MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgreq12g Structured version   Visualization version   GIF version

Theorem uhgreq12g 28999
Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
Hypotheses
Ref Expression
uhgrf.v 𝑉 = (Vtx‘𝐺)
uhgrf.e 𝐸 = (iEdg‘𝐺)
uhgreq12g.w 𝑊 = (Vtx‘𝐻)
uhgreq12g.f 𝐹 = (iEdg‘𝐻)
Assertion
Ref Expression
uhgreq12g (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph))

Proof of Theorem uhgreq12g
StepHypRef Expression
1 uhgrf.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrf.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2isuhgr 28994 . . . 4 (𝐺𝑋 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
43adantr 480 . . 3 ((𝐺𝑋𝐻𝑌) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
54adantr 480 . 2 (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
6 simpr 484 . . . 4 ((𝑉 = 𝑊𝐸 = 𝐹) → 𝐸 = 𝐹)
76dmeqd 5872 . . . 4 ((𝑉 = 𝑊𝐸 = 𝐹) → dom 𝐸 = dom 𝐹)
8 pweq 4580 . . . . . 6 (𝑉 = 𝑊 → 𝒫 𝑉 = 𝒫 𝑊)
98difeq1d 4091 . . . . 5 (𝑉 = 𝑊 → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅}))
109adantr 480 . . . 4 ((𝑉 = 𝑊𝐸 = 𝐹) → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅}))
116, 7, 10feq123d 6680 . . 3 ((𝑉 = 𝑊𝐸 = 𝐹) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅})))
12 uhgreq12g.w . . . . . 6 𝑊 = (Vtx‘𝐻)
13 uhgreq12g.f . . . . . 6 𝐹 = (iEdg‘𝐻)
1412, 13isuhgr 28994 . . . . 5 (𝐻𝑌 → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅})))
1514adantl 481 . . . 4 ((𝐺𝑋𝐻𝑌) → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅})))
1615bicomd 223 . . 3 ((𝐺𝑋𝐻𝑌) → (𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}) ↔ 𝐻 ∈ UHGraph))
1711, 16sylan9bbr 510 . 2 (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐻 ∈ UHGraph))
185, 17bitrd 279 1 (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3914  c0 4299  𝒫 cpw 4566  {csn 4592  dom cdm 5641  wf 6510  cfv 6514  Vtxcvtx 28930  iEdgciedg 28931  UHGraphcuhgr 28990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-uhgr 28992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator