴)
139137, 138syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → Ord 𝐴)
14048ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐹:𝐵𝐴)
14149ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹 supp ∅) ⊆ 𝐵)
14220ffvelcdmi 7017 . . . . . . . . . . . . . . . . . 18 (suc 𝑦 ∈ dom 𝐺 → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅))
143142ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅))
144141, 143sseldd 3936 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ 𝐵)
145140, 144ffvelcdmd 7019 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴)
146 ordsucss 7751 . . . . . . . . . . . . . . 15 (Ord 𝐴 → ((𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴 → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴))
147139, 145, 146sylc 65 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴)
148 onelon 6332 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
149137, 145, 148syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
150 onsuc 7746 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐺‘suc 𝑦)) ∈ On → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
151149, 150syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
15252ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹 supp ∅) ⊆ On)
153152, 143sseldd 3936 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ On)
154 oecl 8455 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴o (𝐺‘suc 𝑦)) ∈ On)
155137, 153, 154syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o (𝐺‘suc 𝑦)) ∈ On)
156 omwordi 8489 . . . . . . . . . . . . . . 15 ((suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o (𝐺‘suc 𝑦)) ∈ On) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴)))
157151, 137, 155, 156syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴)))
158147, 157mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
159 oesuc 8445 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴o suc (𝐺‘suc 𝑦)) = ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
160137, 153, 159syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o suc (𝐺‘suc 𝑦)) = ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
161158, 160sseqtrrd 3973 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ (𝐴o suc (𝐺‘suc 𝑦)))
162 eloni 6317 . . . . . . . . . . . . . . . . . 18 ((𝐺‘suc 𝑦) ∈ On → Ord (𝐺‘suc 𝑦))
163153, 162syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → Ord (𝐺‘suc 𝑦))
164 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
165164sucid 6391 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ suc 𝑦
166164sucex 7742 . . . . . . . . . . . . . . . . . . . . 21 suc 𝑦 ∈ V
167166epeli 5521 . . . . . . . . . . . . . . . . . . . 20 (𝑦 E suc 𝑦𝑦 ∈ suc 𝑦)
168165, 167mpbir 231 . . . . . . . . . . . . . . . . . . 19 𝑦 E suc 𝑦
169 ovexd 7384 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 supp ∅) ∈ V)
17044, 1, 45, 19, 43cantnfcl 9563 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
171170simpld 494 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → E We (𝐹 supp ∅))
17219oiiso 9429 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
173169, 171, 172syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
174173ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
175135ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝑦 ∈ dom 𝐺)
176 simprl 770 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc 𝑦 ∈ dom 𝐺)
177 isorel 7263 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺)) → (𝑦 E suc 𝑦 ↔ (𝐺𝑦) E (𝐺‘suc 𝑦)))
178174, 175, 176, 177syl12anc 836 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝑦 E suc 𝑦 ↔ (𝐺𝑦) E (𝐺‘suc 𝑦)))
179168, 178mpbii 233 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) E (𝐺‘suc 𝑦))
180 fvex 6835 . . . . . . . . . . . . . . . . . . 19 (𝐺‘suc 𝑦) ∈ V
181180epeli 5521 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑦) E (𝐺‘suc 𝑦) ↔ (𝐺𝑦) ∈ (𝐺‘suc 𝑦))
182179, 181sylib 218 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ (𝐺‘suc 𝑦))
183 ordsucss 7751 . . . . . . . . . . . . . . . . 17 (Ord (𝐺‘suc 𝑦) → ((𝐺𝑦) ∈ (𝐺‘suc 𝑦) → suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)))
184163, 182, 183sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦))
18520ffvelcdmi 7017 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ dom 𝐺 → (𝐺𝑦) ∈ (𝐹 supp ∅))
186175, 185syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ (𝐹 supp ∅))
187152, 186sseldd 3936 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ On)
188 onsuc 7746 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑦) ∈ On → suc (𝐺𝑦) ∈ On)
189187, 188syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐺𝑦) ∈ On)
1903ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ∅ ∈ 𝐴)
191 oewordi 8509 . . . . . . . . . . . . . . . . 17 (((suc (𝐺𝑦) ∈ On ∧ (𝐺‘suc 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦))))
192189, 153, 137, 190, 191syl31anc 1375 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦))))
193184, 192mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦)))
194 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))
195193, 194sseldd 3936 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)))
196 peano2 7823 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
197196ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc 𝑦 ∈ ω)
1988cantnfvalf 9561 . . . . . . . . . . . . . . . . 17 𝐻:ω⟶On
199198ffvelcdmi 7017 . . . . . . . . . . . . . . . 16 (suc 𝑦 ∈ ω → (𝐻‘suc 𝑦) ∈ On)
200197, 199syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ On)
201 omcl 8454 . . . . . . . . . . . . . . . 16 (((𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On)
202155, 149, 201syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On)
203 oaord 8465 . . . . . . . . . . . . . . 15 (((𝐻‘suc 𝑦) ∈ On ∧ (𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On) → ((𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)) ↔ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦)))))
204200, 155, 202, 203syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)) ↔ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦)))))
205195, 204mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
20644, 1, 45, 19, 43, 8cantnfsuc 9566 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
207196, 206sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
208207adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
209 omsuc 8444 . . . . . . . . . . . . . 14 (((𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
210155, 149, 209syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
211205, 208, 2103eltr4d 2843 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) ∈ ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))))
212161, 211sseldd 3936 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))
213212exp32 420 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → (suc 𝑦 ∈ dom 𝐺 → ((𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)) → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
214213a2d 29 . . . . . . . . 9 ((𝜑𝑦 ∈ ω) → ((suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
215136, 214syl5 34 . . . . . . . 8 ((𝜑𝑦 ∈ ω) → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
216215expcom 413 . . . . . . 7 (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦))))))
21780, 89, 98, 131, 216finds2 7831 . . . . . 6 (𝑥 ∈ ω → (𝜑 → (𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)))))
21870, 71, 58, 217syl3c 66 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)))
21969, 218eqeltrd 2828 . . . 4 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) ∈ (𝐴o suc (𝐺𝑥)))
22068, 219sseldd 3936 . . 3 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) ∈ (𝐴o 𝐶))
221220rexlimdvaa 3131 . 2 (𝜑 → (∃𝑥 ∈ ω 𝐾 = suc 𝑥 → (𝐻𝐾) ∈ (𝐴o 𝐶)))
222 peano2 7823 . . . . 5 (dom 𝐺 ∈ ω → suc dom 𝐺 ∈ ω)
223170, 222simpl2im 503 . . . 4 (𝜑 → suc dom 𝐺 ∈ ω)
224 elnn 7810 . . . 4 ((𝐾 ∈ suc dom 𝐺 ∧ suc dom 𝐺 ∈ ω) → 𝐾 ∈ ω)
22523, 223, 224syl2anc 584 . . 3 (𝜑𝐾 ∈ ω)
226 nn0suc 7827 . . 3 (𝐾 ∈ ω → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥))
227225, 226syl 17 . 2 (𝜑 → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥))
22813, 221, 227mpjaod 860 1 (𝜑 → (𝐻𝐾) ∈ (𝐴o 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436  wss 3903  c0 4284   class class class wbr 5092  Tr wtr 5199   E cep 5518   We wwe 5571  dom cdm 5619  cima 5622  Ord word 6306  Oncon0 6307  suc csuc 6309   Fn wfn 6477  wf 6478  cfv 6482   Isom wiso 6483  (class class class)co 7349  cmpo 7351  ωcom 7799   supp csupp 8093  seqωcseqom 8369   +o coa 8385   ·o comu 8386  o coe 8387   finSupp cfsupp 9251  OrdIsocoi 9401   CNF ccnf 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seqom 8370  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-oexp 8394  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-cnf 9558
This theorem is referenced by:  cantnflt2  9569  cnfcomlem  9595
  Copyright terms: Public domain W3C validator