| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
| Ref | Expression |
|---|---|
| uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uhgrf 28989 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 4 | 3 | ffund 6692 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∅c0 4296 𝒫 cpw 4563 {csn 4589 dom cdm 5638 Fun wfun 6505 ‘cfv 6511 Vtxcvtx 28923 iEdgciedg 28924 UHGraphcuhgr 28983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-uhgr 28985 |
| This theorem is referenced by: lpvtx 28995 upgrle2 29032 uhgredgiedgb 29053 uhgriedg0edg0 29054 uhgrvtxedgiedgb 29063 edglnl 29070 numedglnl 29071 uhgr2edg 29135 ushgredgedg 29156 ushgredgedgloop 29158 0uhgrsubgr 29206 uhgrsubgrself 29207 subgruhgrfun 29209 subgruhgredgd 29211 subumgredg2 29212 subupgr 29214 uhgrspansubgrlem 29217 uhgrspansubgr 29218 uhgrspan1 29230 upgrreslem 29231 umgrreslem 29232 upgrres 29233 umgrres 29234 vtxduhgr0e 29406 vtxduhgrun 29411 vtxduhgrfiun 29412 finsumvtxdg2ssteplem1 29473 upgrewlkle2 29534 upgredginwlk 29564 wlkiswwlks1 29797 wlkiswwlksupgr2 29807 umgrwwlks2on 29887 vdn0conngrumgrv2 30125 eulerpathpr 30169 eulercrct 30171 lfuhgr 35105 loop1cycl 35124 umgr2cycllem 35127 isubgrvtxuhgr 47864 isubgredg 47866 isubgrsubgr 47869 isubgr0uhgr 47873 uhgrimedgi 47890 isuspgrim0lem 47893 isuspgrim0 47894 upgrimwlklem2 47898 upgrimwlklem3 47899 upgrimtrlslem1 47904 clnbgrgrimlem 47933 clnbgrgrim 47934 grimedg 47935 |
| Copyright terms: Public domain | W3C validator |