MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1b Structured version   Visualization version   GIF version

Theorem cantnflem1b 9374
Description: Lemma for cantnf 9381. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
cantnflem1.o 𝑂 = OrdIso( E , (𝐺 supp ∅))
Assertion
Ref Expression
cantnflem1b ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂𝑢))
Distinct variable groups:   𝑢,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑢   𝑢,𝐹,𝑤,𝑥,𝑦,𝑧   𝑆,𝑐,𝑢,𝑥,𝑦,𝑧   𝐺,𝑐,𝑢,𝑤,𝑥,𝑦,𝑧   𝑢,𝑂,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑋,𝑤,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑂(𝑐)   𝑋(𝑐)

Proof of Theorem cantnflem1b
StepHypRef Expression
1 simprr 769 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ⊆ 𝑢)
2 cantnflem1.o . . . . . . 7 𝑂 = OrdIso( E , (𝐺 supp ∅))
32oicl 9218 . . . . . 6 Ord dom 𝑂
4 ovexd 7290 . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) ∈ V)
5 cantnfs.s . . . . . . . . . . . 12 𝑆 = dom (𝐴 CNF 𝐵)
6 cantnfs.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ On)
7 cantnfs.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ On)
8 oemapval.g . . . . . . . . . . . 12 (𝜑𝐺𝑆)
95, 6, 7, 2, 8cantnfcl 9355 . . . . . . . . . . 11 (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝑂 ∈ ω))
109simpld 494 . . . . . . . . . 10 (𝜑 → E We (𝐺 supp ∅))
112oiiso 9226 . . . . . . . . . 10 (((𝐺 supp ∅) ∈ V ∧ E We (𝐺 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
124, 10, 11syl2anc 583 . . . . . . . . 9 (𝜑𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
13 isof1o 7174 . . . . . . . . 9 (𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) → 𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
1412, 13syl 17 . . . . . . . 8 (𝜑𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
15 f1ocnv 6712 . . . . . . . 8 (𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) → 𝑂:(𝐺 supp ∅)–1-1-onto→dom 𝑂)
16 f1of 6700 . . . . . . . 8 (𝑂:(𝐺 supp ∅)–1-1-onto→dom 𝑂𝑂:(𝐺 supp ∅)⟶dom 𝑂)
1714, 15, 163syl 18 . . . . . . 7 (𝜑𝑂:(𝐺 supp ∅)⟶dom 𝑂)
18 oemapval.t . . . . . . . 8 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
19 oemapval.f . . . . . . . 8 (𝜑𝐹𝑆)
20 oemapvali.r . . . . . . . 8 (𝜑𝐹𝑇𝐺)
21 oemapvali.x . . . . . . . 8 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
225, 6, 7, 18, 19, 8, 20, 21cantnflem1a 9373 . . . . . . 7 (𝜑𝑋 ∈ (𝐺 supp ∅))
2317, 22ffvelrnd 6944 . . . . . 6 (𝜑 → (𝑂𝑋) ∈ dom 𝑂)
24 ordelon 6275 . . . . . 6 ((Ord dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂) → (𝑂𝑋) ∈ On)
253, 23, 24sylancr 586 . . . . 5 (𝜑 → (𝑂𝑋) ∈ On)
263a1i 11 . . . . . . . 8 (𝜑 → Ord dom 𝑂)
27 ordelon 6275 . . . . . . . 8 ((Ord dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On)
2826, 27sylan 579 . . . . . . 7 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On)
29 sucelon 7639 . . . . . . 7 (𝑢 ∈ On ↔ suc 𝑢 ∈ On)
3028, 29sylibr 233 . . . . . 6 ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ On)
3130adantrr 713 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑢 ∈ On)
32 ontri1 6285 . . . . 5 (((𝑂𝑋) ∈ On ∧ 𝑢 ∈ On) → ((𝑂𝑋) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ (𝑂𝑋)))
3325, 31, 32syl2an2r 681 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑂𝑋) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ (𝑂𝑋)))
341, 33mpbid 231 . . 3 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ¬ 𝑢 ∈ (𝑂𝑋))
3512adantr 480 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
36 ordtr 6265 . . . . . . . 8 (Ord dom 𝑂 → Tr dom 𝑂)
373, 36mp1i 13 . . . . . . 7 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → Tr dom 𝑂)
38 simprl 767 . . . . . . 7 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ dom 𝑂)
39 trsuc 6335 . . . . . . 7 ((Tr dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ dom 𝑂)
4037, 38, 39syl2anc 583 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑢 ∈ dom 𝑂)
4123adantr 480 . . . . . 6 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑋) ∈ dom 𝑂)
42 isorel 7177 . . . . . 6 ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂)) → (𝑢 E (𝑂𝑋) ↔ (𝑂𝑢) E (𝑂‘(𝑂𝑋))))
4335, 40, 41, 42syl12anc 833 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 E (𝑂𝑋) ↔ (𝑂𝑢) E (𝑂‘(𝑂𝑋))))
44 fvex 6769 . . . . . 6 (𝑂𝑋) ∈ V
4544epeli 5488 . . . . 5 (𝑢 E (𝑂𝑋) ↔ 𝑢 ∈ (𝑂𝑋))
46 fvex 6769 . . . . . 6 (𝑂‘(𝑂𝑋)) ∈ V
4746epeli 5488 . . . . 5 ((𝑂𝑢) E (𝑂‘(𝑂𝑋)) ↔ (𝑂𝑢) ∈ (𝑂‘(𝑂𝑋)))
4843, 45, 473bitr3g 312 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 ∈ (𝑂𝑋) ↔ (𝑂𝑢) ∈ (𝑂‘(𝑂𝑋))))
49 f1ocnvfv2 7130 . . . . . . 7 ((𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) ∧ 𝑋 ∈ (𝐺 supp ∅)) → (𝑂‘(𝑂𝑋)) = 𝑋)
5014, 22, 49syl2anc 583 . . . . . 6 (𝜑 → (𝑂‘(𝑂𝑋)) = 𝑋)
5150adantr 480 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂‘(𝑂𝑋)) = 𝑋)
5251eleq2d 2824 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ((𝑂𝑢) ∈ (𝑂‘(𝑂𝑋)) ↔ (𝑂𝑢) ∈ 𝑋))
5348, 52bitrd 278 . . 3 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑢 ∈ (𝑂𝑋) ↔ (𝑂𝑢) ∈ 𝑋))
5434, 53mtbid 323 . 2 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → ¬ (𝑂𝑢) ∈ 𝑋)
555, 6, 7, 18, 19, 8, 20, 21oemapvali 9372 . . . . 5 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
5655simp1d 1140 . . . 4 (𝜑𝑋𝐵)
57 onelon 6276 . . . 4 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
587, 56, 57syl2anc 583 . . 3 (𝜑𝑋 ∈ On)
59 suppssdm 7964 . . . . . . 7 (𝐺 supp ∅) ⊆ dom 𝐺
605, 6, 7cantnfs 9354 . . . . . . . . 9 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
618, 60mpbid 231 . . . . . . . 8 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
6261simpld 494 . . . . . . 7 (𝜑𝐺:𝐵𝐴)
6359, 62fssdm 6604 . . . . . 6 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
6463adantr 480 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝐺 supp ∅) ⊆ 𝐵)
652oif 9219 . . . . . . 7 𝑂:dom 𝑂⟶(𝐺 supp ∅)
6665ffvelrni 6942 . . . . . 6 (𝑢 ∈ dom 𝑂 → (𝑂𝑢) ∈ (𝐺 supp ∅))
6740, 66syl 17 . . . . 5 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ (𝐺 supp ∅))
6864, 67sseldd 3918 . . . 4 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ 𝐵)
69 onelon 6276 . . . 4 ((𝐵 ∈ On ∧ (𝑂𝑢) ∈ 𝐵) → (𝑂𝑢) ∈ On)
707, 68, 69syl2an2r 681 . . 3 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑂𝑢) ∈ On)
71 ontri1 6285 . . 3 ((𝑋 ∈ On ∧ (𝑂𝑢) ∈ On) → (𝑋 ⊆ (𝑂𝑢) ↔ ¬ (𝑂𝑢) ∈ 𝑋))
7258, 70, 71syl2an2r 681 . 2 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → (𝑋 ⊆ (𝑂𝑢) ↔ ¬ (𝑂𝑢) ∈ 𝑋))
7354, 72mpbird 256 1 ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (𝑂𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂𝑢))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253   cuni 4836   class class class wbr 5070  {copab 5132  Tr wtr 5187   E cep 5485   We wwe 5534  ccnv 5579  dom cdm 5580  Ord word 6250  Oncon0 6251  suc csuc 6253  wf 6414  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419  (class class class)co 7255  ωcom 7687   supp csupp 7948   finSupp cfsupp 9058  OrdIsocoi 9198   CNF ccnf 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-cnf 9350
This theorem is referenced by:  cantnflem1c  9375
  Copyright terms: Public domain W3C validator