MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsuc Structured version   Visualization version   GIF version

Theorem limsuc 7782
Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
limsuc (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))

Proof of Theorem limsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dflim4 7781 . . 3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
2 suceq 6375 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
32eleq1d 2813 . . . . 5 (𝑥 = 𝐵 → (suc 𝑥𝐴 ↔ suc 𝐵𝐴))
43rspccv 3574 . . . 4 (∀𝑥𝐴 suc 𝑥𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
543ad2ant3 1135 . . 3 ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (𝐵𝐴 → suc 𝐵𝐴))
61, 5sylbi 217 . 2 (Lim 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
7 limord 6368 . . 3 (Lim 𝐴 → Ord 𝐴)
8 ordtr 6321 . . 3 (Ord 𝐴 → Tr 𝐴)
9 trsuc 6396 . . . 4 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
109ex 412 . . 3 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
117, 8, 103syl 18 . 2 (Lim 𝐴 → (suc 𝐵𝐴𝐵𝐴))
126, 11impbid 212 1 (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  c0 4284  Tr wtr 5199  Ord word 6306  Lim wlim 6308  suc csuc 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313
This theorem is referenced by:  limsssuc  7783  limuni3  7785  peano2b  7816  rdgsucg  8345  rdgsucmptnf  8351  oesuclem  8443  oaordi  8464  omordi  8484  oeordi  8505  oelim2  8513  limenpsi  9069  r1tr  9672  r1ordg  9674  r1pwss  9680  r1val1  9682  rankdmr1  9697  rankr1bg  9699  pwwf  9703  rankr1c  9717  rankonidlem  9724  ranklim  9740  r1pwcl  9743  rankxplim3  9777  infxpenlem  9907  alephordi  9968  cflm  10144  cfslb2n  10162  alephreg  10476  r1limwun  10630  rankcf  10671  inatsk  10672  oldlim  27801  succlg  43311
  Copyright terms: Public domain W3C validator