| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
| Ref | Expression |
|---|---|
| uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uhgrf 29041 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 4 | 3 | ffund 6655 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ∅c0 4283 𝒫 cpw 4550 {csn 4576 dom cdm 5616 Fun wfun 6475 ‘cfv 6481 Vtxcvtx 28975 iEdgciedg 28976 UHGraphcuhgr 29035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-uhgr 29037 |
| This theorem is referenced by: lpvtx 29047 upgrle2 29084 uhgredgiedgb 29105 uhgriedg0edg0 29106 uhgrvtxedgiedgb 29115 edglnl 29122 numedglnl 29123 uhgr2edg 29187 ushgredgedg 29208 ushgredgedgloop 29210 0uhgrsubgr 29258 uhgrsubgrself 29259 subgruhgrfun 29261 subgruhgredgd 29263 subumgredg2 29264 subupgr 29266 uhgrspansubgrlem 29269 uhgrspansubgr 29270 uhgrspan1 29282 upgrreslem 29283 umgrreslem 29284 upgrres 29285 umgrres 29286 vtxduhgr0e 29458 vtxduhgrun 29463 vtxduhgrfiun 29464 finsumvtxdg2ssteplem1 29525 upgrewlkle2 29586 upgredginwlk 29615 wlkiswwlks1 29846 wlkiswwlksupgr2 29856 umgrwwlks2on 29936 vdn0conngrumgrv2 30174 eulerpathpr 30218 eulercrct 30220 lfuhgr 35160 loop1cycl 35179 umgr2cycllem 35182 isubgrvtxuhgr 47901 isubgredg 47903 isubgrsubgr 47906 isubgr0uhgr 47910 uhgrimedgi 47927 isuspgrim0lem 47930 isuspgrim0 47931 upgrimwlklem2 47935 upgrimwlklem3 47936 upgrimtrlslem1 47941 clnbgrgrimlem 47970 clnbgrgrim 47971 grimedg 47972 |
| Copyright terms: Public domain | W3C validator |