MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflt Structured version   Visualization version   GIF version

Theorem cantnflt 9616
Description: An upper bound on the partial sums of the CNF function. Since each term dominates all previous terms, by induction we can bound the whole sum with any exponent 𝐴 ↑o 𝐢 where 𝐢 is larger than any exponent (πΊβ€˜π‘₯), π‘₯ ∈ 𝐾 which has been summed so far. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐡)
cantnfs.a (πœ‘ β†’ 𝐴 ∈ On)
cantnfs.b (πœ‘ β†’ 𝐡 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp βˆ…))
cantnfcl.f (πœ‘ β†’ 𝐹 ∈ 𝑆)
cantnfval.h 𝐻 = seqΟ‰((π‘˜ ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (πΊβ€˜π‘˜)) Β·o (πΉβ€˜(πΊβ€˜π‘˜))) +o 𝑧)), βˆ…)
cantnflt.a (πœ‘ β†’ βˆ… ∈ 𝐴)
cantnflt.k (πœ‘ β†’ 𝐾 ∈ suc dom 𝐺)
cantnflt.c (πœ‘ β†’ 𝐢 ∈ On)
cantnflt.s (πœ‘ β†’ (𝐺 β€œ 𝐾) βŠ† 𝐢)
Assertion
Ref Expression
cantnflt (πœ‘ β†’ (π»β€˜πΎ) ∈ (𝐴 ↑o 𝐢))
Distinct variable groups:   𝑧,π‘˜,𝐡   𝑧,𝐢   𝐴,π‘˜,𝑧   π‘˜,𝐹,𝑧   𝑆,π‘˜,𝑧   π‘˜,𝐺,𝑧   π‘˜,𝐾,𝑧   πœ‘,π‘˜,𝑧
Allowed substitution hints:   𝐢(π‘˜)   𝐻(𝑧,π‘˜)

Proof of Theorem cantnflt
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.a . . . 4 (πœ‘ β†’ 𝐴 ∈ On)
2 cantnflt.c . . . 4 (πœ‘ β†’ 𝐢 ∈ On)
3 cantnflt.a . . . 4 (πœ‘ β†’ βˆ… ∈ 𝐴)
4 oen0 8537 . . . 4 (((𝐴 ∈ On ∧ 𝐢 ∈ On) ∧ βˆ… ∈ 𝐴) β†’ βˆ… ∈ (𝐴 ↑o 𝐢))
51, 2, 3, 4syl21anc 837 . . 3 (πœ‘ β†’ βˆ… ∈ (𝐴 ↑o 𝐢))
6 fveq2 6846 . . . . 5 (𝐾 = βˆ… β†’ (π»β€˜πΎ) = (π»β€˜βˆ…))
7 0ex 5268 . . . . . 6 βˆ… ∈ V
8 cantnfval.h . . . . . . 7 𝐻 = seqΟ‰((π‘˜ ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (πΊβ€˜π‘˜)) Β·o (πΉβ€˜(πΊβ€˜π‘˜))) +o 𝑧)), βˆ…)
98seqom0g 8406 . . . . . 6 (βˆ… ∈ V β†’ (π»β€˜βˆ…) = βˆ…)
107, 9ax-mp 5 . . . . 5 (π»β€˜βˆ…) = βˆ…
116, 10eqtrdi 2789 . . . 4 (𝐾 = βˆ… β†’ (π»β€˜πΎ) = βˆ…)
1211eleq1d 2819 . . 3 (𝐾 = βˆ… β†’ ((π»β€˜πΎ) ∈ (𝐴 ↑o 𝐢) ↔ βˆ… ∈ (𝐴 ↑o 𝐢)))
135, 12syl5ibrcom 247 . 2 (πœ‘ β†’ (𝐾 = βˆ… β†’ (π»β€˜πΎ) ∈ (𝐴 ↑o 𝐢)))
142adantr 482 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ 𝐢 ∈ On)
15 eloni 6331 . . . . . . 7 (𝐢 ∈ On β†’ Ord 𝐢)
1614, 15syl 17 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ Ord 𝐢)
17 cantnflt.s . . . . . . . 8 (πœ‘ β†’ (𝐺 β€œ 𝐾) βŠ† 𝐢)
1817adantr 482 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (𝐺 β€œ 𝐾) βŠ† 𝐢)
19 cantnfcl.g . . . . . . . . . 10 𝐺 = OrdIso( E , (𝐹 supp βˆ…))
2019oif 9474 . . . . . . . . 9 𝐺:dom 𝐺⟢(𝐹 supp βˆ…)
21 ffn 6672 . . . . . . . . 9 (𝐺:dom 𝐺⟢(𝐹 supp βˆ…) β†’ 𝐺 Fn dom 𝐺)
2220, 21mp1i 13 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ 𝐺 Fn dom 𝐺)
23 cantnflt.k . . . . . . . . . 10 (πœ‘ β†’ 𝐾 ∈ suc dom 𝐺)
2419oicl 9473 . . . . . . . . . . . . 13 Ord dom 𝐺
25 ordsuc 7752 . . . . . . . . . . . . 13 (Ord dom 𝐺 ↔ Ord suc dom 𝐺)
2624, 25mpbi 229 . . . . . . . . . . . 12 Ord suc dom 𝐺
27 ordelon 6345 . . . . . . . . . . . 12 ((Ord suc dom 𝐺 ∧ 𝐾 ∈ suc dom 𝐺) β†’ 𝐾 ∈ On)
2826, 23, 27sylancr 588 . . . . . . . . . . 11 (πœ‘ β†’ 𝐾 ∈ On)
29 ordsssuc 6410 . . . . . . . . . . 11 ((𝐾 ∈ On ∧ Ord dom 𝐺) β†’ (𝐾 βŠ† dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺))
3028, 24, 29sylancl 587 . . . . . . . . . 10 (πœ‘ β†’ (𝐾 βŠ† dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺))
3123, 30mpbird 257 . . . . . . . . 9 (πœ‘ β†’ 𝐾 βŠ† dom 𝐺)
3231adantr 482 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ 𝐾 βŠ† dom 𝐺)
33 vex 3451 . . . . . . . . . 10 π‘₯ ∈ V
3433sucid 6403 . . . . . . . . 9 π‘₯ ∈ suc π‘₯
35 simprr 772 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ 𝐾 = suc π‘₯)
3634, 35eleqtrrid 2841 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ π‘₯ ∈ 𝐾)
37 fnfvima 7187 . . . . . . . 8 ((𝐺 Fn dom 𝐺 ∧ 𝐾 βŠ† dom 𝐺 ∧ π‘₯ ∈ 𝐾) β†’ (πΊβ€˜π‘₯) ∈ (𝐺 β€œ 𝐾))
3822, 32, 36, 37syl3anc 1372 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (πΊβ€˜π‘₯) ∈ (𝐺 β€œ 𝐾))
3918, 38sseldd 3949 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (πΊβ€˜π‘₯) ∈ 𝐢)
40 ordsucss 7757 . . . . . 6 (Ord 𝐢 β†’ ((πΊβ€˜π‘₯) ∈ 𝐢 β†’ suc (πΊβ€˜π‘₯) βŠ† 𝐢))
4116, 39, 40sylc 65 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ suc (πΊβ€˜π‘₯) βŠ† 𝐢)
42 suppssdm 8112 . . . . . . . . . . 11 (𝐹 supp βˆ…) βŠ† dom 𝐹
43 cantnfcl.f . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐹 ∈ 𝑆)
44 cantnfs.s . . . . . . . . . . . . . 14 𝑆 = dom (𝐴 CNF 𝐡)
45 cantnfs.b . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐡 ∈ On)
4644, 1, 45cantnfs 9610 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐹 ∈ 𝑆 ↔ (𝐹:𝐡⟢𝐴 ∧ 𝐹 finSupp βˆ…)))
4743, 46mpbid 231 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐹:𝐡⟢𝐴 ∧ 𝐹 finSupp βˆ…))
4847simpld 496 . . . . . . . . . . 11 (πœ‘ β†’ 𝐹:𝐡⟢𝐴)
4942, 48fssdm 6692 . . . . . . . . . 10 (πœ‘ β†’ (𝐹 supp βˆ…) βŠ† 𝐡)
50 onss 7723 . . . . . . . . . . 11 (𝐡 ∈ On β†’ 𝐡 βŠ† On)
5145, 50syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝐡 βŠ† On)
5249, 51sstrd 3958 . . . . . . . . 9 (πœ‘ β†’ (𝐹 supp βˆ…) βŠ† On)
5352adantr 482 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (𝐹 supp βˆ…) βŠ† On)
5423adantr 482 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ 𝐾 ∈ suc dom 𝐺)
5535, 54eqeltrrd 2835 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ suc π‘₯ ∈ suc dom 𝐺)
56 ordsucelsuc 7761 . . . . . . . . . . 11 (Ord dom 𝐺 β†’ (π‘₯ ∈ dom 𝐺 ↔ suc π‘₯ ∈ suc dom 𝐺))
5724, 56ax-mp 5 . . . . . . . . . 10 (π‘₯ ∈ dom 𝐺 ↔ suc π‘₯ ∈ suc dom 𝐺)
5855, 57sylibr 233 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ π‘₯ ∈ dom 𝐺)
5920ffvelcdmi 7038 . . . . . . . . 9 (π‘₯ ∈ dom 𝐺 β†’ (πΊβ€˜π‘₯) ∈ (𝐹 supp βˆ…))
6058, 59syl 17 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (πΊβ€˜π‘₯) ∈ (𝐹 supp βˆ…))
6153, 60sseldd 3949 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (πΊβ€˜π‘₯) ∈ On)
62 onsuc 7750 . . . . . . 7 ((πΊβ€˜π‘₯) ∈ On β†’ suc (πΊβ€˜π‘₯) ∈ On)
6361, 62syl 17 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ suc (πΊβ€˜π‘₯) ∈ On)
641adantr 482 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ 𝐴 ∈ On)
653adantr 482 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ βˆ… ∈ 𝐴)
66 oewordi 8542 . . . . . 6 (((suc (πΊβ€˜π‘₯) ∈ On ∧ 𝐢 ∈ On ∧ 𝐴 ∈ On) ∧ βˆ… ∈ 𝐴) β†’ (suc (πΊβ€˜π‘₯) βŠ† 𝐢 β†’ (𝐴 ↑o suc (πΊβ€˜π‘₯)) βŠ† (𝐴 ↑o 𝐢)))
6763, 14, 64, 65, 66syl31anc 1374 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (suc (πΊβ€˜π‘₯) βŠ† 𝐢 β†’ (𝐴 ↑o suc (πΊβ€˜π‘₯)) βŠ† (𝐴 ↑o 𝐢)))
6841, 67mpd 15 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (𝐴 ↑o suc (πΊβ€˜π‘₯)) βŠ† (𝐴 ↑o 𝐢))
6935fveq2d 6850 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (π»β€˜πΎ) = (π»β€˜suc π‘₯))
70 simprl 770 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ π‘₯ ∈ Ο‰)
71 simpl 484 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ πœ‘)
72 eleq1 2822 . . . . . . . 8 (π‘₯ = βˆ… β†’ (π‘₯ ∈ dom 𝐺 ↔ βˆ… ∈ dom 𝐺))
73 suceq 6387 . . . . . . . . . 10 (π‘₯ = βˆ… β†’ suc π‘₯ = suc βˆ…)
7473fveq2d 6850 . . . . . . . . 9 (π‘₯ = βˆ… β†’ (π»β€˜suc π‘₯) = (π»β€˜suc βˆ…))
75 fveq2 6846 . . . . . . . . . . 11 (π‘₯ = βˆ… β†’ (πΊβ€˜π‘₯) = (πΊβ€˜βˆ…))
76 suceq 6387 . . . . . . . . . . 11 ((πΊβ€˜π‘₯) = (πΊβ€˜βˆ…) β†’ suc (πΊβ€˜π‘₯) = suc (πΊβ€˜βˆ…))
7775, 76syl 17 . . . . . . . . . 10 (π‘₯ = βˆ… β†’ suc (πΊβ€˜π‘₯) = suc (πΊβ€˜βˆ…))
7877oveq2d 7377 . . . . . . . . 9 (π‘₯ = βˆ… β†’ (𝐴 ↑o suc (πΊβ€˜π‘₯)) = (𝐴 ↑o suc (πΊβ€˜βˆ…)))
7974, 78eleq12d 2828 . . . . . . . 8 (π‘₯ = βˆ… β†’ ((π»β€˜suc π‘₯) ∈ (𝐴 ↑o suc (πΊβ€˜π‘₯)) ↔ (π»β€˜suc βˆ…) ∈ (𝐴 ↑o suc (πΊβ€˜βˆ…))))
8072, 79imbi12d 345 . . . . . . 7 (π‘₯ = βˆ… β†’ ((π‘₯ ∈ dom 𝐺 β†’ (π»β€˜suc π‘₯) ∈ (𝐴 ↑o suc (πΊβ€˜π‘₯))) ↔ (βˆ… ∈ dom 𝐺 β†’ (π»β€˜suc βˆ…) ∈ (𝐴 ↑o suc (πΊβ€˜βˆ…)))))
81 eleq1 2822 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (π‘₯ ∈ dom 𝐺 ↔ 𝑦 ∈ dom 𝐺))
82 suceq 6387 . . . . . . . . . 10 (π‘₯ = 𝑦 β†’ suc π‘₯ = suc 𝑦)
8382fveq2d 6850 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ (π»β€˜suc π‘₯) = (π»β€˜suc 𝑦))
84 fveq2 6846 . . . . . . . . . . 11 (π‘₯ = 𝑦 β†’ (πΊβ€˜π‘₯) = (πΊβ€˜π‘¦))
85 suceq 6387 . . . . . . . . . . 11 ((πΊβ€˜π‘₯) = (πΊβ€˜π‘¦) β†’ suc (πΊβ€˜π‘₯) = suc (πΊβ€˜π‘¦))
8684, 85syl 17 . . . . . . . . . 10 (π‘₯ = 𝑦 β†’ suc (πΊβ€˜π‘₯) = suc (πΊβ€˜π‘¦))
8786oveq2d 7377 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ (𝐴 ↑o suc (πΊβ€˜π‘₯)) = (𝐴 ↑o suc (πΊβ€˜π‘¦)))
8883, 87eleq12d 2828 . . . . . . . 8 (π‘₯ = 𝑦 β†’ ((π»β€˜suc π‘₯) ∈ (𝐴 ↑o suc (πΊβ€˜π‘₯)) ↔ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦))))
8981, 88imbi12d 345 . . . . . . 7 (π‘₯ = 𝑦 β†’ ((π‘₯ ∈ dom 𝐺 β†’ (π»β€˜suc π‘₯) ∈ (𝐴 ↑o suc (πΊβ€˜π‘₯))) ↔ (𝑦 ∈ dom 𝐺 β†’ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))))
90 eleq1 2822 . . . . . . . 8 (π‘₯ = suc 𝑦 β†’ (π‘₯ ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺))
91 suceq 6387 . . . . . . . . . 10 (π‘₯ = suc 𝑦 β†’ suc π‘₯ = suc suc 𝑦)
9291fveq2d 6850 . . . . . . . . 9 (π‘₯ = suc 𝑦 β†’ (π»β€˜suc π‘₯) = (π»β€˜suc suc 𝑦))
93 fveq2 6846 . . . . . . . . . . 11 (π‘₯ = suc 𝑦 β†’ (πΊβ€˜π‘₯) = (πΊβ€˜suc 𝑦))
94 suceq 6387 . . . . . . . . . . 11 ((πΊβ€˜π‘₯) = (πΊβ€˜suc 𝑦) β†’ suc (πΊβ€˜π‘₯) = suc (πΊβ€˜suc 𝑦))
9593, 94syl 17 . . . . . . . . . 10 (π‘₯ = suc 𝑦 β†’ suc (πΊβ€˜π‘₯) = suc (πΊβ€˜suc 𝑦))
9695oveq2d 7377 . . . . . . . . 9 (π‘₯ = suc 𝑦 β†’ (𝐴 ↑o suc (πΊβ€˜π‘₯)) = (𝐴 ↑o suc (πΊβ€˜suc 𝑦)))
9792, 96eleq12d 2828 . . . . . . . 8 (π‘₯ = suc 𝑦 β†’ ((π»β€˜suc π‘₯) ∈ (𝐴 ↑o suc (πΊβ€˜π‘₯)) ↔ (π»β€˜suc suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜suc 𝑦))))
9890, 97imbi12d 345 . . . . . . 7 (π‘₯ = suc 𝑦 β†’ ((π‘₯ ∈ dom 𝐺 β†’ (π»β€˜suc π‘₯) ∈ (𝐴 ↑o suc (πΊβ€˜π‘₯))) ↔ (suc 𝑦 ∈ dom 𝐺 β†’ (π»β€˜suc suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜suc 𝑦)))))
9948adantr 482 . . . . . . . . . . 11 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ 𝐹:𝐡⟢𝐴)
10020ffvelcdmi 7038 . . . . . . . . . . . 12 (βˆ… ∈ dom 𝐺 β†’ (πΊβ€˜βˆ…) ∈ (𝐹 supp βˆ…))
10149sselda 3948 . . . . . . . . . . . 12 ((πœ‘ ∧ (πΊβ€˜βˆ…) ∈ (𝐹 supp βˆ…)) β†’ (πΊβ€˜βˆ…) ∈ 𝐡)
102100, 101sylan2 594 . . . . . . . . . . 11 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (πΊβ€˜βˆ…) ∈ 𝐡)
10399, 102ffvelcdmd 7040 . . . . . . . . . 10 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (πΉβ€˜(πΊβ€˜βˆ…)) ∈ 𝐴)
1041adantr 482 . . . . . . . . . . . 12 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ 𝐴 ∈ On)
105 onelon 6346 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (πΉβ€˜(πΊβ€˜βˆ…)) ∈ 𝐴) β†’ (πΉβ€˜(πΊβ€˜βˆ…)) ∈ On)
106104, 103, 105syl2anc 585 . . . . . . . . . . 11 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (πΉβ€˜(πΊβ€˜βˆ…)) ∈ On)
10752sselda 3948 . . . . . . . . . . . . 13 ((πœ‘ ∧ (πΊβ€˜βˆ…) ∈ (𝐹 supp βˆ…)) β†’ (πΊβ€˜βˆ…) ∈ On)
108100, 107sylan2 594 . . . . . . . . . . . 12 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (πΊβ€˜βˆ…) ∈ On)
109 oecl 8487 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (πΊβ€˜βˆ…) ∈ On) β†’ (𝐴 ↑o (πΊβ€˜βˆ…)) ∈ On)
110104, 108, 109syl2anc 585 . . . . . . . . . . 11 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (𝐴 ↑o (πΊβ€˜βˆ…)) ∈ On)
1113adantr 482 . . . . . . . . . . . 12 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ βˆ… ∈ 𝐴)
112 oen0 8537 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (πΊβ€˜βˆ…) ∈ On) ∧ βˆ… ∈ 𝐴) β†’ βˆ… ∈ (𝐴 ↑o (πΊβ€˜βˆ…)))
113104, 108, 111, 112syl21anc 837 . . . . . . . . . . 11 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ βˆ… ∈ (𝐴 ↑o (πΊβ€˜βˆ…)))
114 omord2 8518 . . . . . . . . . . 11 ((((πΉβ€˜(πΊβ€˜βˆ…)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ↑o (πΊβ€˜βˆ…)) ∈ On) ∧ βˆ… ∈ (𝐴 ↑o (πΊβ€˜βˆ…))) β†’ ((πΉβ€˜(πΊβ€˜βˆ…)) ∈ 𝐴 ↔ ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) ∈ ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o 𝐴)))
115106, 104, 110, 113, 114syl31anc 1374 . . . . . . . . . 10 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ ((πΉβ€˜(πΊβ€˜βˆ…)) ∈ 𝐴 ↔ ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) ∈ ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o 𝐴)))
116103, 115mpbid 231 . . . . . . . . 9 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) ∈ ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o 𝐴))
117 peano1 7829 . . . . . . . . . . . 12 βˆ… ∈ Ο‰
118117a1i 11 . . . . . . . . . . 11 (βˆ… ∈ dom 𝐺 β†’ βˆ… ∈ Ο‰)
11944, 1, 45, 19, 43, 8cantnfsuc 9614 . . . . . . . . . . 11 ((πœ‘ ∧ βˆ… ∈ Ο‰) β†’ (π»β€˜suc βˆ…) = (((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) +o (π»β€˜βˆ…)))
120118, 119sylan2 594 . . . . . . . . . 10 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (π»β€˜suc βˆ…) = (((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) +o (π»β€˜βˆ…)))
12110oveq2i 7372 . . . . . . . . . . 11 (((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) +o (π»β€˜βˆ…)) = (((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) +o βˆ…)
122 omcl 8486 . . . . . . . . . . . . 13 (((𝐴 ↑o (πΊβ€˜βˆ…)) ∈ On ∧ (πΉβ€˜(πΊβ€˜βˆ…)) ∈ On) β†’ ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) ∈ On)
123110, 106, 122syl2anc 585 . . . . . . . . . . . 12 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) ∈ On)
124 oa0 8466 . . . . . . . . . . . 12 (((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) ∈ On β†’ (((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) +o βˆ…) = ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))))
125123, 124syl 17 . . . . . . . . . . 11 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) +o βˆ…) = ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))))
126121, 125eqtrid 2785 . . . . . . . . . 10 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))) +o (π»β€˜βˆ…)) = ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))))
127120, 126eqtrd 2773 . . . . . . . . 9 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (π»β€˜suc βˆ…) = ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o (πΉβ€˜(πΊβ€˜βˆ…))))
128 oesuc 8477 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (πΊβ€˜βˆ…) ∈ On) β†’ (𝐴 ↑o suc (πΊβ€˜βˆ…)) = ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o 𝐴))
129104, 108, 128syl2anc 585 . . . . . . . . 9 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (𝐴 ↑o suc (πΊβ€˜βˆ…)) = ((𝐴 ↑o (πΊβ€˜βˆ…)) Β·o 𝐴))
130116, 127, 1293eltr4d 2849 . . . . . . . 8 ((πœ‘ ∧ βˆ… ∈ dom 𝐺) β†’ (π»β€˜suc βˆ…) ∈ (𝐴 ↑o suc (πΊβ€˜βˆ…)))
131130ex 414 . . . . . . 7 (πœ‘ β†’ (βˆ… ∈ dom 𝐺 β†’ (π»β€˜suc βˆ…) ∈ (𝐴 ↑o suc (πΊβ€˜βˆ…))))
132 ordtr 6335 . . . . . . . . . . . 12 (Ord dom 𝐺 β†’ Tr dom 𝐺)
13324, 132ax-mp 5 . . . . . . . . . . 11 Tr dom 𝐺
134 trsuc 6408 . . . . . . . . . . 11 ((Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺) β†’ 𝑦 ∈ dom 𝐺)
135133, 134mpan 689 . . . . . . . . . 10 (suc 𝑦 ∈ dom 𝐺 β†’ 𝑦 ∈ dom 𝐺)
136135imim1i 63 . . . . . . . . 9 ((𝑦 ∈ dom 𝐺 β†’ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦))) β†’ (suc 𝑦 ∈ dom 𝐺 β†’ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦))))
1371ad2antrr 725 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ 𝐴 ∈ On)
138 eloni 6331 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On β†’ Ord 𝐴)
139137, 138syl 17 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ Ord 𝐴)
14048ad2antrr 725 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ 𝐹:𝐡⟢𝐴)
14149ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (𝐹 supp βˆ…) βŠ† 𝐡)
14220ffvelcdmi 7038 . . . . . . . . . . . . . . . . . 18 (suc 𝑦 ∈ dom 𝐺 β†’ (πΊβ€˜suc 𝑦) ∈ (𝐹 supp βˆ…))
143142ad2antrl 727 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (πΊβ€˜suc 𝑦) ∈ (𝐹 supp βˆ…))
144141, 143sseldd 3949 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (πΊβ€˜suc 𝑦) ∈ 𝐡)
145140, 144ffvelcdmd 7040 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ 𝐴)
146 ordsucss 7757 . . . . . . . . . . . . . . 15 (Ord 𝐴 β†’ ((πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ 𝐴 β†’ suc (πΉβ€˜(πΊβ€˜suc 𝑦)) βŠ† 𝐴))
147139, 145, 146sylc 65 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ suc (πΉβ€˜(πΊβ€˜suc 𝑦)) βŠ† 𝐴)
148 onelon 6346 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ 𝐴) β†’ (πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ On)
149137, 145, 148syl2anc 585 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ On)
150 onsuc 7750 . . . . . . . . . . . . . . . 16 ((πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ On β†’ suc (πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ On)
151149, 150syl 17 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ suc (πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ On)
15252ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (𝐹 supp βˆ…) βŠ† On)
153152, 143sseldd 3949 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (πΊβ€˜suc 𝑦) ∈ On)
154 oecl 8487 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (πΊβ€˜suc 𝑦) ∈ On) β†’ (𝐴 ↑o (πΊβ€˜suc 𝑦)) ∈ On)
155137, 153, 154syl2anc 585 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (𝐴 ↑o (πΊβ€˜suc 𝑦)) ∈ On)
156 omwordi 8522 . . . . . . . . . . . . . . 15 ((suc (πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ↑o (πΊβ€˜suc 𝑦)) ∈ On) β†’ (suc (πΉβ€˜(πΊβ€˜suc 𝑦)) βŠ† 𝐴 β†’ ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o suc (πΉβ€˜(πΊβ€˜suc 𝑦))) βŠ† ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o 𝐴)))
157151, 137, 155, 156syl3anc 1372 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (suc (πΉβ€˜(πΊβ€˜suc 𝑦)) βŠ† 𝐴 β†’ ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o suc (πΉβ€˜(πΊβ€˜suc 𝑦))) βŠ† ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o 𝐴)))
158147, 157mpd 15 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o suc (πΉβ€˜(πΊβ€˜suc 𝑦))) βŠ† ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o 𝐴))
159 oesuc 8477 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (πΊβ€˜suc 𝑦) ∈ On) β†’ (𝐴 ↑o suc (πΊβ€˜suc 𝑦)) = ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o 𝐴))
160137, 153, 159syl2anc 585 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (𝐴 ↑o suc (πΊβ€˜suc 𝑦)) = ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o 𝐴))
161158, 160sseqtrrd 3989 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o suc (πΉβ€˜(πΊβ€˜suc 𝑦))) βŠ† (𝐴 ↑o suc (πΊβ€˜suc 𝑦)))
162 eloni 6331 . . . . . . . . . . . . . . . . . 18 ((πΊβ€˜suc 𝑦) ∈ On β†’ Ord (πΊβ€˜suc 𝑦))
163153, 162syl 17 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ Ord (πΊβ€˜suc 𝑦))
164 vex 3451 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
165164sucid 6403 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ suc 𝑦
166164sucex 7745 . . . . . . . . . . . . . . . . . . . . 21 suc 𝑦 ∈ V
167166epeli 5543 . . . . . . . . . . . . . . . . . . . 20 (𝑦 E suc 𝑦 ↔ 𝑦 ∈ suc 𝑦)
168165, 167mpbir 230 . . . . . . . . . . . . . . . . . . 19 𝑦 E suc 𝑦
169 ovexd 7396 . . . . . . . . . . . . . . . . . . . . . 22 (πœ‘ β†’ (𝐹 supp βˆ…) ∈ V)
17044, 1, 45, 19, 43cantnfcl 9611 . . . . . . . . . . . . . . . . . . . . . . 23 (πœ‘ β†’ ( E We (𝐹 supp βˆ…) ∧ dom 𝐺 ∈ Ο‰))
171170simpld 496 . . . . . . . . . . . . . . . . . . . . . 22 (πœ‘ β†’ E We (𝐹 supp βˆ…))
17219oiiso 9481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 supp βˆ…) ∈ V ∧ E We (𝐹 supp βˆ…)) β†’ 𝐺 Isom E , E (dom 𝐺, (𝐹 supp βˆ…)))
173169, 171, 172syl2anc 585 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ 𝐺 Isom E , E (dom 𝐺, (𝐹 supp βˆ…)))
174173ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ 𝐺 Isom E , E (dom 𝐺, (𝐹 supp βˆ…)))
175135ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ 𝑦 ∈ dom 𝐺)
176 simprl 770 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ suc 𝑦 ∈ dom 𝐺)
177 isorel 7275 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp βˆ…)) ∧ (𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺)) β†’ (𝑦 E suc 𝑦 ↔ (πΊβ€˜π‘¦) E (πΊβ€˜suc 𝑦)))
178174, 175, 176, 177syl12anc 836 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (𝑦 E suc 𝑦 ↔ (πΊβ€˜π‘¦) E (πΊβ€˜suc 𝑦)))
179168, 178mpbii 232 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (πΊβ€˜π‘¦) E (πΊβ€˜suc 𝑦))
180 fvex 6859 . . . . . . . . . . . . . . . . . . 19 (πΊβ€˜suc 𝑦) ∈ V
181180epeli 5543 . . . . . . . . . . . . . . . . . 18 ((πΊβ€˜π‘¦) E (πΊβ€˜suc 𝑦) ↔ (πΊβ€˜π‘¦) ∈ (πΊβ€˜suc 𝑦))
182179, 181sylib 217 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (πΊβ€˜π‘¦) ∈ (πΊβ€˜suc 𝑦))
183 ordsucss 7757 . . . . . . . . . . . . . . . . 17 (Ord (πΊβ€˜suc 𝑦) β†’ ((πΊβ€˜π‘¦) ∈ (πΊβ€˜suc 𝑦) β†’ suc (πΊβ€˜π‘¦) βŠ† (πΊβ€˜suc 𝑦)))
184163, 182, 183sylc 65 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ suc (πΊβ€˜π‘¦) βŠ† (πΊβ€˜suc 𝑦))
18520ffvelcdmi 7038 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ dom 𝐺 β†’ (πΊβ€˜π‘¦) ∈ (𝐹 supp βˆ…))
186175, 185syl 17 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (πΊβ€˜π‘¦) ∈ (𝐹 supp βˆ…))
187152, 186sseldd 3949 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (πΊβ€˜π‘¦) ∈ On)
188 onsuc 7750 . . . . . . . . . . . . . . . . . 18 ((πΊβ€˜π‘¦) ∈ On β†’ suc (πΊβ€˜π‘¦) ∈ On)
189187, 188syl 17 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ suc (πΊβ€˜π‘¦) ∈ On)
1903ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ βˆ… ∈ 𝐴)
191 oewordi 8542 . . . . . . . . . . . . . . . . 17 (((suc (πΊβ€˜π‘¦) ∈ On ∧ (πΊβ€˜suc 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ βˆ… ∈ 𝐴) β†’ (suc (πΊβ€˜π‘¦) βŠ† (πΊβ€˜suc 𝑦) β†’ (𝐴 ↑o suc (πΊβ€˜π‘¦)) βŠ† (𝐴 ↑o (πΊβ€˜suc 𝑦))))
192189, 153, 137, 190, 191syl31anc 1374 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (suc (πΊβ€˜π‘¦) βŠ† (πΊβ€˜suc 𝑦) β†’ (𝐴 ↑o suc (πΊβ€˜π‘¦)) βŠ† (𝐴 ↑o (πΊβ€˜suc 𝑦))))
193184, 192mpd 15 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (𝐴 ↑o suc (πΊβ€˜π‘¦)) βŠ† (𝐴 ↑o (πΊβ€˜suc 𝑦)))
194 simprr 772 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))
195193, 194sseldd 3949 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o (πΊβ€˜suc 𝑦)))
196 peano2 7831 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ Ο‰ β†’ suc 𝑦 ∈ Ο‰)
197196ad2antlr 726 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ suc 𝑦 ∈ Ο‰)
1988cantnfvalf 9609 . . . . . . . . . . . . . . . . 17 𝐻:Ο‰βŸΆOn
199198ffvelcdmi 7038 . . . . . . . . . . . . . . . 16 (suc 𝑦 ∈ Ο‰ β†’ (π»β€˜suc 𝑦) ∈ On)
200197, 199syl 17 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (π»β€˜suc 𝑦) ∈ On)
201 omcl 8486 . . . . . . . . . . . . . . . 16 (((𝐴 ↑o (πΊβ€˜suc 𝑦)) ∈ On ∧ (πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ On) β†’ ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) ∈ On)
202155, 149, 201syl2anc 585 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) ∈ On)
203 oaord 8498 . . . . . . . . . . . . . . 15 (((π»β€˜suc 𝑦) ∈ On ∧ (𝐴 ↑o (πΊβ€˜suc 𝑦)) ∈ On ∧ ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) ∈ On) β†’ ((π»β€˜suc 𝑦) ∈ (𝐴 ↑o (πΊβ€˜suc 𝑦)) ↔ (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (π»β€˜suc 𝑦)) ∈ (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (𝐴 ↑o (πΊβ€˜suc 𝑦)))))
204200, 155, 202, 203syl3anc 1372 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ ((π»β€˜suc 𝑦) ∈ (𝐴 ↑o (πΊβ€˜suc 𝑦)) ↔ (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (π»β€˜suc 𝑦)) ∈ (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (𝐴 ↑o (πΊβ€˜suc 𝑦)))))
205195, 204mpbid 231 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (π»β€˜suc 𝑦)) ∈ (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (𝐴 ↑o (πΊβ€˜suc 𝑦))))
20644, 1, 45, 19, 43, 8cantnfsuc 9614 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ suc 𝑦 ∈ Ο‰) β†’ (π»β€˜suc suc 𝑦) = (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (π»β€˜suc 𝑦)))
207196, 206sylan2 594 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑦 ∈ Ο‰) β†’ (π»β€˜suc suc 𝑦) = (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (π»β€˜suc 𝑦)))
208207adantr 482 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (π»β€˜suc suc 𝑦) = (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (π»β€˜suc 𝑦)))
209 omsuc 8476 . . . . . . . . . . . . . 14 (((𝐴 ↑o (πΊβ€˜suc 𝑦)) ∈ On ∧ (πΉβ€˜(πΊβ€˜suc 𝑦)) ∈ On) β†’ ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o suc (πΉβ€˜(πΊβ€˜suc 𝑦))) = (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (𝐴 ↑o (πΊβ€˜suc 𝑦))))
210155, 149, 209syl2anc 585 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o suc (πΉβ€˜(πΊβ€˜suc 𝑦))) = (((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o (πΉβ€˜(πΊβ€˜suc 𝑦))) +o (𝐴 ↑o (πΊβ€˜suc 𝑦))))
211205, 208, 2103eltr4d 2849 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (π»β€˜suc suc 𝑦) ∈ ((𝐴 ↑o (πΊβ€˜suc 𝑦)) Β·o suc (πΉβ€˜(πΊβ€˜suc 𝑦))))
212161, 211sseldd 3949 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑦 ∈ Ο‰) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)))) β†’ (π»β€˜suc suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜suc 𝑦)))
213212exp32 422 . . . . . . . . . 10 ((πœ‘ ∧ 𝑦 ∈ Ο‰) β†’ (suc 𝑦 ∈ dom 𝐺 β†’ ((π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦)) β†’ (π»β€˜suc suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜suc 𝑦)))))
214213a2d 29 . . . . . . . . 9 ((πœ‘ ∧ 𝑦 ∈ Ο‰) β†’ ((suc 𝑦 ∈ dom 𝐺 β†’ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦))) β†’ (suc 𝑦 ∈ dom 𝐺 β†’ (π»β€˜suc suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜suc 𝑦)))))
215136, 214syl5 34 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ Ο‰) β†’ ((𝑦 ∈ dom 𝐺 β†’ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦))) β†’ (suc 𝑦 ∈ dom 𝐺 β†’ (π»β€˜suc suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜suc 𝑦)))))
216215expcom 415 . . . . . . 7 (𝑦 ∈ Ο‰ β†’ (πœ‘ β†’ ((𝑦 ∈ dom 𝐺 β†’ (π»β€˜suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜π‘¦))) β†’ (suc 𝑦 ∈ dom 𝐺 β†’ (π»β€˜suc suc 𝑦) ∈ (𝐴 ↑o suc (πΊβ€˜suc 𝑦))))))
21780, 89, 98, 131, 216finds2 7841 . . . . . 6 (π‘₯ ∈ Ο‰ β†’ (πœ‘ β†’ (π‘₯ ∈ dom 𝐺 β†’ (π»β€˜suc π‘₯) ∈ (𝐴 ↑o suc (πΊβ€˜π‘₯)))))
21870, 71, 58, 217syl3c 66 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (π»β€˜suc π‘₯) ∈ (𝐴 ↑o suc (πΊβ€˜π‘₯)))
21969, 218eqeltrd 2834 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (π»β€˜πΎ) ∈ (𝐴 ↑o suc (πΊβ€˜π‘₯)))
22068, 219sseldd 3949 . . 3 ((πœ‘ ∧ (π‘₯ ∈ Ο‰ ∧ 𝐾 = suc π‘₯)) β†’ (π»β€˜πΎ) ∈ (𝐴 ↑o 𝐢))
221220rexlimdvaa 3150 . 2 (πœ‘ β†’ (βˆƒπ‘₯ ∈ Ο‰ 𝐾 = suc π‘₯ β†’ (π»β€˜πΎ) ∈ (𝐴 ↑o 𝐢)))
222 peano2 7831 . . . . 5 (dom 𝐺 ∈ Ο‰ β†’ suc dom 𝐺 ∈ Ο‰)
223170, 222simpl2im 505 . . . 4 (πœ‘ β†’ suc dom 𝐺 ∈ Ο‰)
224 elnn 7817 . . . 4 ((𝐾 ∈ suc dom 𝐺 ∧ suc dom 𝐺 ∈ Ο‰) β†’ 𝐾 ∈ Ο‰)
22523, 223, 224syl2anc 585 . . 3 (πœ‘ β†’ 𝐾 ∈ Ο‰)
226 nn0suc 7836 . . 3 (𝐾 ∈ Ο‰ β†’ (𝐾 = βˆ… ∨ βˆƒπ‘₯ ∈ Ο‰ 𝐾 = suc π‘₯))
227225, 226syl 17 . 2 (πœ‘ β†’ (𝐾 = βˆ… ∨ βˆƒπ‘₯ ∈ Ο‰ 𝐾 = suc π‘₯))
22813, 221, 227mpjaod 859 1 (πœ‘ β†’ (π»β€˜πΎ) ∈ (𝐴 ↑o 𝐢))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3070  Vcvv 3447   βŠ† wss 3914  βˆ…c0 4286   class class class wbr 5109  Tr wtr 5226   E cep 5540   We wwe 5591  dom cdm 5637   β€œ cima 5640  Ord word 6320  Oncon0 6321  suc csuc 6323   Fn wfn 6495  βŸΆwf 6496  β€˜cfv 6500   Isom wiso 6501  (class class class)co 7361   ∈ cmpo 7363  Ο‰com 7806   supp csupp 8096  seqΟ‰cseqom 8397   +o coa 8413   Β·o comu 8414   ↑o coe 8415   finSupp cfsupp 9311  OrdIsocoi 9453   CNF ccnf 9605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-seqom 8398  df-1o 8416  df-2o 8417  df-oadd 8420  df-omul 8421  df-oexp 8422  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-oi 9454  df-cnf 9606
This theorem is referenced by:  cantnflt2  9617  cnfcomlem  9643
  Copyright terms: Public domain W3C validator