MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrss Structured version   Visualization version   GIF version

Theorem uhgrss 27155
Description: An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
Hypotheses
Ref Expression
uhgrf.v 𝑉 = (Vtx‘𝐺)
uhgrf.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrss ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)

Proof of Theorem uhgrss
StepHypRef Expression
1 uhgrf.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrf.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2uhgrf 27153 . . . 4 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
43ffvelrnda 6904 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ∈ (𝒫 𝑉 ∖ {∅}))
54eldifad 3878 . 2 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ∈ 𝒫 𝑉)
65elpwid 4524 1 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cdif 3863  wss 3866  c0 4237  𝒫 cpw 4513  {csn 4541  dom cdm 5551  cfv 6380  Vtxcvtx 27087  iEdgciedg 27088  UHGraphcuhgr 27147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-uhgr 27149
This theorem is referenced by:  lpvtx  27159  umgredgprv  27198  uhgrspansubgrlem  27378  uhgrspan1  27391  isomgreqve  44950  isomgrsym  44961  ushrisomgr  44966
  Copyright terms: Public domain W3C validator