MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsuc Structured version   Visualization version   GIF version

Theorem limsuc 7838
Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
limsuc (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))

Proof of Theorem limsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dflim4 7837 . . 3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
2 suceq 6431 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
32eleq1d 2819 . . . . 5 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
43rspccv 3610 . . . 4 (∀𝑥𝐴 suc 𝑥𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
543ad2ant3 1136 . . 3 ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (𝐵𝐴 → suc 𝐵𝐴))
61, 5sylbi 216 . 2 (Lim 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
7 limord 6425 . . 3 (Lim 𝐴 → Ord 𝐴)
8 ordtr 6379 . . 3 (Ord 𝐴 → Tr 𝐴)
9 trsuc 6452 . . . 4 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
109ex 414 . . 3 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
117, 8, 103syl 18 . 2 (Lim 𝐴 → (suc 𝐵𝐴𝐵𝐴))
126, 11impbid 211 1 (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wcel 2107  wral 3062  c0 4323  Tr wtr 5266  Ord word 6364  Lim wlim 6366  suc csuc 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371
This theorem is referenced by:  limsssuc  7839  limuni3  7841  peano2b  7872  rdgsucg  8423  rdgsucmptnf  8429  oesuclem  8525  oaordi  8546  omordi  8566  oeordi  8587  oelim2  8595  limenpsi  9152  r1tr  9771  r1ordg  9773  r1pwss  9779  r1val1  9781  rankdmr1  9796  rankr1bg  9798  pwwf  9802  rankr1c  9816  rankonidlem  9823  ranklim  9839  r1pwcl  9842  rankxplim3  9876  infxpenlem  10008  alephordi  10069  cflm  10245  cfslb2n  10263  alephreg  10577  r1limwun  10731  rankcf  10772  inatsk  10773  oldlim  27381  succlg  42078
  Copyright terms: Public domain W3C validator