MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflt Structured version   Visualization version   GIF version

Theorem cantnflt 9562
Description: An upper bound on the partial sums of the CNF function. Since each term dominates all previous terms, by induction we can bound the whole sum with any exponent 𝐴o 𝐶 where 𝐶 is larger than any exponent (𝐺𝑥), 𝑥𝐾 which has been summed so far. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
cantnflt.a (𝜑 → ∅ ∈ 𝐴)
cantnflt.k (𝜑𝐾 ∈ suc dom 𝐺)
cantnflt.c (𝜑𝐶 ∈ On)
cantnflt.s (𝜑 → (𝐺𝐾) ⊆ 𝐶)
Assertion
Ref Expression
cantnflt (𝜑 → (𝐻𝐾) ∈ (𝐴o 𝐶))
Distinct variable groups:   𝑧,𝑘,𝐵   𝑧,𝐶   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝑘,𝐾,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑘)   𝐻(𝑧,𝑘)

Proof of Theorem cantnflt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
2 cantnflt.c . . . 4 (𝜑𝐶 ∈ On)
3 cantnflt.a . . . 4 (𝜑 → ∅ ∈ 𝐴)
4 oen0 8501 . . . 4 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐶))
51, 2, 3, 4syl21anc 837 . . 3 (𝜑 → ∅ ∈ (𝐴o 𝐶))
6 fveq2 6822 . . . . 5 (𝐾 = ∅ → (𝐻𝐾) = (𝐻‘∅))
7 0ex 5243 . . . . . 6 ∅ ∈ V
8 cantnfval.h . . . . . . 7 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
98seqom0g 8375 . . . . . 6 (∅ ∈ V → (𝐻‘∅) = ∅)
107, 9ax-mp 5 . . . . 5 (𝐻‘∅) = ∅
116, 10eqtrdi 2782 . . . 4 (𝐾 = ∅ → (𝐻𝐾) = ∅)
1211eleq1d 2816 . . 3 (𝐾 = ∅ → ((𝐻𝐾) ∈ (𝐴o 𝐶) ↔ ∅ ∈ (𝐴o 𝐶)))
135, 12syl5ibrcom 247 . 2 (𝜑 → (𝐾 = ∅ → (𝐻𝐾) ∈ (𝐴o 𝐶)))
142adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐶 ∈ On)
15 eloni 6316 . . . . . . 7 (𝐶 ∈ On → Ord 𝐶)
1614, 15syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → Ord 𝐶)
17 cantnflt.s . . . . . . . 8 (𝜑 → (𝐺𝐾) ⊆ 𝐶)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝐾) ⊆ 𝐶)
19 cantnfcl.g . . . . . . . . . 10 𝐺 = OrdIso( E , (𝐹 supp ∅))
2019oif 9416 . . . . . . . . 9 𝐺:dom 𝐺⟶(𝐹 supp ∅)
21 ffn 6651 . . . . . . . . 9 (𝐺:dom 𝐺⟶(𝐹 supp ∅) → 𝐺 Fn dom 𝐺)
2220, 21mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐺 Fn dom 𝐺)
23 cantnflt.k . . . . . . . . . 10 (𝜑𝐾 ∈ suc dom 𝐺)
2419oicl 9415 . . . . . . . . . . . . 13 Ord dom 𝐺
25 ordsuc 7744 . . . . . . . . . . . . 13 (Ord dom 𝐺 ↔ Ord suc dom 𝐺)
2624, 25mpbi 230 . . . . . . . . . . . 12 Ord suc dom 𝐺
27 ordelon 6330 . . . . . . . . . . . 12 ((Ord suc dom 𝐺𝐾 ∈ suc dom 𝐺) → 𝐾 ∈ On)
2826, 23, 27sylancr 587 . . . . . . . . . . 11 (𝜑𝐾 ∈ On)
29 ordsssuc 6397 . . . . . . . . . . 11 ((𝐾 ∈ On ∧ Ord dom 𝐺) → (𝐾 ⊆ dom 𝐺𝐾 ∈ suc dom 𝐺))
3028, 24, 29sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐾 ⊆ dom 𝐺𝐾 ∈ suc dom 𝐺))
3123, 30mpbird 257 . . . . . . . . 9 (𝜑𝐾 ⊆ dom 𝐺)
3231adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ⊆ dom 𝐺)
33 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
3433sucid 6390 . . . . . . . . 9 𝑥 ∈ suc 𝑥
35 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 = suc 𝑥)
3634, 35eleqtrrid 2838 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥𝐾)
37 fnfvima 7167 . . . . . . . 8 ((𝐺 Fn dom 𝐺𝐾 ⊆ dom 𝐺𝑥𝐾) → (𝐺𝑥) ∈ (𝐺𝐾))
3822, 32, 36, 37syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ (𝐺𝐾))
3918, 38sseldd 3930 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ 𝐶)
40 ordsucss 7748 . . . . . 6 (Ord 𝐶 → ((𝐺𝑥) ∈ 𝐶 → suc (𝐺𝑥) ⊆ 𝐶))
4116, 39, 40sylc 65 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺𝑥) ⊆ 𝐶)
42 suppssdm 8107 . . . . . . . . . . 11 (𝐹 supp ∅) ⊆ dom 𝐹
43 cantnfcl.f . . . . . . . . . . . . 13 (𝜑𝐹𝑆)
44 cantnfs.s . . . . . . . . . . . . . 14 𝑆 = dom (𝐴 CNF 𝐵)
45 cantnfs.b . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ On)
4644, 1, 45cantnfs 9556 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
4743, 46mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
4847simpld 494 . . . . . . . . . . 11 (𝜑𝐹:𝐵𝐴)
4942, 48fssdm 6670 . . . . . . . . . 10 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
50 onss 7718 . . . . . . . . . . 11 (𝐵 ∈ On → 𝐵 ⊆ On)
5145, 50syl 17 . . . . . . . . . 10 (𝜑𝐵 ⊆ On)
5249, 51sstrd 3940 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ⊆ On)
5352adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐹 supp ∅) ⊆ On)
5423adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ∈ suc dom 𝐺)
5535, 54eqeltrrd 2832 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc 𝑥 ∈ suc dom 𝐺)
56 ordsucelsuc 7752 . . . . . . . . . . 11 (Ord dom 𝐺 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺))
5724, 56ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺)
5855, 57sylibr 234 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ dom 𝐺)
5920ffvelcdmi 7016 . . . . . . . . 9 (𝑥 ∈ dom 𝐺 → (𝐺𝑥) ∈ (𝐹 supp ∅))
6058, 59syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ (𝐹 supp ∅))
6153, 60sseldd 3930 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ On)
62 onsuc 7743 . . . . . . 7 ((𝐺𝑥) ∈ On → suc (𝐺𝑥) ∈ On)
6361, 62syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺𝑥) ∈ On)
641adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐴 ∈ On)
653adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → ∅ ∈ 𝐴)
66 oewordi 8506 . . . . . 6 (((suc (𝐺𝑥) ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺𝑥) ⊆ 𝐶 → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶)))
6763, 14, 64, 65, 66syl31anc 1375 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (suc (𝐺𝑥) ⊆ 𝐶 → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶)))
6841, 67mpd 15 . . . 4 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶))
6935fveq2d 6826 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) = (𝐻‘suc 𝑥))
70 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ ω)
71 simpl 482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝜑)
72 eleq1 2819 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺))
73 suceq 6374 . . . . . . . . . 10 (𝑥 = ∅ → suc 𝑥 = suc ∅)
7473fveq2d 6826 . . . . . . . . 9 (𝑥 = ∅ → (𝐻‘suc 𝑥) = (𝐻‘suc ∅))
75 fveq2 6822 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐺𝑥) = (𝐺‘∅))
76 suceq 6374 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺‘∅) → suc (𝐺𝑥) = suc (𝐺‘∅))
7775, 76syl 17 . . . . . . . . . 10 (𝑥 = ∅ → suc (𝐺𝑥) = suc (𝐺‘∅))
7877oveq2d 7362 . . . . . . . . 9 (𝑥 = ∅ → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺‘∅)))
7974, 78eleq12d 2825 . . . . . . . 8 (𝑥 = ∅ → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅))))
8072, 79imbi12d 344 . . . . . . 7 (𝑥 = ∅ → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅)))))
81 eleq1 2819 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐺𝑦 ∈ dom 𝐺))
82 suceq 6374 . . . . . . . . . 10 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
8382fveq2d 6826 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc 𝑦))
84 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
85 suceq 6374 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺𝑦) → suc (𝐺𝑥) = suc (𝐺𝑦))
8684, 85syl 17 . . . . . . . . . 10 (𝑥 = 𝑦 → suc (𝐺𝑥) = suc (𝐺𝑦))
8786oveq2d 7362 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺𝑦)))
8883, 87eleq12d 2825 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))))
8981, 88imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))))
90 eleq1 2819 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺))
91 suceq 6374 . . . . . . . . . 10 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
9291fveq2d 6826 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc suc 𝑦))
93 fveq2 6822 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐺𝑥) = (𝐺‘suc 𝑦))
94 suceq 6374 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺‘suc 𝑦) → suc (𝐺𝑥) = suc (𝐺‘suc 𝑦))
9593, 94syl 17 . . . . . . . . . 10 (𝑥 = suc 𝑦 → suc (𝐺𝑥) = suc (𝐺‘suc 𝑦))
9695oveq2d 7362 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺‘suc 𝑦)))
9792, 96eleq12d 2825 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦))))
9890, 97imbi12d 344 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
9948adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐹:𝐵𝐴)
10020ffvelcdmi 7016 . . . . . . . . . . . 12 (∅ ∈ dom 𝐺 → (𝐺‘∅) ∈ (𝐹 supp ∅))
10149sselda 3929 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ 𝐵)
102100, 101sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ 𝐵)
10399, 102ffvelcdmd 7018 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ 𝐴)
1041adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐴 ∈ On)
105 onelon 6331 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘∅)) ∈ 𝐴) → (𝐹‘(𝐺‘∅)) ∈ On)
106104, 103, 105syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ On)
10752sselda 3929 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ On)
108100, 107sylan2 593 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ On)
109 oecl 8452 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) → (𝐴o (𝐺‘∅)) ∈ On)
110104, 108, 109syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴o (𝐺‘∅)) ∈ On)
1113adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ 𝐴)
112 oen0 8501 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o (𝐺‘∅)))
113104, 108, 111, 112syl21anc 837 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ (𝐴o (𝐺‘∅)))
114 omord2 8482 . . . . . . . . . . 11 ((((𝐹‘(𝐺‘∅)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o (𝐺‘∅)) ∈ On) ∧ ∅ ∈ (𝐴o (𝐺‘∅))) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴)))
115106, 104, 110, 113, 114syl31anc 1375 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴)))
116103, 115mpbid 232 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴))
117 peano1 7819 . . . . . . . . . . . 12 ∅ ∈ ω
118117a1i 11 . . . . . . . . . . 11 (∅ ∈ dom 𝐺 → ∅ ∈ ω)
11944, 1, 45, 19, 43, 8cantnfsuc 9560 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ ω) → (𝐻‘suc ∅) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)))
120118, 119sylan2 593 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)))
12110oveq2i 7357 . . . . . . . . . . 11 (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅)
122 omcl 8451 . . . . . . . . . . . . 13 (((𝐴o (𝐺‘∅)) ∈ On ∧ (𝐹‘(𝐺‘∅)) ∈ On) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On)
123110, 106, 122syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On)
124 oa0 8431 . . . . . . . . . . . 12 (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
125123, 124syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
126121, 125eqtrid 2778 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
127120, 126eqtrd 2766 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
128 oesuc 8442 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) → (𝐴o suc (𝐺‘∅)) = ((𝐴o (𝐺‘∅)) ·o 𝐴))
129104, 108, 128syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴o suc (𝐺‘∅)) = ((𝐴o (𝐺‘∅)) ·o 𝐴))
130116, 127, 1293eltr4d 2846 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅)))
131130ex 412 . . . . . . 7 (𝜑 → (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅))))
132 ordtr 6320 . . . . . . . . . . . 12 (Ord dom 𝐺 → Tr dom 𝐺)
13324, 132ax-mp 5 . . . . . . . . . . 11 Tr dom 𝐺
134 trsuc 6395 . . . . . . . . . . 11 ((Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺) → 𝑦 ∈ dom 𝐺)
135133, 134mpan 690 . . . . . . . . . 10 (suc 𝑦 ∈ dom 𝐺𝑦 ∈ dom 𝐺)
136135imim1i 63 . . . . . . . . 9 ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))))
1371ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐴 ∈ On)
138 eloni 6316 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → Ord 𝐴)
139137, 138syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → Ord 𝐴)
14048ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐹:𝐵𝐴)
14149ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹 supp ∅) ⊆ 𝐵)
14220ffvelcdmi 7016 . . . . . . . . . . . . . . . . . 18 (suc 𝑦 ∈ dom 𝐺 → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅))
143142ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅))
144141, 143sseldd 3930 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ 𝐵)
145140, 144ffvelcdmd 7018 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴)
146 ordsucss 7748 . . . . . . . . . . . . . . 15 (Ord 𝐴 → ((𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴 → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴))
147139, 145, 146sylc 65 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴)
148 onelon 6331 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
149137, 145, 148syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
150 onsuc 7743 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐺‘suc 𝑦)) ∈ On → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
151149, 150syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
15252ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹 supp ∅) ⊆ On)
153152, 143sseldd 3930 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ On)
154 oecl 8452 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴o (𝐺‘suc 𝑦)) ∈ On)
155137, 153, 154syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o (𝐺‘suc 𝑦)) ∈ On)
156 omwordi 8486 . . . . . . . . . . . . . . 15 ((suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o (𝐺‘suc 𝑦)) ∈ On) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴)))
157151, 137, 155, 156syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴)))
158147, 157mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
159 oesuc 8442 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴o suc (𝐺‘suc 𝑦)) = ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
160137, 153, 159syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o suc (𝐺‘suc 𝑦)) = ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
161158, 160sseqtrrd 3967 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ (𝐴o suc (𝐺‘suc 𝑦)))
162 eloni 6316 . . . . . . . . . . . . . . . . . 18 ((𝐺‘suc 𝑦) ∈ On → Ord (𝐺‘suc 𝑦))
163153, 162syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → Ord (𝐺‘suc 𝑦))
164 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
165164sucid 6390 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ suc 𝑦
166164sucex 7739 . . . . . . . . . . . . . . . . . . . . 21 suc 𝑦 ∈ V
167166epeli 5516 . . . . . . . . . . . . . . . . . . . 20 (𝑦 E suc 𝑦𝑦 ∈ suc 𝑦)
168165, 167mpbir 231 . . . . . . . . . . . . . . . . . . 19 𝑦 E suc 𝑦
169 ovexd 7381 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 supp ∅) ∈ V)
17044, 1, 45, 19, 43cantnfcl 9557 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
171170simpld 494 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → E We (𝐹 supp ∅))
17219oiiso 9423 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
173169, 171, 172syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
174173ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
175135ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝑦 ∈ dom 𝐺)
176 simprl 770 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc 𝑦 ∈ dom 𝐺)
177 isorel 7260 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺)) → (𝑦 E suc 𝑦 ↔ (𝐺𝑦) E (𝐺‘suc 𝑦)))
178174, 175, 176, 177syl12anc 836 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝑦 E suc 𝑦 ↔ (𝐺𝑦) E (𝐺‘suc 𝑦)))
179168, 178mpbii 233 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) E (𝐺‘suc 𝑦))
180 fvex 6835 . . . . . . . . . . . . . . . . . . 19 (𝐺‘suc 𝑦) ∈ V
181180epeli 5516 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑦) E (𝐺‘suc 𝑦) ↔ (𝐺𝑦) ∈ (𝐺‘suc 𝑦))
182179, 181sylib 218 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ (𝐺‘suc 𝑦))
183 ordsucss 7748 . . . . . . . . . . . . . . . . 17 (Ord (𝐺‘suc 𝑦) → ((𝐺𝑦) ∈ (𝐺‘suc 𝑦) → suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)))
184163, 182, 183sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦))
18520ffvelcdmi 7016 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ dom 𝐺 → (𝐺𝑦) ∈ (𝐹 supp ∅))
186175, 185syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ (𝐹 supp ∅))
187152, 186sseldd 3930 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ On)
188 onsuc 7743 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑦) ∈ On → suc (𝐺𝑦) ∈ On)
189187, 188syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐺𝑦) ∈ On)
1903ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ∅ ∈ 𝐴)
191 oewordi 8506 . . . . . . . . . . . . . . . . 17 (((suc (𝐺𝑦) ∈ On ∧ (𝐺‘suc 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦))))
192189, 153, 137, 190, 191syl31anc 1375 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦))))
193184, 192mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦)))
194 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))
195193, 194sseldd 3930 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)))
196 peano2 7820 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
197196ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc 𝑦 ∈ ω)
1988cantnfvalf 9555 . . . . . . . . . . . . . . . . 17 𝐻:ω⟶On
199198ffvelcdmi 7016 . . . . . . . . . . . . . . . 16 (suc 𝑦 ∈ ω → (𝐻‘suc 𝑦) ∈ On)
200197, 199syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ On)
201 omcl 8451 . . . . . . . . . . . . . . . 16 (((𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On)
202155, 149, 201syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On)
203 oaord 8462 . . . . . . . . . . . . . . 15 (((𝐻‘suc 𝑦) ∈ On ∧ (𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On) → ((𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)) ↔ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦)))))
204200, 155, 202, 203syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)) ↔ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦)))))
205195, 204mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
20644, 1, 45, 19, 43, 8cantnfsuc 9560 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
207196, 206sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
208207adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
209 omsuc 8441 . . . . . . . . . . . . . 14 (((𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
210155, 149, 209syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
211205, 208, 2103eltr4d 2846 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) ∈ ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))))
212161, 211sseldd 3930 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))
213212exp32 420 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → (suc 𝑦 ∈ dom 𝐺 → ((𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)) → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
214213a2d 29 . . . . . . . . 9 ((𝜑𝑦 ∈ ω) → ((suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
215136, 214syl5 34 . . . . . . . 8 ((𝜑𝑦 ∈ ω) → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
216215expcom 413 . . . . . . 7 (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦))))))
21780, 89, 98, 131, 216finds2 7828 . . . . . 6 (𝑥 ∈ ω → (𝜑 → (𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)))))
21870, 71, 58, 217syl3c 66 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)))
21969, 218eqeltrd 2831 . . . 4 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) ∈ (𝐴o suc (𝐺𝑥)))
22068, 219sseldd 3930 . . 3 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) ∈ (𝐴o 𝐶))
221220rexlimdvaa 3134 . 2 (𝜑 → (∃𝑥 ∈ ω 𝐾 = suc 𝑥 → (𝐻𝐾) ∈ (𝐴o 𝐶)))
222 peano2 7820 . . . . 5 (dom 𝐺 ∈ ω → suc dom 𝐺 ∈ ω)
223170, 222simpl2im 503 . . . 4 (𝜑 → suc dom 𝐺 ∈ ω)
224 elnn 7807 . . . 4 ((𝐾 ∈ suc dom 𝐺 ∧ suc dom 𝐺 ∈ ω) → 𝐾 ∈ ω)
22523, 223, 224syl2anc 584 . . 3 (𝜑𝐾 ∈ ω)
226 nn0suc 7824 . . 3 (𝐾 ∈ ω → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥))
227225, 226syl 17 . 2 (𝜑 → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥))
22813, 221, 227mpjaod 860 1 (𝜑 → (𝐻𝐾) ∈ (𝐴o 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  wss 3897  c0 4280   class class class wbr 5089  Tr wtr 5196   E cep 5513   We wwe 5566  dom cdm 5614  cima 5617  Ord word 6305  Oncon0 6306  suc csuc 6308   Fn wfn 6476  wf 6477  cfv 6481   Isom wiso 6482  (class class class)co 7346  cmpo 7348  ωcom 7796   supp csupp 8090  seqωcseqom 8366   +o coa 8382   ·o comu 8383  o coe 8384   finSupp cfsupp 9245  OrdIsocoi 9395   CNF ccnf 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-cnf 9552
This theorem is referenced by:  cantnflt2  9563  cnfcomlem  9589
  Copyright terms: Public domain W3C validator