| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limsuc | Structured version Visualization version GIF version | ||
| Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| limsuc | ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim4 7827 | . . 3 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
| 2 | suceq 6403 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
| 3 | 2 | eleq1d 2814 | . . . . 5 ⊢ (𝑥 = 𝐵 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| 4 | 3 | rspccv 3588 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) |
| 7 | limord 6396 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 8 | ordtr 6349 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 9 | trsuc 6424 | . . . 4 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
| 10 | 9 | ex 412 | . . 3 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 11 | 7, 8, 10 | 3syl 18 | . 2 ⊢ (Lim 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 12 | 6, 11 | impbid 212 | 1 ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∅c0 4299 Tr wtr 5217 Ord word 6334 Lim wlim 6336 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 |
| This theorem is referenced by: limsssuc 7829 limuni3 7831 peano2b 7862 rdgsucg 8394 rdgsucmptnf 8400 oesuclem 8492 oaordi 8513 omordi 8533 oeordi 8554 oelim2 8562 limenpsi 9122 r1tr 9736 r1ordg 9738 r1pwss 9744 r1val1 9746 rankdmr1 9761 rankr1bg 9763 pwwf 9767 rankr1c 9781 rankonidlem 9788 ranklim 9804 r1pwcl 9807 rankxplim3 9841 infxpenlem 9973 alephordi 10034 cflm 10210 cfslb2n 10228 alephreg 10542 r1limwun 10696 rankcf 10737 inatsk 10738 oldlim 27805 succlg 43324 |
| Copyright terms: Public domain | W3C validator |