MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgreq12g Structured version   Visualization version   GIF version

Theorem uhgreq12g 27338
Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
Hypotheses
Ref Expression
uhgrf.v 𝑉 = (Vtx‘𝐺)
uhgrf.e 𝐸 = (iEdg‘𝐺)
uhgreq12g.w 𝑊 = (Vtx‘𝐻)
uhgreq12g.f 𝐹 = (iEdg‘𝐻)
Assertion
Ref Expression
uhgreq12g (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph))

Proof of Theorem uhgreq12g
StepHypRef Expression
1 uhgrf.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrf.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2isuhgr 27333 . . . 4 (𝐺𝑋 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
43adantr 480 . . 3 ((𝐺𝑋𝐻𝑌) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
54adantr 480 . 2 (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
6 simpr 484 . . . 4 ((𝑉 = 𝑊𝐸 = 𝐹) → 𝐸 = 𝐹)
76dmeqd 5803 . . . 4 ((𝑉 = 𝑊𝐸 = 𝐹) → dom 𝐸 = dom 𝐹)
8 pweq 4546 . . . . . 6 (𝑉 = 𝑊 → 𝒫 𝑉 = 𝒫 𝑊)
98difeq1d 4052 . . . . 5 (𝑉 = 𝑊 → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅}))
109adantr 480 . . . 4 ((𝑉 = 𝑊𝐸 = 𝐹) → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅}))
116, 7, 10feq123d 6573 . . 3 ((𝑉 = 𝑊𝐸 = 𝐹) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅})))
12 uhgreq12g.w . . . . . 6 𝑊 = (Vtx‘𝐻)
13 uhgreq12g.f . . . . . 6 𝐹 = (iEdg‘𝐻)
1412, 13isuhgr 27333 . . . . 5 (𝐻𝑌 → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅})))
1514adantl 481 . . . 4 ((𝐺𝑋𝐻𝑌) → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅})))
1615bicomd 222 . . 3 ((𝐺𝑋𝐻𝑌) → (𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}) ↔ 𝐻 ∈ UHGraph))
1711, 16sylan9bbr 510 . 2 (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐻 ∈ UHGraph))
185, 17bitrd 278 1 (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cdif 3880  c0 4253  𝒫 cpw 4530  {csn 4558  dom cdm 5580  wf 6414  cfv 6418  Vtxcvtx 27269  iEdgciedg 27270  UHGraphcuhgr 27329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-uhgr 27331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator