MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrss Structured version   Visualization version   GIF version

Theorem uhgrss 29096
Description: An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
Hypotheses
Ref Expression
uhgrf.v 𝑉 = (Vtx‘𝐺)
uhgrf.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrss ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)

Proof of Theorem uhgrss
StepHypRef Expression
1 uhgrf.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrf.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2uhgrf 29094 . . . 4 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
43ffvelcdmda 7104 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ∈ (𝒫 𝑉 ∖ {∅}))
54eldifad 3975 . 2 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ∈ 𝒫 𝑉)
65elpwid 4614 1 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cdif 3960  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631  dom cdm 5689  cfv 6563  Vtxcvtx 29028  iEdgciedg 29029  UHGraphcuhgr 29088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-uhgr 29090
This theorem is referenced by:  lpvtx  29100  umgredgprv  29139  uhgrspansubgrlem  29322  uhgrspan1  29335  grimidvtxedg  47814  grimcnv  47817  ushggricedg  47834  clnbgrgrimlem  47839  grimedg  47841
  Copyright terms: Public domain W3C validator