| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnfcom.1 | . 2
⊢ (𝜑 → 𝐼 ∈ dom 𝐺) | 
| 2 |  | cnfcom.s | . . . . . 6
⊢ 𝑆 = dom (ω CNF 𝐴) | 
| 3 |  | omelon 9687 | . . . . . . 7
⊢ ω
∈ On | 
| 4 | 3 | a1i 11 | . . . . . 6
⊢ (𝜑 → ω ∈
On) | 
| 5 |  | cnfcom.a | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ On) | 
| 6 |  | cnfcom.g | . . . . . 6
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | 
| 7 |  | cnfcom.f | . . . . . . 7
⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) | 
| 8 | 2, 4, 5 | cantnff1o 9737 | . . . . . . . . 9
⊢ (𝜑 → (ω CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴)) | 
| 9 |  | f1ocnv 6859 | . . . . . . . . 9
⊢ ((ω
CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴) → ◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆) | 
| 10 |  | f1of 6847 | . . . . . . . . 9
⊢ (◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) | 
| 11 | 8, 9, 10 | 3syl 18 | . . . . . . . 8
⊢ (𝜑 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) | 
| 12 |  | cnfcom.b | . . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) | 
| 13 | 11, 12 | ffvelcdmd 7104 | . . . . . . 7
⊢ (𝜑 → (◡(ω CNF 𝐴)‘𝐵) ∈ 𝑆) | 
| 14 | 7, 13 | eqeltrid 2844 | . . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑆) | 
| 15 | 2, 4, 5, 6, 14 | cantnfcl 9708 | . . . . 5
⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) | 
| 16 | 15 | simprd 495 | . . . 4
⊢ (𝜑 → dom 𝐺 ∈ ω) | 
| 17 |  | elnn 7899 | . . . 4
⊢ ((𝐼 ∈ dom 𝐺 ∧ dom 𝐺 ∈ ω) → 𝐼 ∈ ω) | 
| 18 | 1, 16, 17 | syl2anc 584 | . . 3
⊢ (𝜑 → 𝐼 ∈ ω) | 
| 19 |  | eleq1 2828 | . . . . . 6
⊢ (𝑤 = 𝐼 → (𝑤 ∈ dom 𝐺 ↔ 𝐼 ∈ dom 𝐺)) | 
| 20 |  | suceq 6449 | . . . . . . . 8
⊢ (𝑤 = 𝐼 → suc 𝑤 = suc 𝐼) | 
| 21 | 20 | fveq2d 6909 | . . . . . . 7
⊢ (𝑤 = 𝐼 → (𝑇‘suc 𝑤) = (𝑇‘suc 𝐼)) | 
| 22 | 20 | fveq2d 6909 | . . . . . . 7
⊢ (𝑤 = 𝐼 → (𝐻‘suc 𝑤) = (𝐻‘suc 𝐼)) | 
| 23 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑤 = 𝐼 → (𝐺‘𝑤) = (𝐺‘𝐼)) | 
| 24 | 23 | oveq2d 7448 | . . . . . . . 8
⊢ (𝑤 = 𝐼 → (ω ↑o (𝐺‘𝑤)) = (ω ↑o (𝐺‘𝐼))) | 
| 25 |  | 2fveq3 6910 | . . . . . . . 8
⊢ (𝑤 = 𝐼 → (𝐹‘(𝐺‘𝑤)) = (𝐹‘(𝐺‘𝐼))) | 
| 26 | 24, 25 | oveq12d 7450 | . . . . . . 7
⊢ (𝑤 = 𝐼 → ((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤))) = ((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) | 
| 27 | 21, 22, 26 | f1oeq123d 6841 | . . . . . 6
⊢ (𝑤 = 𝐼 → ((𝑇‘suc 𝑤):(𝐻‘suc 𝑤)–1-1-onto→((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤))) ↔ (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) | 
| 28 | 19, 27 | imbi12d 344 | . . . . 5
⊢ (𝑤 = 𝐼 → ((𝑤 ∈ dom 𝐺 → (𝑇‘suc 𝑤):(𝐻‘suc 𝑤)–1-1-onto→((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤)))) ↔ (𝐼 ∈ dom 𝐺 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))))) | 
| 29 | 28 | imbi2d 340 | . . . 4
⊢ (𝑤 = 𝐼 → ((𝜑 → (𝑤 ∈ dom 𝐺 → (𝑇‘suc 𝑤):(𝐻‘suc 𝑤)–1-1-onto→((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤))))) ↔ (𝜑 → (𝐼 ∈ dom 𝐺 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))))) | 
| 30 |  | eleq1 2828 | . . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺)) | 
| 31 |  | suceq 6449 | . . . . . . . 8
⊢ (𝑤 = ∅ → suc 𝑤 = suc ∅) | 
| 32 | 31 | fveq2d 6909 | . . . . . . 7
⊢ (𝑤 = ∅ → (𝑇‘suc 𝑤) = (𝑇‘suc ∅)) | 
| 33 | 31 | fveq2d 6909 | . . . . . . 7
⊢ (𝑤 = ∅ → (𝐻‘suc 𝑤) = (𝐻‘suc ∅)) | 
| 34 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑤 = ∅ → (𝐺‘𝑤) = (𝐺‘∅)) | 
| 35 | 34 | oveq2d 7448 | . . . . . . . 8
⊢ (𝑤 = ∅ → (ω
↑o (𝐺‘𝑤)) = (ω ↑o (𝐺‘∅))) | 
| 36 |  | 2fveq3 6910 | . . . . . . . 8
⊢ (𝑤 = ∅ → (𝐹‘(𝐺‘𝑤)) = (𝐹‘(𝐺‘∅))) | 
| 37 | 35, 36 | oveq12d 7450 | . . . . . . 7
⊢ (𝑤 = ∅ → ((ω
↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤))) = ((ω ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅)))) | 
| 38 | 32, 33, 37 | f1oeq123d 6841 | . . . . . 6
⊢ (𝑤 = ∅ → ((𝑇‘suc 𝑤):(𝐻‘suc 𝑤)–1-1-onto→((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤))) ↔ (𝑇‘suc ∅):(𝐻‘suc ∅)–1-1-onto→((ω ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅))))) | 
| 39 | 30, 38 | imbi12d 344 | . . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ∈ dom 𝐺 → (𝑇‘suc 𝑤):(𝐻‘suc 𝑤)–1-1-onto→((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤)))) ↔ (∅ ∈ dom 𝐺 → (𝑇‘suc ∅):(𝐻‘suc ∅)–1-1-onto→((ω ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅)))))) | 
| 40 |  | eleq1 2828 | . . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 ∈ dom 𝐺 ↔ 𝑦 ∈ dom 𝐺)) | 
| 41 |  | suceq 6449 | . . . . . . . 8
⊢ (𝑤 = 𝑦 → suc 𝑤 = suc 𝑦) | 
| 42 | 41 | fveq2d 6909 | . . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑇‘suc 𝑤) = (𝑇‘suc 𝑦)) | 
| 43 | 41 | fveq2d 6909 | . . . . . . 7
⊢ (𝑤 = 𝑦 → (𝐻‘suc 𝑤) = (𝐻‘suc 𝑦)) | 
| 44 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝐺‘𝑤) = (𝐺‘𝑦)) | 
| 45 | 44 | oveq2d 7448 | . . . . . . . 8
⊢ (𝑤 = 𝑦 → (ω ↑o (𝐺‘𝑤)) = (ω ↑o (𝐺‘𝑦))) | 
| 46 |  | 2fveq3 6910 | . . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝐹‘(𝐺‘𝑤)) = (𝐹‘(𝐺‘𝑦))) | 
| 47 | 45, 46 | oveq12d 7450 | . . . . . . 7
⊢ (𝑤 = 𝑦 → ((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤))) = ((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦)))) | 
| 48 | 42, 43, 47 | f1oeq123d 6841 | . . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑇‘suc 𝑤):(𝐻‘suc 𝑤)–1-1-onto→((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤))) ↔ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) | 
| 49 | 40, 48 | imbi12d 344 | . . . . 5
⊢ (𝑤 = 𝑦 → ((𝑤 ∈ dom 𝐺 → (𝑇‘suc 𝑤):(𝐻‘suc 𝑤)–1-1-onto→((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤)))) ↔ (𝑦 ∈ dom 𝐺 → (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦)))))) | 
| 50 |  | eleq1 2828 | . . . . . 6
⊢ (𝑤 = suc 𝑦 → (𝑤 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺)) | 
| 51 |  | suceq 6449 | . . . . . . . 8
⊢ (𝑤 = suc 𝑦 → suc 𝑤 = suc suc 𝑦) | 
| 52 | 51 | fveq2d 6909 | . . . . . . 7
⊢ (𝑤 = suc 𝑦 → (𝑇‘suc 𝑤) = (𝑇‘suc suc 𝑦)) | 
| 53 | 51 | fveq2d 6909 | . . . . . . 7
⊢ (𝑤 = suc 𝑦 → (𝐻‘suc 𝑤) = (𝐻‘suc suc 𝑦)) | 
| 54 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑤 = suc 𝑦 → (𝐺‘𝑤) = (𝐺‘suc 𝑦)) | 
| 55 | 54 | oveq2d 7448 | . . . . . . . 8
⊢ (𝑤 = suc 𝑦 → (ω ↑o (𝐺‘𝑤)) = (ω ↑o (𝐺‘suc 𝑦))) | 
| 56 |  | 2fveq3 6910 | . . . . . . . 8
⊢ (𝑤 = suc 𝑦 → (𝐹‘(𝐺‘𝑤)) = (𝐹‘(𝐺‘suc 𝑦))) | 
| 57 | 55, 56 | oveq12d 7450 | . . . . . . 7
⊢ (𝑤 = suc 𝑦 → ((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤))) = ((ω ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦)))) | 
| 58 | 52, 53, 57 | f1oeq123d 6841 | . . . . . 6
⊢ (𝑤 = suc 𝑦 → ((𝑇‘suc 𝑤):(𝐻‘suc 𝑤)–1-1-onto→((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤))) ↔ (𝑇‘suc suc 𝑦):(𝐻‘suc suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))))) | 
| 59 | 50, 58 | imbi12d 344 | . . . . 5
⊢ (𝑤 = suc 𝑦 → ((𝑤 ∈ dom 𝐺 → (𝑇‘suc 𝑤):(𝐻‘suc 𝑤)–1-1-onto→((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤)))) ↔ (suc 𝑦 ∈ dom 𝐺 → (𝑇‘suc suc 𝑦):(𝐻‘suc suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦)))))) | 
| 60 | 5 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐴 ∈ On) | 
| 61 | 12 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → 𝐵 ∈ (ω ↑o 𝐴)) | 
| 62 |  | cnfcom.h | . . . . . . 7
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) | 
| 63 |  | cnfcom.t | . . . . . . 7
⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) | 
| 64 |  | cnfcom.m | . . . . . . 7
⊢ 𝑀 = ((ω ↑o
(𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) | 
| 65 |  | cnfcom.k | . . . . . . 7
⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) | 
| 66 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ dom
𝐺) | 
| 67 | 3 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ω ∈
On) | 
| 68 |  | suppssdm 8203 | . . . . . . . . . . 11
⊢ (𝐹 supp ∅) ⊆ dom 𝐹 | 
| 69 | 2, 4, 5 | cantnfs 9707 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))) | 
| 70 | 14, 69 | mpbid 232 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)) | 
| 71 | 70 | simpld 494 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶ω) | 
| 72 | 68, 71 | fssdm 6754 | . . . . . . . . . 10
⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐴) | 
| 73 |  | onss 7806 | . . . . . . . . . . 11
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | 
| 74 | 5, 73 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ On) | 
| 75 | 72, 74 | sstrd 3993 | . . . . . . . . 9
⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) | 
| 76 | 6 | oif 9571 | . . . . . . . . . 10
⊢ 𝐺:dom 𝐺⟶(𝐹 supp ∅) | 
| 77 | 76 | ffvelcdmi 7102 | . . . . . . . . 9
⊢ (∅
∈ dom 𝐺 → (𝐺‘∅) ∈ (𝐹 supp ∅)) | 
| 78 |  | ssel2 3977 | . . . . . . . . 9
⊢ (((𝐹 supp ∅) ⊆ On ∧
(𝐺‘∅) ∈
(𝐹 supp ∅)) →
(𝐺‘∅) ∈
On) | 
| 79 | 75, 77, 78 | syl2an 596 | . . . . . . . 8
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝐺‘∅) ∈ On) | 
| 80 |  | peano1 7911 | . . . . . . . . 9
⊢ ∅
∈ ω | 
| 81 | 80 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈
ω) | 
| 82 |  | oen0 8625 | . . . . . . . 8
⊢
(((ω ∈ On ∧ (𝐺‘∅) ∈ On) ∧ ∅
∈ ω) → ∅ ∈ (ω ↑o (𝐺‘∅))) | 
| 83 | 67, 79, 81, 82 | syl21anc 837 | . . . . . . 7
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → ∅ ∈ (ω
↑o (𝐺‘∅))) | 
| 84 |  | 0ex 5306 | . . . . . . . . 9
⊢ ∅
∈ V | 
| 85 | 63 | seqom0g 8497 | . . . . . . . . 9
⊢ (∅
∈ V → (𝑇‘∅) = ∅) | 
| 86 | 84, 85 | ax-mp 5 | . . . . . . . 8
⊢ (𝑇‘∅) =
∅ | 
| 87 |  | f1o0 6884 | . . . . . . . . . 10
⊢
∅:∅–1-1-onto→∅ | 
| 88 | 62 | seqom0g 8497 | . . . . . . . . . . 11
⊢ (∅
∈ V → (𝐻‘∅) = ∅) | 
| 89 |  | f1oeq2 6836 | . . . . . . . . . . 11
⊢ ((𝐻‘∅) = ∅ →
(∅:(𝐻‘∅)–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) | 
| 90 | 84, 88, 89 | mp2b 10 | . . . . . . . . . 10
⊢
(∅:(𝐻‘∅)–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅) | 
| 91 | 87, 90 | mpbir 231 | . . . . . . . . 9
⊢
∅:(𝐻‘∅)–1-1-onto→∅ | 
| 92 |  | f1oeq1 6835 | . . . . . . . . 9
⊢ ((𝑇‘∅) = ∅ →
((𝑇‘∅):(𝐻‘∅)–1-1-onto→∅ ↔ ∅:(𝐻‘∅)–1-1-onto→∅)) | 
| 93 | 91, 92 | mpbiri 258 | . . . . . . . 8
⊢ ((𝑇‘∅) = ∅ →
(𝑇‘∅):(𝐻‘∅)–1-1-onto→∅) | 
| 94 | 86, 93 | mp1i 13 | . . . . . . 7
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝑇‘∅):(𝐻‘∅)–1-1-onto→∅) | 
| 95 | 2, 60, 61, 7, 6, 62, 63, 64, 65, 66, 83, 94 | cnfcomlem 9740 | . . . . . 6
⊢ ((𝜑 ∧ ∅ ∈ dom 𝐺) → (𝑇‘suc ∅):(𝐻‘suc ∅)–1-1-onto→((ω ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅)))) | 
| 96 | 95 | ex 412 | . . . . 5
⊢ (𝜑 → (∅ ∈ dom 𝐺 → (𝑇‘suc ∅):(𝐻‘suc ∅)–1-1-onto→((ω ↑o (𝐺‘∅))
·o (𝐹‘(𝐺‘∅))))) | 
| 97 | 6 | oicl 9570 | . . . . . . . . . 10
⊢ Ord dom
𝐺 | 
| 98 |  | ordtr 6397 | . . . . . . . . . 10
⊢ (Ord dom
𝐺 → Tr dom 𝐺) | 
| 99 | 97, 98 | ax-mp 5 | . . . . . . . . 9
⊢ Tr dom
𝐺 | 
| 100 |  | trsuc 6470 | . . . . . . . . 9
⊢ ((Tr dom
𝐺 ∧ suc 𝑦 ∈ dom 𝐺) → 𝑦 ∈ dom 𝐺) | 
| 101 | 99, 100 | mpan 690 | . . . . . . . 8
⊢ (suc
𝑦 ∈ dom 𝐺 → 𝑦 ∈ dom 𝐺) | 
| 102 | 101 | imim1i 63 | . . . . . . 7
⊢ ((𝑦 ∈ dom 𝐺 → (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦)))) → (suc 𝑦 ∈ dom 𝐺 → (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) | 
| 103 | 5 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → 𝐴 ∈ On) | 
| 104 | 12 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → 𝐵 ∈ (ω ↑o 𝐴)) | 
| 105 |  | simprl 770 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → suc 𝑦 ∈ dom 𝐺) | 
| 106 | 74 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → 𝐴 ⊆ On) | 
| 107 | 72 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝐹 supp ∅) ⊆ 𝐴) | 
| 108 | 76 | ffvelcdmi 7102 | . . . . . . . . . . . . . . . . 17
⊢ (suc
𝑦 ∈ dom 𝐺 → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅)) | 
| 109 | 108 | ad2antrl 728 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝐺‘suc 𝑦) ∈ (𝐹 supp ∅)) | 
| 110 | 107, 109 | sseldd 3983 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝐺‘suc 𝑦) ∈ 𝐴) | 
| 111 | 106, 110 | sseldd 3983 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝐺‘suc 𝑦) ∈ On) | 
| 112 |  | eloni 6393 | . . . . . . . . . . . . . 14
⊢ ((𝐺‘suc 𝑦) ∈ On → Ord (𝐺‘suc 𝑦)) | 
| 113 | 111, 112 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → Ord (𝐺‘suc 𝑦)) | 
| 114 |  | vex 3483 | . . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V | 
| 115 | 114 | sucid 6465 | . . . . . . . . . . . . . 14
⊢ 𝑦 ∈ suc 𝑦 | 
| 116 |  | ovexd 7467 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | 
| 117 | 15 | simpld 494 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → E We (𝐹 supp ∅)) | 
| 118 | 6 | oiiso 9578 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 supp ∅) ∈ V ∧ E
We (𝐹 supp ∅)) →
𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) | 
| 119 | 116, 117,
118 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) | 
| 120 | 119 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) | 
| 121 | 101 | ad2antrl 728 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → 𝑦 ∈ dom 𝐺) | 
| 122 |  | isorel 7347 | . . . . . . . . . . . . . . . 16
⊢ ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺)) → (𝑦 E suc 𝑦 ↔ (𝐺‘𝑦) E (𝐺‘suc 𝑦))) | 
| 123 | 120, 121,
105, 122 | syl12anc 836 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝑦 E suc 𝑦 ↔ (𝐺‘𝑦) E (𝐺‘suc 𝑦))) | 
| 124 | 114 | sucex 7827 | . . . . . . . . . . . . . . . 16
⊢ suc 𝑦 ∈ V | 
| 125 | 124 | epeli 5585 | . . . . . . . . . . . . . . 15
⊢ (𝑦 E suc 𝑦 ↔ 𝑦 ∈ suc 𝑦) | 
| 126 |  | fvex 6918 | . . . . . . . . . . . . . . . 16
⊢ (𝐺‘suc 𝑦) ∈ V | 
| 127 | 126 | epeli 5585 | . . . . . . . . . . . . . . 15
⊢ ((𝐺‘𝑦) E (𝐺‘suc 𝑦) ↔ (𝐺‘𝑦) ∈ (𝐺‘suc 𝑦)) | 
| 128 | 123, 125,
127 | 3bitr3g 313 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝑦 ∈ suc 𝑦 ↔ (𝐺‘𝑦) ∈ (𝐺‘suc 𝑦))) | 
| 129 | 115, 128 | mpbii 233 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝐺‘𝑦) ∈ (𝐺‘suc 𝑦)) | 
| 130 |  | ordsucss 7839 | . . . . . . . . . . . . 13
⊢ (Ord
(𝐺‘suc 𝑦) → ((𝐺‘𝑦) ∈ (𝐺‘suc 𝑦) → suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦))) | 
| 131 | 113, 129,
130 | sylc 65 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) | 
| 132 | 76 | ffvelcdmi 7102 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ dom 𝐺 → (𝐺‘𝑦) ∈ (𝐹 supp ∅)) | 
| 133 | 121, 132 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝐺‘𝑦) ∈ (𝐹 supp ∅)) | 
| 134 | 107, 133 | sseldd 3983 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝐺‘𝑦) ∈ 𝐴) | 
| 135 | 106, 134 | sseldd 3983 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝐺‘𝑦) ∈ On) | 
| 136 |  | onsuc 7832 | . . . . . . . . . . . . . 14
⊢ ((𝐺‘𝑦) ∈ On → suc (𝐺‘𝑦) ∈ On) | 
| 137 | 135, 136 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → suc (𝐺‘𝑦) ∈ On) | 
| 138 | 3 | a1i 11 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → ω ∈
On) | 
| 139 | 80 | a1i 11 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → ∅ ∈
ω) | 
| 140 |  | oewordi 8630 | . . . . . . . . . . . . 13
⊢ (((suc
(𝐺‘𝑦) ∈ On ∧ (𝐺‘suc 𝑦) ∈ On ∧ ω ∈ On) ∧
∅ ∈ ω) → (suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → (ω ↑o suc
(𝐺‘𝑦)) ⊆ (ω ↑o (𝐺‘suc 𝑦)))) | 
| 141 | 137, 111,
138, 139, 140 | syl31anc 1374 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (suc (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → (ω ↑o suc
(𝐺‘𝑦)) ⊆ (ω ↑o (𝐺‘suc 𝑦)))) | 
| 142 | 131, 141 | mpd 15 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (ω ↑o suc
(𝐺‘𝑦)) ⊆ (ω ↑o (𝐺‘suc 𝑦))) | 
| 143 | 71 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → 𝐹:𝐴⟶ω) | 
| 144 | 143, 134 | ffvelcdmd 7104 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝐹‘(𝐺‘𝑦)) ∈ ω) | 
| 145 |  | nnon 7894 | . . . . . . . . . . . . . . 15
⊢ ((𝐹‘(𝐺‘𝑦)) ∈ ω → (𝐹‘(𝐺‘𝑦)) ∈ On) | 
| 146 | 144, 145 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝐹‘(𝐺‘𝑦)) ∈ On) | 
| 147 |  | oecl 8576 | . . . . . . . . . . . . . . 15
⊢ ((ω
∈ On ∧ (𝐺‘𝑦) ∈ On) → (ω
↑o (𝐺‘𝑦)) ∈ On) | 
| 148 | 138, 135,
147 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (ω ↑o
(𝐺‘𝑦)) ∈ On) | 
| 149 |  | oen0 8625 | . . . . . . . . . . . . . . 15
⊢
(((ω ∈ On ∧ (𝐺‘𝑦) ∈ On) ∧ ∅ ∈ ω)
→ ∅ ∈ (ω ↑o (𝐺‘𝑦))) | 
| 150 | 138, 135,
139, 149 | syl21anc 837 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → ∅ ∈ (ω
↑o (𝐺‘𝑦))) | 
| 151 |  | omord2 8606 | . . . . . . . . . . . . . 14
⊢ ((((𝐹‘(𝐺‘𝑦)) ∈ On ∧ ω ∈ On ∧
(ω ↑o (𝐺‘𝑦)) ∈ On) ∧ ∅ ∈ (ω
↑o (𝐺‘𝑦))) → ((𝐹‘(𝐺‘𝑦)) ∈ ω ↔ ((ω
↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ∈ ((ω ↑o
(𝐺‘𝑦)) ·o
ω))) | 
| 152 | 146, 138,
148, 150, 151 | syl31anc 1374 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → ((𝐹‘(𝐺‘𝑦)) ∈ ω ↔ ((ω
↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ∈ ((ω ↑o
(𝐺‘𝑦)) ·o
ω))) | 
| 153 | 144, 152 | mpbid 232 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → ((ω ↑o
(𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ∈ ((ω ↑o
(𝐺‘𝑦)) ·o
ω)) | 
| 154 |  | oesuc 8566 | . . . . . . . . . . . . 13
⊢ ((ω
∈ On ∧ (𝐺‘𝑦) ∈ On) → (ω
↑o suc (𝐺‘𝑦)) = ((ω ↑o (𝐺‘𝑦)) ·o
ω)) | 
| 155 | 138, 135,
154 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (ω ↑o suc
(𝐺‘𝑦)) = ((ω ↑o (𝐺‘𝑦)) ·o
ω)) | 
| 156 | 153, 155 | eleqtrrd 2843 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → ((ω ↑o
(𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ∈ (ω ↑o suc
(𝐺‘𝑦))) | 
| 157 | 142, 156 | sseldd 3983 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → ((ω ↑o
(𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ∈ (ω ↑o (𝐺‘suc 𝑦))) | 
| 158 |  | simprr 772 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦)))) | 
| 159 | 2, 103, 104, 7, 6, 62, 63, 64, 65, 105, 157, 158 | cnfcomlem 9740 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ∈ dom 𝐺 ∧ (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))))) → (𝑇‘suc suc 𝑦):(𝐻‘suc suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦)))) | 
| 160 | 159 | exp32 420 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (suc 𝑦 ∈ dom 𝐺 → ((𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) → (𝑇‘suc suc 𝑦):(𝐻‘suc suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦)))))) | 
| 161 | 160 | a2d 29 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((suc 𝑦 ∈ dom 𝐺 → (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦)))) → (suc 𝑦 ∈ dom 𝐺 → (𝑇‘suc suc 𝑦):(𝐻‘suc suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦)))))) | 
| 162 | 102, 161 | syl5 34 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((𝑦 ∈ dom 𝐺 → (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦)))) → (suc 𝑦 ∈ dom 𝐺 → (𝑇‘suc suc 𝑦):(𝐻‘suc suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦)))))) | 
| 163 | 162 | expcom 413 | . . . . 5
⊢ (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝐺 → (𝑇‘suc 𝑦):(𝐻‘suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦)))) → (suc 𝑦 ∈ dom 𝐺 → (𝑇‘suc suc 𝑦):(𝐻‘suc suc 𝑦)–1-1-onto→((ω ↑o (𝐺‘suc 𝑦)) ·o (𝐹‘(𝐺‘suc 𝑦))))))) | 
| 164 | 39, 49, 59, 96, 163 | finds2 7921 | . . . 4
⊢ (𝑤 ∈ ω → (𝜑 → (𝑤 ∈ dom 𝐺 → (𝑇‘suc 𝑤):(𝐻‘suc 𝑤)–1-1-onto→((ω ↑o (𝐺‘𝑤)) ·o (𝐹‘(𝐺‘𝑤)))))) | 
| 165 | 29, 164 | vtoclga 3576 | . . 3
⊢ (𝐼 ∈ ω → (𝜑 → (𝐼 ∈ dom 𝐺 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))))) | 
| 166 | 18, 165 | mpcom 38 | . 2
⊢ (𝜑 → (𝐼 ∈ dom 𝐺 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼))))) | 
| 167 | 1, 166 | mpd 15 | 1
⊢ (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) |