| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limsuc | Structured version Visualization version GIF version | ||
| Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| limsuc | ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim4 7778 | . . 3 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
| 2 | suceq 6374 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
| 3 | 2 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| 4 | 3 | rspccv 3569 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 7 | limord 6367 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 8 | ordtr 6320 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 9 | trsuc 6395 | . . . 4 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
| 10 | 9 | ex 412 | . . 3 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 11 | 7, 8, 10 | 3syl 18 | . 2 ⊢ (Lim 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 12 | 6, 11 | impbid 212 | 1 ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∅c0 4280 Tr wtr 5196 Ord word 6305 Lim wlim 6307 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 |
| This theorem is referenced by: limsssuc 7780 limuni3 7782 peano2b 7813 rdgsucg 8342 rdgsucmptnf 8348 oesuclem 8440 oaordi 8461 omordi 8481 oeordi 8502 oelim2 8510 limenpsi 9065 r1tr 9669 r1ordg 9671 r1pwss 9677 r1val1 9679 rankdmr1 9694 rankr1bg 9696 pwwf 9700 rankr1c 9714 rankonidlem 9721 ranklim 9737 r1pwcl 9740 rankxplim3 9774 infxpenlem 9904 alephordi 9965 cflm 10141 cfslb2n 10159 alephreg 10473 r1limwun 10627 rankcf 10668 inatsk 10669 oldlim 27832 rankfilimbi 35112 r1filimi 35114 succlg 43431 |
| Copyright terms: Public domain | W3C validator |