MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsuc Structured version   Visualization version   GIF version

Theorem limsuc 7844
Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
limsuc (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))

Proof of Theorem limsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dflim4 7843 . . 3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
2 suceq 6419 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
32eleq1d 2819 . . . . 5 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
43rspccv 3598 . . . 4 (∀𝑥𝐴 suc 𝑥𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
543ad2ant3 1135 . . 3 ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (𝐵𝐴 → suc 𝐵𝐴))
61, 5sylbi 217 . 2 (Lim 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
7 limord 6413 . . 3 (Lim 𝐴 → Ord 𝐴)
8 ordtr 6366 . . 3 (Ord 𝐴 → Tr 𝐴)
9 trsuc 6441 . . . 4 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
109ex 412 . . 3 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
117, 8, 103syl 18 . 2 (Lim 𝐴 → (suc 𝐵𝐴𝐵𝐴))
126, 11impbid 212 1 (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2108  wral 3051  c0 4308  Tr wtr 5229  Ord word 6351  Lim wlim 6353  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358
This theorem is referenced by:  limsssuc  7845  limuni3  7847  peano2b  7878  rdgsucg  8437  rdgsucmptnf  8443  oesuclem  8537  oaordi  8558  omordi  8578  oeordi  8599  oelim2  8607  limenpsi  9166  r1tr  9790  r1ordg  9792  r1pwss  9798  r1val1  9800  rankdmr1  9815  rankr1bg  9817  pwwf  9821  rankr1c  9835  rankonidlem  9842  ranklim  9858  r1pwcl  9861  rankxplim3  9895  infxpenlem  10027  alephordi  10088  cflm  10264  cfslb2n  10282  alephreg  10596  r1limwun  10750  rankcf  10791  inatsk  10792  oldlim  27850  succlg  43352
  Copyright terms: Public domain W3C validator