MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsuc Structured version   Visualization version   GIF version

Theorem limsuc 7779
Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
limsuc (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))

Proof of Theorem limsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dflim4 7778 . . 3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
2 suceq 6374 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
32eleq1d 2816 . . . . 5 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
43rspccv 3569 . . . 4 (∀𝑥𝐴 suc 𝑥𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
543ad2ant3 1135 . . 3 ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (𝐵𝐴 → suc 𝐵𝐴))
61, 5sylbi 217 . 2 (Lim 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
7 limord 6367 . . 3 (Lim 𝐴 → Ord 𝐴)
8 ordtr 6320 . . 3 (Ord 𝐴 → Tr 𝐴)
9 trsuc 6395 . . . 4 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
109ex 412 . . 3 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
117, 8, 103syl 18 . 2 (Lim 𝐴 → (suc 𝐵𝐴𝐵𝐴))
126, 11impbid 212 1 (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wral 3047  c0 4280  Tr wtr 5196  Ord word 6305  Lim wlim 6307  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312
This theorem is referenced by:  limsssuc  7780  limuni3  7782  peano2b  7813  rdgsucg  8342  rdgsucmptnf  8348  oesuclem  8440  oaordi  8461  omordi  8481  oeordi  8502  oelim2  8510  limenpsi  9065  r1tr  9669  r1ordg  9671  r1pwss  9677  r1val1  9679  rankdmr1  9694  rankr1bg  9696  pwwf  9700  rankr1c  9714  rankonidlem  9721  ranklim  9737  r1pwcl  9740  rankxplim3  9774  infxpenlem  9904  alephordi  9965  cflm  10141  cfslb2n  10159  alephreg  10473  r1limwun  10627  rankcf  10668  inatsk  10669  oldlim  27832  rankfilimbi  35112  r1filimi  35114  succlg  43431
  Copyright terms: Public domain W3C validator