| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
| Ref | Expression |
|---|---|
| uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uhgrf 29025 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 4 | 3 | ffund 6660 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∅c0 4286 𝒫 cpw 4553 {csn 4579 dom cdm 5623 Fun wfun 6480 ‘cfv 6486 Vtxcvtx 28959 iEdgciedg 28960 UHGraphcuhgr 29019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-uhgr 29021 |
| This theorem is referenced by: lpvtx 29031 upgrle2 29068 uhgredgiedgb 29089 uhgriedg0edg0 29090 uhgrvtxedgiedgb 29099 edglnl 29106 numedglnl 29107 uhgr2edg 29171 ushgredgedg 29192 ushgredgedgloop 29194 0uhgrsubgr 29242 uhgrsubgrself 29243 subgruhgrfun 29245 subgruhgredgd 29247 subumgredg2 29248 subupgr 29250 uhgrspansubgrlem 29253 uhgrspansubgr 29254 uhgrspan1 29266 upgrreslem 29267 umgrreslem 29268 upgrres 29269 umgrres 29270 vtxduhgr0e 29442 vtxduhgrun 29447 vtxduhgrfiun 29448 finsumvtxdg2ssteplem1 29509 upgrewlkle2 29570 upgredginwlk 29599 wlkiswwlks1 29830 wlkiswwlksupgr2 29840 umgrwwlks2on 29920 vdn0conngrumgrv2 30158 eulerpathpr 30202 eulercrct 30204 lfuhgr 35093 loop1cycl 35112 umgr2cycllem 35115 isubgrvtxuhgr 47852 isubgredg 47854 isubgrsubgr 47857 isubgr0uhgr 47861 uhgrimedgi 47878 isuspgrim0lem 47881 isuspgrim0 47882 upgrimwlklem2 47886 upgrimwlklem3 47887 upgrimtrlslem1 47892 clnbgrgrimlem 47921 clnbgrgrim 47922 grimedg 47923 |
| Copyright terms: Public domain | W3C validator |