MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsuc Structured version   Visualization version   GIF version

Theorem limsuc 7805
Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
limsuc (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))

Proof of Theorem limsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dflim4 7804 . . 3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
2 suceq 6388 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
32eleq1d 2813 . . . . 5 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
43rspccv 3582 . . . 4 (∀𝑥𝐴 suc 𝑥𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
543ad2ant3 1135 . . 3 ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (𝐵𝐴 → suc 𝐵𝐴))
61, 5sylbi 217 . 2 (Lim 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
7 limord 6381 . . 3 (Lim 𝐴 → Ord 𝐴)
8 ordtr 6334 . . 3 (Ord 𝐴 → Tr 𝐴)
9 trsuc 6409 . . . 4 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
109ex 412 . . 3 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
117, 8, 103syl 18 . 2 (Lim 𝐴 → (suc 𝐵𝐴𝐵𝐴))
126, 11impbid 212 1 (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  c0 4292  Tr wtr 5209  Ord word 6319  Lim wlim 6321  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326
This theorem is referenced by:  limsssuc  7806  limuni3  7808  peano2b  7839  rdgsucg  8368  rdgsucmptnf  8374  oesuclem  8466  oaordi  8487  omordi  8507  oeordi  8528  oelim2  8536  limenpsi  9093  r1tr  9705  r1ordg  9707  r1pwss  9713  r1val1  9715  rankdmr1  9730  rankr1bg  9732  pwwf  9736  rankr1c  9750  rankonidlem  9757  ranklim  9773  r1pwcl  9776  rankxplim3  9810  infxpenlem  9942  alephordi  10003  cflm  10179  cfslb2n  10197  alephreg  10511  r1limwun  10665  rankcf  10706  inatsk  10707  oldlim  27836  succlg  43310
  Copyright terms: Public domain W3C validator