Proof of Theorem cantnflem1b
Step | Hyp | Ref
| Expression |
1 | | simprr 770 |
. . . 4
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ⊆ 𝑢) |
2 | | cantnflem1.o |
. . . . . . 7
⊢ 𝑂 = OrdIso( E , (𝐺 supp ∅)) |
3 | 2 | oicl 9288 |
. . . . . 6
⊢ Ord dom
𝑂 |
4 | | ovexd 7310 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 supp ∅) ∈ V) |
5 | | cantnfs.s |
. . . . . . . . . . . 12
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
6 | | cantnfs.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ On) |
7 | | cantnfs.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ On) |
8 | | oemapval.g |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
9 | 5, 6, 7, 2, 8 | cantnfcl 9425 |
. . . . . . . . . . 11
⊢ (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝑂 ∈ ω)) |
10 | 9 | simpld 495 |
. . . . . . . . . 10
⊢ (𝜑 → E We (𝐺 supp ∅)) |
11 | 2 | oiiso 9296 |
. . . . . . . . . 10
⊢ (((𝐺 supp ∅) ∈ V ∧ E
We (𝐺 supp ∅)) →
𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
12 | 4, 10, 11 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
13 | | isof1o 7194 |
. . . . . . . . 9
⊢ (𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
15 | | f1ocnv 6728 |
. . . . . . . 8
⊢ (𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) → ◡𝑂:(𝐺 supp ∅)–1-1-onto→dom
𝑂) |
16 | | f1of 6716 |
. . . . . . . 8
⊢ (◡𝑂:(𝐺 supp ∅)–1-1-onto→dom
𝑂 → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
17 | 14, 15, 16 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
18 | | oemapval.t |
. . . . . . . 8
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
19 | | oemapval.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
20 | | oemapvali.r |
. . . . . . . 8
⊢ (𝜑 → 𝐹𝑇𝐺) |
21 | | oemapvali.x |
. . . . . . . 8
⊢ 𝑋 = ∪
{𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
22 | 5, 6, 7, 18, 19, 8, 20, 21 | cantnflem1a 9443 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
23 | 17, 22 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ dom 𝑂) |
24 | | ordelon 6290 |
. . . . . 6
⊢ ((Ord dom
𝑂 ∧ (◡𝑂‘𝑋) ∈ dom 𝑂) → (◡𝑂‘𝑋) ∈ On) |
25 | 3, 23, 24 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ On) |
26 | 3 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → Ord dom 𝑂) |
27 | | ordelon 6290 |
. . . . . . . 8
⊢ ((Ord dom
𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On) |
28 | 26, 27 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On) |
29 | | sucelon 7664 |
. . . . . . 7
⊢ (𝑢 ∈ On ↔ suc 𝑢 ∈ On) |
30 | 28, 29 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ On) |
31 | 30 | adantrr 714 |
. . . . 5
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑢 ∈ On) |
32 | | ontri1 6300 |
. . . . 5
⊢ (((◡𝑂‘𝑋) ∈ On ∧ 𝑢 ∈ On) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ (◡𝑂‘𝑋))) |
33 | 25, 31, 32 | syl2an2r 682 |
. . . 4
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ (◡𝑂‘𝑋))) |
34 | 1, 33 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ¬ 𝑢 ∈ (◡𝑂‘𝑋)) |
35 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
36 | | ordtr 6280 |
. . . . . . . 8
⊢ (Ord dom
𝑂 → Tr dom 𝑂) |
37 | 3, 36 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → Tr dom 𝑂) |
38 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ dom 𝑂) |
39 | | trsuc 6350 |
. . . . . . 7
⊢ ((Tr dom
𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ dom 𝑂) |
40 | 37, 38, 39 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑢 ∈ dom 𝑂) |
41 | 23 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ∈ dom 𝑂) |
42 | | isorel 7197 |
. . . . . 6
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ∈ dom 𝑂)) → (𝑢 E (◡𝑂‘𝑋) ↔ (𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑋)))) |
43 | 35, 40, 41, 42 | syl12anc 834 |
. . . . 5
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 E (◡𝑂‘𝑋) ↔ (𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑋)))) |
44 | | fvex 6787 |
. . . . . 6
⊢ (◡𝑂‘𝑋) ∈ V |
45 | 44 | epeli 5497 |
. . . . 5
⊢ (𝑢 E (◡𝑂‘𝑋) ↔ 𝑢 ∈ (◡𝑂‘𝑋)) |
46 | | fvex 6787 |
. . . . . 6
⊢ (𝑂‘(◡𝑂‘𝑋)) ∈ V |
47 | 46 | epeli 5497 |
. . . . 5
⊢ ((𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑋)) ↔ (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑋))) |
48 | 43, 45, 47 | 3bitr3g 313 |
. . . 4
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 ∈ (◡𝑂‘𝑋) ↔ (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑋)))) |
49 | | f1ocnvfv2 7149 |
. . . . . . 7
⊢ ((𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) ∧ 𝑋 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
50 | 14, 22, 49 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
51 | 50 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
52 | 51 | eleq2d 2824 |
. . . 4
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑋)) ↔ (𝑂‘𝑢) ∈ 𝑋)) |
53 | 48, 52 | bitrd 278 |
. . 3
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 ∈ (◡𝑂‘𝑋) ↔ (𝑂‘𝑢) ∈ 𝑋)) |
54 | 34, 53 | mtbid 324 |
. 2
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ¬ (𝑂‘𝑢) ∈ 𝑋) |
55 | 5, 6, 7, 18, 19, 8, 20, 21 | oemapvali 9442 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
56 | 55 | simp1d 1141 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
57 | | onelon 6291 |
. . . 4
⊢ ((𝐵 ∈ On ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ On) |
58 | 7, 56, 57 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝑋 ∈ On) |
59 | | suppssdm 7993 |
. . . . . . 7
⊢ (𝐺 supp ∅) ⊆ dom 𝐺 |
60 | 5, 6, 7 | cantnfs 9424 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
61 | 8, 60 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
62 | 61 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
63 | 59, 62 | fssdm 6620 |
. . . . . 6
⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝐵) |
64 | 63 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐺 supp ∅) ⊆ 𝐵) |
65 | 2 | oif 9289 |
. . . . . . 7
⊢ 𝑂:dom 𝑂⟶(𝐺 supp ∅) |
66 | 65 | ffvelrni 6960 |
. . . . . 6
⊢ (𝑢 ∈ dom 𝑂 → (𝑂‘𝑢) ∈ (𝐺 supp ∅)) |
67 | 40, 66 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ (𝐺 supp ∅)) |
68 | 64, 67 | sseldd 3922 |
. . . 4
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ 𝐵) |
69 | | onelon 6291 |
. . . 4
⊢ ((𝐵 ∈ On ∧ (𝑂‘𝑢) ∈ 𝐵) → (𝑂‘𝑢) ∈ On) |
70 | 7, 68, 69 | syl2an2r 682 |
. . 3
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ On) |
71 | | ontri1 6300 |
. . 3
⊢ ((𝑋 ∈ On ∧ (𝑂‘𝑢) ∈ On) → (𝑋 ⊆ (𝑂‘𝑢) ↔ ¬ (𝑂‘𝑢) ∈ 𝑋)) |
72 | 58, 70, 71 | syl2an2r 682 |
. 2
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑋 ⊆ (𝑂‘𝑢) ↔ ¬ (𝑂‘𝑢) ∈ 𝑋)) |
73 | 54, 72 | mpbird 256 |
1
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂‘𝑢)) |