Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limsuc | Structured version Visualization version GIF version |
Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
limsuc | ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflim4 7594 | . . 3 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
2 | suceq 6247 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
3 | 2 | eleq1d 2818 | . . . . 5 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
4 | 3 | rspccv 3526 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
5 | 4 | 3ad2ant3 1136 | . . 3 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
6 | 1, 5 | sylbi 220 | . 2 ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
7 | limord 6241 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
8 | ordtr 6196 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
9 | trsuc 6266 | . . . 4 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
10 | 9 | ex 416 | . . 3 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
11 | 7, 8, 10 | 3syl 18 | . 2 ⊢ (Lim 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
12 | 6, 11 | impbid 215 | 1 ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ∅c0 4221 Tr wtr 5146 Ord word 6181 Lim wlim 6183 suc csuc 6184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-11 2162 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 ax-un 7491 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-tr 5147 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 |
This theorem is referenced by: limsssuc 7596 limuni3 7598 peano2b 7627 rdgsucg 8100 rdgsucmptnf 8106 oesuclem 8193 oaordi 8215 omordi 8235 oeordi 8256 oelim2 8264 limenpsi 8754 r1tr 9290 r1ordg 9292 r1pwss 9298 r1val1 9300 rankdmr1 9315 rankr1bg 9317 pwwf 9321 rankr1c 9335 rankonidlem 9342 ranklim 9358 r1pwcl 9361 rankxplim3 9395 infxpenlem 9525 alephordi 9586 cflm 9762 cfslb2n 9780 alephreg 10094 r1limwun 10248 rankcf 10289 inatsk 10290 oldlim 33724 |
Copyright terms: Public domain | W3C validator |