MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1b Structured version   Visualization version   GIF version

Theorem cantnflem1b 9677
Description: Lemma for cantnf 9684. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
cantnflem1.o 𝑂 = OrdIso( E , (𝐺 supp ∅))
Assertion
Ref Expression
cantnflem1b ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂𝑢))
Distinct variable groups:   𝑢,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑢   𝑢,𝐹,𝑤,𝑥,𝑦,𝑧   𝑆,𝑐,𝑢,𝑥,𝑦,𝑧   𝐺,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑢,𝑂,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑋,𝑤,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑐)   𝑋(𝑐)

Proof of Theorem cantnflem1b
StepHypRef Expression
1 simprr 771 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ⊆ 𝑢)
2 cantnflem1.o . . . . . . 7 𝑂 = OrdIso( E , (𝐺 supp ∅))
32oicl 9520 . . . . . 6 Ord dom 𝑂
4 ovexd 7440 . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) ∈ V)
5 cantnfs.s . . . . . . . . . . . 12 𝑆 = dom (𝐴 CNF 𝐵)
6 cantnfs.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ On)
7 cantnfs.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ On)
8 oemapval.g . . . . . . . . . . . 12 (𝜑𝐺𝑆)
95, 6, 7, 2, 8cantnfcl 9658 . . . . . . . . . . 11 (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝑂 ∈ ω))
109simpld 495 . . . . . . . . . 10 (𝜑 → E We (𝐺 supp ∅))
112oiiso 9528 . . . . . . . . . 10 (((𝐺 supp ∅) ∈ V ∧ E We (𝐺 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
124, 10, 11syl2anc 584 . . . . . . . . 9 (𝜑𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
13 isof1o 7316 . . . . . . . . 9 (𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) → 𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
1412, 13syl 17 . . . . . . . 8 (𝜑𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
15 f1ocnv 6842 . . . . . . . 8 (𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) → 𝑂:(𝐺 supp ∅)–1-1-onto→dom 𝑂)
16 f1of 6830 . . . . . . . 8 (𝑂:(𝐺 supp ∅)–1-1-onto→dom 𝑂𝑂:(𝐺 supp ∅)⟶dom 𝑂)
1714, 15, 163syl 18 . . . . . . 7 (𝜑𝑂:(𝐺 supp ∅)⟶dom 𝑂)
18 oemapval.t . . . . . . . 8 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
19 oemapval.f . . . . . . . 8 (𝜑𝐹𝑆)
20 oemapvali.r . . . . . . . 8 (𝜑𝐹𝑇𝐺)
21 oemapvali.x . . . . . . . 8 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
225, 6, 7, 18, 19, 8, 20, 21cantnflem1a 9676 . . . . . . 7 (𝜑𝑋 ∈ (𝐺 supp ∅))
2317, 22ffvelcdmd 7084 . . . . . 6 (𝜑 → (𝑂𝑋) ∈ dom 𝑂)
24 ordelon 6385 . . . . . 6 ((Ord dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂) → (𝑂𝑋) ∈ On)
253, 23, 24sylancr 587 . . . . 5 (𝜑 → (𝑂𝑋) ∈ On)
263a1i 11 . . . . . . . 8 (𝜑 → Ord dom 𝑂)
27 ordelon 6385 . . . . . . . 8 ((Ord dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On)
2826, 27sylan 580 . . . . . . 7 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On)
29 onsucb 7801 . . . . . . 7 (𝑢 ∈ On ↔ suc 𝑢 ∈ On)
3028, 29sylibr 233 . . . . . 6 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ On)
3130adantrr 715 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑢 ∈ On)
32 ontri1 6395 . . . . 5 (((𝑂𝑋) ∈ On ∧ 𝑢 ∈ On) → ((𝑂𝑋) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ (𝑂𝑋)))
3325, 31, 32syl2an2r 683 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑂𝑋) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ (𝑂𝑋)))
341, 33mpbid 231 . . 3 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ¬ 𝑢 ∈ (𝑂𝑋))
3512adantr 481 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
36 ordtr 6375 . . . . . . . 8 (Ord dom 𝑂 → Tr dom 𝑂)
373, 36mp1i 13 . . . . . . 7 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → Tr dom 𝑂)
38 simprl 769 . . . . . . 7 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ dom 𝑂)
39 trsuc 6448 . . . . . . 7 ((Tr dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ dom 𝑂)
4037, 38, 39syl2anc 584 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑢 ∈ dom 𝑂)
4123adantr 481 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ∈ dom 𝑂)
42 isorel 7319 . . . . . 6 ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂)) → (𝑢 E (𝑂𝑋) ↔ (𝑂𝑢) E (𝑂‘(𝑂𝑋))))
4335, 40, 41, 42syl12anc 835 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 E (𝑂𝑋) ↔ (𝑂𝑢) E (𝑂‘(𝑂𝑋))))
44 fvex 6901 . . . . . 6 (𝑂𝑋) ∈ V
4544epeli 5581 . . . . 5 (𝑢 E (𝑂𝑋) ↔ 𝑢 ∈ (𝑂𝑋))
46 fvex 6901 . . . . . 6 (𝑂‘(𝑂𝑋)) ∈ V
4746epeli 5581 . . . . 5 ((𝑂𝑢) E (𝑂‘(𝑂𝑋)) ↔ (𝑂𝑢) ∈ (𝑂‘(𝑂𝑋)))
4843, 45, 473bitr3g 312 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 ∈ (𝑂𝑋) ↔ (𝑂𝑢) ∈ (𝑂‘(𝑂𝑋))))
49 f1ocnvfv2 7271 . . . . . . 7 ((𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) ∧ 𝑋 ∈ (𝐺 supp ∅)) → (𝑂‘(𝑂𝑋)) = 𝑋)
5014, 22, 49syl2anc 584 . . . . . 6 (𝜑 → (𝑂‘(𝑂𝑋)) = 𝑋)
5150adantr 481 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂‘(𝑂𝑋)) = 𝑋)
5251eleq2d 2819 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑂𝑢) ∈ (𝑂‘(𝑂𝑋)) ↔ (𝑂𝑢) ∈ 𝑋))
5348, 52bitrd 278 . . 3 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 ∈ (𝑂𝑋) ↔ (𝑂𝑢) ∈ 𝑋))
5434, 53mtbid 323 . 2 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ¬ (𝑂𝑢) ∈ 𝑋)
555, 6, 7, 18, 19, 8, 20, 21oemapvali 9675 . . . . 5 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
5655simp1d 1142 . . . 4 (𝜑𝑋𝐵)
57 onelon 6386 . . . 4 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
587, 56, 57syl2anc 584 . . 3 (𝜑𝑋 ∈ On)
59 suppssdm 8158 . . . . . . 7 (𝐺 supp ∅) ⊆ dom 𝐺
605, 6, 7cantnfs 9657 . . . . . . . . 9 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
618, 60mpbid 231 . . . . . . . 8 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
6261simpld 495 . . . . . . 7 (𝜑𝐺:𝐵𝐴)
6359, 62fssdm 6734 . . . . . 6 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
6463adantr 481 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐺 supp ∅) ⊆ 𝐵)
652oif 9521 . . . . . . 7 𝑂:dom 𝑂⟶(𝐺 supp ∅)
6665ffvelcdmi 7082 . . . . . 6 (𝑢 ∈ dom 𝑂 → (𝑂𝑢) ∈ (𝐺 supp ∅))
6740, 66syl 17 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ (𝐺 supp ∅))
6864, 67sseldd 3982 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ 𝐵)
69 onelon 6386 . . . 4 ((𝐵 ∈ On ∧ (𝑂𝑢) ∈ 𝐵) → (𝑂𝑢) ∈ On)
707, 68, 69syl2an2r 683 . . 3 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ On)
71 ontri1 6395 . . 3 ((𝑋 ∈ On ∧ (𝑂𝑢) ∈ On) → (𝑋 ⊆ (𝑂𝑢) ↔ ¬ (𝑂𝑢) ∈ 𝑋))
7258, 70, 71syl2an2r 683 . 2 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑋 ⊆ (𝑂𝑢) ↔ ¬ (𝑂𝑢) ∈ 𝑋))
7354, 72mpbird 256 1 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂𝑢))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  wss 3947  c0 4321   cuni 4907   class class class wbr 5147  {copab 5209  Tr wtr 5264   E cep 5578   We wwe 5629  ccnv 5674  dom cdm 5675  Ord word 6360  Oncon0 6361  suc csuc 6363  wf 6536  1-1-ontowf1o 6539  cfv 6540   Isom wiso 6541  (class class class)co 7405  ωcom 7851   supp csupp 8142   finSupp cfsupp 9357  OrdIsocoi 9500   CNF ccnf 9652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-seqom 8444  df-1o 8462  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-cnf 9653
This theorem is referenced by:  cantnflem1c  9678
  Copyright terms: Public domain W3C validator