MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflt Structured version   Visualization version   GIF version

Theorem cantnflt 9686
Description: An upper bound on the partial sums of the CNF function. Since each term dominates all previous terms, by induction we can bound the whole sum with any exponent 𝐴o 𝐶 where 𝐶 is larger than any exponent (𝐺𝑥), 𝑥𝐾 which has been summed so far. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
cantnflt.a (𝜑 → ∅ ∈ 𝐴)
cantnflt.k (𝜑𝐾 ∈ suc dom 𝐺)
cantnflt.c (𝜑𝐶 ∈ On)
cantnflt.s (𝜑 → (𝐺𝐾) ⊆ 𝐶)
Assertion
Ref Expression
cantnflt (𝜑 → (𝐻𝐾) ∈ (𝐴o 𝐶))
Distinct variable groups:   𝑧,𝑘,𝐵   𝑧,𝐶   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝑘,𝐾,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑘)   𝐻(𝑧,𝑘)

Proof of Theorem cantnflt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
2 cantnflt.c . . . 4 (𝜑𝐶 ∈ On)
3 cantnflt.a . . . 4 (𝜑 → ∅ ∈ 𝐴)
4 oen0 8598 . . . 4 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐶))
51, 2, 3, 4syl21anc 837 . . 3 (𝜑 → ∅ ∈ (𝐴o 𝐶))
6 fveq2 6876 . . . . 5 (𝐾 = ∅ → (𝐻𝐾) = (𝐻‘∅))
7 0ex 5277 . . . . . 6 ∅ ∈ V
8 cantnfval.h . . . . . . 7 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
98seqom0g 8470 . . . . . 6 (∅ ∈ V → (𝐻‘∅) = ∅)
107, 9ax-mp 5 . . . . 5 (𝐻‘∅) = ∅
116, 10eqtrdi 2786 . . . 4 (𝐾 = ∅ → (𝐻𝐾) = ∅)
1211eleq1d 2819 . . 3 (𝐾 = ∅ → ((𝐻𝐾) ∈ (𝐴o 𝐶) ↔ ∅ ∈ (𝐴o 𝐶)))
135, 12syl5ibrcom 247 . 2 (𝜑 → (𝐾 = ∅ → (𝐻𝐾) ∈ (𝐴o 𝐶)))
142adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐶 ∈ On)
15 eloni 6362 . . . . . . 7 (𝐶 ∈ On → Ord 𝐶)
1614, 15syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → Ord 𝐶)
17 cantnflt.s . . . . . . . 8 (𝜑 → (𝐺𝐾) ⊆ 𝐶)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝐾) ⊆ 𝐶)
19 cantnfcl.g . . . . . . . . . 10 𝐺 = OrdIso( E , (𝐹 supp ∅))
2019oif 9544 . . . . . . . . 9 𝐺:dom 𝐺⟶(𝐹 supp ∅)
21 ffn 6706 . . . . . . . . 9 (𝐺:dom 𝐺⟶(𝐹 supp ∅) → 𝐺 Fn dom 𝐺)
2220, 21mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐺 Fn dom 𝐺)
23 cantnflt.k . . . . . . . . . 10 (𝜑𝐾 ∈ suc dom 𝐺)
2419oicl 9543 . . . . . . . . . . . . 13 Ord dom 𝐺
25 ordsuc 7807 . . . . . . . . . . . . 13 (Ord dom 𝐺 ↔ Ord suc dom 𝐺)
2624, 25mpbi 230 . . . . . . . . . . . 12 Ord suc dom 𝐺
27 ordelon 6376 . . . . . . . . . . . 12 ((Ord suc dom 𝐺𝐾 ∈ suc dom 𝐺) → 𝐾 ∈ On)
2826, 23, 27sylancr 587 . . . . . . . . . . 11 (𝜑𝐾 ∈ On)
29 ordsssuc 6443 . . . . . . . . . . 11 ((𝐾 ∈ On ∧ Ord dom 𝐺) → (𝐾 ⊆ dom 𝐺𝐾 ∈ suc dom 𝐺))
3028, 24, 29sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐾 ⊆ dom 𝐺𝐾 ∈ suc dom 𝐺))
3123, 30mpbird 257 . . . . . . . . 9 (𝜑𝐾 ⊆ dom 𝐺)
3231adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ⊆ dom 𝐺)
33 vex 3463 . . . . . . . . . 10 𝑥 ∈ V
3433sucid 6436 . . . . . . . . 9 𝑥 ∈ suc 𝑥
35 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 = suc 𝑥)
3634, 35eleqtrrid 2841 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥𝐾)
37 fnfvima 7225 . . . . . . . 8 ((𝐺 Fn dom 𝐺𝐾 ⊆ dom 𝐺𝑥𝐾) → (𝐺𝑥) ∈ (𝐺𝐾))
3822, 32, 36, 37syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ (𝐺𝐾))
3918, 38sseldd 3959 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ 𝐶)
40 ordsucss 7812 . . . . . 6 (Ord 𝐶 → ((𝐺𝑥) ∈ 𝐶 → suc (𝐺𝑥) ⊆ 𝐶))
4116, 39, 40sylc 65 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺𝑥) ⊆ 𝐶)
42 suppssdm 8176 . . . . . . . . . . 11 (𝐹 supp ∅) ⊆ dom 𝐹
43 cantnfcl.f . . . . . . . . . . . . 13 (𝜑𝐹𝑆)
44 cantnfs.s . . . . . . . . . . . . . 14 𝑆 = dom (𝐴 CNF 𝐵)
45 cantnfs.b . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ On)
4644, 1, 45cantnfs 9680 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
4743, 46mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
4847simpld 494 . . . . . . . . . . 11 (𝜑𝐹:𝐵𝐴)
4942, 48fssdm 6725 . . . . . . . . . 10 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
50 onss 7779 . . . . . . . . . . 11 (𝐵 ∈ On → 𝐵 ⊆ On)
5145, 50syl 17 . . . . . . . . . 10 (𝜑𝐵 ⊆ On)
5249, 51sstrd 3969 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ⊆ On)
5352adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐹 supp ∅) ⊆ On)
5423adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐾 ∈ suc dom 𝐺)
5535, 54eqeltrrd 2835 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc 𝑥 ∈ suc dom 𝐺)
56 ordsucelsuc 7816 . . . . . . . . . . 11 (Ord dom 𝐺 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺))
5724, 56ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺)
5855, 57sylibr 234 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ dom 𝐺)
5920ffvelcdmi 7073 . . . . . . . . 9 (𝑥 ∈ dom 𝐺 → (𝐺𝑥) ∈ (𝐹 supp ∅))
6058, 59syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ (𝐹 supp ∅))
6153, 60sseldd 3959 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐺𝑥) ∈ On)
62 onsuc 7805 . . . . . . 7 ((𝐺𝑥) ∈ On → suc (𝐺𝑥) ∈ On)
6361, 62syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → suc (𝐺𝑥) ∈ On)
641adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝐴 ∈ On)
653adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → ∅ ∈ 𝐴)
66 oewordi 8603 . . . . . 6 (((suc (𝐺𝑥) ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺𝑥) ⊆ 𝐶 → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶)))
6763, 14, 64, 65, 66syl31anc 1375 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (suc (𝐺𝑥) ⊆ 𝐶 → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶)))
6841, 67mpd 15 . . . 4 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐴o suc (𝐺𝑥)) ⊆ (𝐴o 𝐶))
6935fveq2d 6880 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) = (𝐻‘suc 𝑥))
70 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝑥 ∈ ω)
71 simpl 482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → 𝜑)
72 eleq1 2822 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺))
73 suceq 6419 . . . . . . . . . 10 (𝑥 = ∅ → suc 𝑥 = suc ∅)
7473fveq2d 6880 . . . . . . . . 9 (𝑥 = ∅ → (𝐻‘suc 𝑥) = (𝐻‘suc ∅))
75 fveq2 6876 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐺𝑥) = (𝐺‘∅))
76 suceq 6419 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺‘∅) → suc (𝐺𝑥) = suc (𝐺‘∅))
7775, 76syl 17 . . . . . . . . . 10 (𝑥 = ∅ → suc (𝐺𝑥) = suc (𝐺‘∅))
7877oveq2d 7421 . . . . . . . . 9 (𝑥 = ∅ → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺‘∅)))
7974, 78eleq12d 2828 . . . . . . . 8 (𝑥 = ∅ → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅))))
8072, 79imbi12d 344 . . . . . . 7 (𝑥 = ∅ → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅)))))
81 eleq1 2822 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐺𝑦 ∈ dom 𝐺))
82 suceq 6419 . . . . . . . . . 10 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
8382fveq2d 6880 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc 𝑦))
84 fveq2 6876 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
85 suceq 6419 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺𝑦) → suc (𝐺𝑥) = suc (𝐺𝑦))
8684, 85syl 17 . . . . . . . . . 10 (𝑥 = 𝑦 → suc (𝐺𝑥) = suc (𝐺𝑦))
8786oveq2d 7421 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺𝑦)))
8883, 87eleq12d 2828 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))))
8981, 88imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))))
90 eleq1 2822 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺))
91 suceq 6419 . . . . . . . . . 10 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
9291fveq2d 6880 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐻‘suc 𝑥) = (𝐻‘suc suc 𝑦))
93 fveq2 6876 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐺𝑥) = (𝐺‘suc 𝑦))
94 suceq 6419 . . . . . . . . . . 11 ((𝐺𝑥) = (𝐺‘suc 𝑦) → suc (𝐺𝑥) = suc (𝐺‘suc 𝑦))
9593, 94syl 17 . . . . . . . . . 10 (𝑥 = suc 𝑦 → suc (𝐺𝑥) = suc (𝐺‘suc 𝑦))
9695oveq2d 7421 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴o suc (𝐺𝑥)) = (𝐴o suc (𝐺‘suc 𝑦)))
9792, 96eleq12d 2828 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)) ↔ (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦))))
9890, 97imbi12d 344 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥))) ↔ (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
9948adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐹:𝐵𝐴)
10020ffvelcdmi 7073 . . . . . . . . . . . 12 (∅ ∈ dom 𝐺 → (𝐺‘∅) ∈ (𝐹 supp ∅))
10149sselda 3958 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ 𝐵)
102100, 101sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ 𝐵)
10399, 102ffvelcdmd 7075 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ 𝐴)
1041adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐴 ∈ On)
105 onelon 6377 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘∅)) ∈ 𝐴) → (𝐹‘(𝐺‘∅)) ∈ On)
106104, 103, 105syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐹‘(𝐺‘∅)) ∈ On)
10752sselda 3958 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺‘∅) ∈ (𝐹 supp ∅)) → (𝐺‘∅) ∈ On)
108100, 107sylan2 593 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ On)
109 oecl 8549 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) → (𝐴o (𝐺‘∅)) ∈ On)
110104, 108, 109syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴o (𝐺‘∅)) ∈ On)
1113adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ 𝐴)
112 oen0 8598 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o (𝐺‘∅)))
113104, 108, 111, 112syl21anc 837 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ (𝐴o (𝐺‘∅)))
114 omord2 8579 . . . . . . . . . . 11 ((((𝐹‘(𝐺‘∅)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o (𝐺‘∅)) ∈ On) ∧ ∅ ∈ (𝐴o (𝐺‘∅))) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴)))
115106, 104, 110, 113, 114syl31anc 1375 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐹‘(𝐺‘∅)) ∈ 𝐴 ↔ ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴)))
116103, 115mpbid 232 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ ((𝐴o (𝐺‘∅)) ·o 𝐴))
117 peano1 7884 . . . . . . . . . . . 12 ∅ ∈ ω
118117a1i 11 . . . . . . . . . . 11 (∅ ∈ dom 𝐺 → ∅ ∈ ω)
11944, 1, 45, 19, 43, 8cantnfsuc 9684 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ ω) → (𝐻‘suc ∅) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)))
120118, 119sylan2 593 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)))
12110oveq2i 7416 . . . . . . . . . . 11 (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)) = (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅)
122 omcl 8548 . . . . . . . . . . . . 13 (((𝐴o (𝐺‘∅)) ∈ On ∧ (𝐹‘(𝐺‘∅)) ∈ On) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On)
123110, 106, 122syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ∈ dom 𝐺) → ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On)
124 oa0 8528 . . . . . . . . . . . 12 (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) ∈ On → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
125123, 124syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
126121, 125eqtrid 2782 . . . . . . . . . 10 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))) +o (𝐻‘∅)) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
127120, 126eqtrd 2770 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) = ((𝐴o (𝐺‘∅)) ·o (𝐹‘(𝐺‘∅))))
128 oesuc 8539 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐺‘∅) ∈ On) → (𝐴o suc (𝐺‘∅)) = ((𝐴o (𝐺‘∅)) ·o 𝐴))
129104, 108, 128syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐴o suc (𝐺‘∅)) = ((𝐴o (𝐺‘∅)) ·o 𝐴))
130116, 127, 1293eltr4d 2849 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅)))
131130ex 412 . . . . . . 7 (𝜑 → (∅ ∈ dom 𝐺 → (𝐻‘suc ∅) ∈ (𝐴o suc (𝐺‘∅))))
132 ordtr 6366 . . . . . . . . . . . 12 (Ord dom 𝐺 → Tr dom 𝐺)
13324, 132ax-mp 5 . . . . . . . . . . 11 Tr dom 𝐺
134 trsuc 6441 . . . . . . . . . . 11 ((Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺) → 𝑦 ∈ dom 𝐺)
135133, 134mpan 690 . . . . . . . . . 10 (suc 𝑦 ∈ dom 𝐺𝑦 ∈ dom 𝐺)
136135imim1i 63 . . . . . . . . 9 ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))))
1371ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐴 ∈ On)
138 eloni 6362 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → Ord 𝐴)
139137, 138syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → Ord 𝐴)
14048ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐹:𝐵𝐴)
14149ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹 supp ∅) ⊆ 𝐵)
14220ffvelcdmi 7073 . . . . . . . . . . . . . . . . . 18 (suc 𝑦 ∈ dom 𝐺 → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅))
143142ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅))
144141, 143sseldd 3959 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ 𝐵)
145140, 144ffvelcdmd 7075 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴)
146 ordsucss 7812 . . . . . . . . . . . . . . 15 (Ord 𝐴 → ((𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴 → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴))
147139, 145, 146sylc 65 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴)
148 onelon 6377 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ 𝐴) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
149137, 145, 148syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
150 onsuc 7805 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐺‘suc 𝑦)) ∈ On → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
151149, 150syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On)
15252ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐹 supp ∅) ⊆ On)
153152, 143sseldd 3959 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺‘suc 𝑦) ∈ On)
154 oecl 8549 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴o (𝐺‘suc 𝑦)) ∈ On)
155137, 153, 154syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o (𝐺‘suc 𝑦)) ∈ On)
156 omwordi 8583 . . . . . . . . . . . . . . 15 ((suc (𝐹‘(𝐺‘suc 𝑦)) ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o (𝐺‘suc 𝑦)) ∈ On) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴)))
157151, 137, 155, 156syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (suc (𝐹‘(𝐺‘suc 𝑦)) ⊆ 𝐴 → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴)))
158147, 157mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
159 oesuc 8539 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝐺‘suc 𝑦) ∈ On) → (𝐴o suc (𝐺‘suc 𝑦)) = ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
160137, 153, 159syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o suc (𝐺‘suc 𝑦)) = ((𝐴o (𝐺‘suc 𝑦)) ·o 𝐴))
161158, 160sseqtrrd 3996 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) ⊆ (𝐴o suc (𝐺‘suc 𝑦)))
162 eloni 6362 . . . . . . . . . . . . . . . . . 18 ((𝐺‘suc 𝑦) ∈ On → Ord (𝐺‘suc 𝑦))
163153, 162syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → Ord (𝐺‘suc 𝑦))
164 vex 3463 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
165164sucid 6436 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ suc 𝑦
166164sucex 7800 . . . . . . . . . . . . . . . . . . . . 21 suc 𝑦 ∈ V
167166epeli 5555 . . . . . . . . . . . . . . . . . . . 20 (𝑦 E suc 𝑦𝑦 ∈ suc 𝑦)
168165, 167mpbir 231 . . . . . . . . . . . . . . . . . . 19 𝑦 E suc 𝑦
169 ovexd 7440 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐹 supp ∅) ∈ V)
17044, 1, 45, 19, 43cantnfcl 9681 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
171170simpld 494 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → E We (𝐹 supp ∅))
17219oiiso 9551 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
173169, 171, 172syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
174173ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
175135ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → 𝑦 ∈ dom 𝐺)
176 simprl 770 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc 𝑦 ∈ dom 𝐺)
177 isorel 7319 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺)) → (𝑦 E suc 𝑦 ↔ (𝐺𝑦) E (𝐺‘suc 𝑦)))
178174, 175, 176, 177syl12anc 836 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝑦 E suc 𝑦 ↔ (𝐺𝑦) E (𝐺‘suc 𝑦)))
179168, 178mpbii 233 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) E (𝐺‘suc 𝑦))
180 fvex 6889 . . . . . . . . . . . . . . . . . . 19 (𝐺‘suc 𝑦) ∈ V
181180epeli 5555 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑦) E (𝐺‘suc 𝑦) ↔ (𝐺𝑦) ∈ (𝐺‘suc 𝑦))
182179, 181sylib 218 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ (𝐺‘suc 𝑦))
183 ordsucss 7812 . . . . . . . . . . . . . . . . 17 (Ord (𝐺‘suc 𝑦) → ((𝐺𝑦) ∈ (𝐺‘suc 𝑦) → suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)))
184163, 182, 183sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦))
18520ffvelcdmi 7073 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ dom 𝐺 → (𝐺𝑦) ∈ (𝐹 supp ∅))
186175, 185syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ (𝐹 supp ∅))
187152, 186sseldd 3959 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐺𝑦) ∈ On)
188 onsuc 7805 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑦) ∈ On → suc (𝐺𝑦) ∈ On)
189187, 188syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc (𝐺𝑦) ∈ On)
1903ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ∅ ∈ 𝐴)
191 oewordi 8603 . . . . . . . . . . . . . . . . 17 (((suc (𝐺𝑦) ∈ On ∧ (𝐺‘suc 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦))))
192189, 153, 137, 190, 191syl31anc 1375 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (suc (𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦))))
193184, 192mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐴o suc (𝐺𝑦)) ⊆ (𝐴o (𝐺‘suc 𝑦)))
194 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))
195193, 194sseldd 3959 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)))
196 peano2 7886 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
197196ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → suc 𝑦 ∈ ω)
1988cantnfvalf 9679 . . . . . . . . . . . . . . . . 17 𝐻:ω⟶On
199198ffvelcdmi 7073 . . . . . . . . . . . . . . . 16 (suc 𝑦 ∈ ω → (𝐻‘suc 𝑦) ∈ On)
200197, 199syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc 𝑦) ∈ On)
201 omcl 8548 . . . . . . . . . . . . . . . 16 (((𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On)
202155, 149, 201syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On)
203 oaord 8559 . . . . . . . . . . . . . . 15 (((𝐻‘suc 𝑦) ∈ On ∧ (𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ ((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) ∈ On) → ((𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)) ↔ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦)))))
204200, 155, 202, 203syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐻‘suc 𝑦) ∈ (𝐴o (𝐺‘suc 𝑦)) ↔ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦)))))
205195, 204mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)) ∈ (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
20644, 1, 45, 19, 43, 8cantnfsuc 9684 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
207196, 206sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
208207adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐻‘suc 𝑦)))
209 omsuc 8538 . . . . . . . . . . . . . 14 (((𝐴o (𝐺‘suc 𝑦)) ∈ On ∧ (𝐹‘(𝐺‘suc 𝑦)) ∈ On) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
210155, 149, 209syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))) = (((𝐴o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))) +o (𝐴o (𝐺‘suc 𝑦))))
211205, 208, 2103eltr4d 2849 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) ∈ ((𝐴o (𝐺‘suc 𝑦)) ·o suc (𝐹‘(𝐺‘suc 𝑦))))
212161, 211sseldd 3959 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)))) → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))
213212exp32 420 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → (suc 𝑦 ∈ dom 𝐺 → ((𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦)) → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
214213a2d 29 . . . . . . . . 9 ((𝜑𝑦 ∈ ω) → ((suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
215136, 214syl5 34 . . . . . . . 8 ((𝜑𝑦 ∈ ω) → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦)))))
216215expcom 413 . . . . . . 7 (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝐺 → (𝐻‘suc 𝑦) ∈ (𝐴o suc (𝐺𝑦))) → (suc 𝑦 ∈ dom 𝐺 → (𝐻‘suc suc 𝑦) ∈ (𝐴o suc (𝐺‘suc 𝑦))))))
21780, 89, 98, 131, 216finds2 7894 . . . . . 6 (𝑥 ∈ ω → (𝜑 → (𝑥 ∈ dom 𝐺 → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)))))
21870, 71, 58, 217syl3c 66 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻‘suc 𝑥) ∈ (𝐴o suc (𝐺𝑥)))
21969, 218eqeltrd 2834 . . . 4 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) ∈ (𝐴o suc (𝐺𝑥)))
22068, 219sseldd 3959 . . 3 ((𝜑 ∧ (𝑥 ∈ ω ∧ 𝐾 = suc 𝑥)) → (𝐻𝐾) ∈ (𝐴o 𝐶))
221220rexlimdvaa 3142 . 2 (𝜑 → (∃𝑥 ∈ ω 𝐾 = suc 𝑥 → (𝐻𝐾) ∈ (𝐴o 𝐶)))
222 peano2 7886 . . . . 5 (dom 𝐺 ∈ ω → suc dom 𝐺 ∈ ω)
223170, 222simpl2im 503 . . . 4 (𝜑 → suc dom 𝐺 ∈ ω)
224 elnn 7872 . . . 4 ((𝐾 ∈ suc dom 𝐺 ∧ suc dom 𝐺 ∈ ω) → 𝐾 ∈ ω)
22523, 223, 224syl2anc 584 . . 3 (𝜑𝐾 ∈ ω)
226 nn0suc 7890 . . 3 (𝐾 ∈ ω → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥))
227225, 226syl 17 . 2 (𝜑 → (𝐾 = ∅ ∨ ∃𝑥 ∈ ω 𝐾 = suc 𝑥))
22813, 221, 227mpjaod 860 1 (𝜑 → (𝐻𝐾) ∈ (𝐴o 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wrex 3060  Vcvv 3459  wss 3926  c0 4308   class class class wbr 5119  Tr wtr 5229   E cep 5552   We wwe 5605  dom cdm 5654  cima 5657  Ord word 6351  Oncon0 6352  suc csuc 6354   Fn wfn 6526  wf 6527  cfv 6531   Isom wiso 6532  (class class class)co 7405  cmpo 7407  ωcom 7861   supp csupp 8159  seqωcseqom 8461   +o coa 8477   ·o comu 8478  o coe 8479   finSupp cfsupp 9373  OrdIsocoi 9523   CNF ccnf 9675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-cnf 9676
This theorem is referenced by:  cantnflt2  9687  cnfcomlem  9713
  Copyright terms: Public domain W3C validator