MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrss Structured version   Visualization version   GIF version

Theorem uhgrss 28757
Description: An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
Hypotheses
Ref Expression
uhgrf.v 𝑉 = (Vtx‘𝐺)
uhgrf.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrss ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)

Proof of Theorem uhgrss
StepHypRef Expression
1 uhgrf.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrf.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2uhgrf 28755 . . . 4 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
43ffvelcdmda 7086 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ∈ (𝒫 𝑉 ∖ {∅}))
54eldifad 3960 . 2 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ∈ 𝒫 𝑉)
65elpwid 4611 1 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  cdif 3945  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628  dom cdm 5676  cfv 6543  Vtxcvtx 28689  iEdgciedg 28690  UHGraphcuhgr 28749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-uhgr 28751
This theorem is referenced by:  lpvtx  28761  umgredgprv  28800  uhgrspansubgrlem  28980  uhgrspan1  28993  isomgreqve  46952  isomgrsym  46963  ushrisomgr  46968
  Copyright terms: Public domain W3C validator