Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgreq12g | Structured version Visualization version GIF version |
Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
Ref | Expression |
---|---|
uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgreq12g.w | ⊢ 𝑊 = (Vtx‘𝐻) |
uhgreq12g.f | ⊢ 𝐹 = (iEdg‘𝐻) |
Ref | Expression |
---|---|
uhgreq12g | ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrf.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrf.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | isuhgr 27430 | . . . 4 ⊢ (𝐺 ∈ 𝑋 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
5 | 4 | adantr 481 | . 2 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
6 | simpr 485 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → 𝐸 = 𝐹) | |
7 | 6 | dmeqd 5814 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → dom 𝐸 = dom 𝐹) |
8 | pweq 4549 | . . . . . 6 ⊢ (𝑉 = 𝑊 → 𝒫 𝑉 = 𝒫 𝑊) | |
9 | 8 | difeq1d 4056 | . . . . 5 ⊢ (𝑉 = 𝑊 → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅})) |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅})) |
11 | 6, 7, 10 | feq123d 6589 | . . 3 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}))) |
12 | uhgreq12g.w | . . . . . 6 ⊢ 𝑊 = (Vtx‘𝐻) | |
13 | uhgreq12g.f | . . . . . 6 ⊢ 𝐹 = (iEdg‘𝐻) | |
14 | 12, 13 | isuhgr 27430 | . . . . 5 ⊢ (𝐻 ∈ 𝑌 → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}))) |
15 | 14 | adantl 482 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}))) |
16 | 15 | bicomd 222 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}) ↔ 𝐻 ∈ UHGraph)) |
17 | 11, 16 | sylan9bbr 511 | . 2 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐻 ∈ UHGraph)) |
18 | 5, 17 | bitrd 278 | 1 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∅c0 4256 𝒫 cpw 4533 {csn 4561 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 UHGraphcuhgr 27426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-uhgr 27428 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |