| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgreq12g | Structured version Visualization version GIF version | ||
| Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
| Ref | Expression |
|---|---|
| uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| uhgreq12g.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| uhgreq12g.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| Ref | Expression |
|---|---|
| uhgreq12g | ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrf.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrf.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | isuhgr 28994 | . . . 4 ⊢ (𝐺 ∈ 𝑋 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 5 | 4 | adantr 480 | . 2 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 6 | simpr 484 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → 𝐸 = 𝐹) | |
| 7 | 6 | dmeqd 5872 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → dom 𝐸 = dom 𝐹) |
| 8 | pweq 4580 | . . . . . 6 ⊢ (𝑉 = 𝑊 → 𝒫 𝑉 = 𝒫 𝑊) | |
| 9 | 8 | difeq1d 4091 | . . . . 5 ⊢ (𝑉 = 𝑊 → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅})) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅})) |
| 11 | 6, 7, 10 | feq123d 6680 | . . 3 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}))) |
| 12 | uhgreq12g.w | . . . . . 6 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 13 | uhgreq12g.f | . . . . . 6 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 14 | 12, 13 | isuhgr 28994 | . . . . 5 ⊢ (𝐻 ∈ 𝑌 → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}))) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}))) |
| 16 | 15 | bicomd 223 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}) ↔ 𝐻 ∈ UHGraph)) |
| 17 | 11, 16 | sylan9bbr 510 | . 2 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐻 ∈ UHGraph)) |
| 18 | 5, 17 | bitrd 279 | 1 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∅c0 4299 𝒫 cpw 4566 {csn 4592 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 Vtxcvtx 28930 iEdgciedg 28931 UHGraphcuhgr 28990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-uhgr 28992 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |