| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgreq12g | Structured version Visualization version GIF version | ||
| Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
| Ref | Expression |
|---|---|
| uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| uhgreq12g.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| uhgreq12g.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| Ref | Expression |
|---|---|
| uhgreq12g | ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrf.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrf.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | isuhgr 29023 | . . . 4 ⊢ (𝐺 ∈ 𝑋 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 5 | 4 | adantr 480 | . 2 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 6 | simpr 484 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → 𝐸 = 𝐹) | |
| 7 | 6 | dmeqd 5852 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → dom 𝐸 = dom 𝐹) |
| 8 | pweq 4567 | . . . . . 6 ⊢ (𝑉 = 𝑊 → 𝒫 𝑉 = 𝒫 𝑊) | |
| 9 | 8 | difeq1d 4078 | . . . . 5 ⊢ (𝑉 = 𝑊 → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅})) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅})) |
| 11 | 6, 7, 10 | feq123d 6645 | . . 3 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}))) |
| 12 | uhgreq12g.w | . . . . . 6 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 13 | uhgreq12g.f | . . . . . 6 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 14 | 12, 13 | isuhgr 29023 | . . . . 5 ⊢ (𝐻 ∈ 𝑌 → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}))) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}))) |
| 16 | 15 | bicomd 223 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}) ↔ 𝐻 ∈ UHGraph)) |
| 17 | 11, 16 | sylan9bbr 510 | . 2 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐻 ∈ UHGraph)) |
| 18 | 5, 17 | bitrd 279 | 1 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∅c0 4286 𝒫 cpw 4553 {csn 4579 dom cdm 5623 ⟶wf 6482 ‘cfv 6486 Vtxcvtx 28959 iEdgciedg 28960 UHGraphcuhgr 29019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-uhgr 29021 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |