| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limsuc | Structured version Visualization version GIF version | ||
| Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| limsuc | ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim4 7781 | . . 3 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
| 2 | suceq 6375 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
| 3 | 2 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| 4 | 3 | rspccv 3574 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 7 | limord 6368 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 8 | ordtr 6321 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 9 | trsuc 6396 | . . . 4 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
| 10 | 9 | ex 412 | . . 3 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 11 | 7, 8, 10 | 3syl 18 | . 2 ⊢ (Lim 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 12 | 6, 11 | impbid 212 | 1 ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4284 Tr wtr 5199 Ord word 6306 Lim wlim 6308 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 |
| This theorem is referenced by: limsssuc 7783 limuni3 7785 peano2b 7816 rdgsucg 8345 rdgsucmptnf 8351 oesuclem 8443 oaordi 8464 omordi 8484 oeordi 8505 oelim2 8513 limenpsi 9069 r1tr 9672 r1ordg 9674 r1pwss 9680 r1val1 9682 rankdmr1 9697 rankr1bg 9699 pwwf 9703 rankr1c 9717 rankonidlem 9724 ranklim 9740 r1pwcl 9743 rankxplim3 9777 infxpenlem 9907 alephordi 9968 cflm 10144 cfslb2n 10162 alephreg 10476 r1limwun 10630 rankcf 10671 inatsk 10672 oldlim 27801 succlg 43311 |
| Copyright terms: Public domain | W3C validator |