![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsuc | Structured version Visualization version GIF version |
Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
limsuc | ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflim4 7832 | . . 3 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
2 | suceq 6427 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
3 | 2 | eleq1d 2819 | . . . . 5 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
4 | 3 | rspccv 3609 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
5 | 4 | 3ad2ant3 1136 | . . 3 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
6 | 1, 5 | sylbi 216 | . 2 ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
7 | limord 6421 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
8 | ordtr 6375 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
9 | trsuc 6448 | . . . 4 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
10 | 9 | ex 414 | . . 3 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
11 | 7, 8, 10 | 3syl 18 | . 2 ⊢ (Lim 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
12 | 6, 11 | impbid 211 | 1 ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∅c0 4321 Tr wtr 5264 Ord word 6360 Lim wlim 6362 suc csuc 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 |
This theorem is referenced by: limsssuc 7834 limuni3 7836 peano2b 7867 rdgsucg 8418 rdgsucmptnf 8424 oesuclem 8520 oaordi 8542 omordi 8562 oeordi 8583 oelim2 8591 limenpsi 9148 r1tr 9767 r1ordg 9769 r1pwss 9775 r1val1 9777 rankdmr1 9792 rankr1bg 9794 pwwf 9798 rankr1c 9812 rankonidlem 9819 ranklim 9835 r1pwcl 9838 rankxplim3 9872 infxpenlem 10004 alephordi 10065 cflm 10241 cfslb2n 10259 alephreg 10573 r1limwun 10727 rankcf 10768 inatsk 10769 oldlim 27361 succlg 42011 |
Copyright terms: Public domain | W3C validator |