| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
| Ref | Expression |
|---|---|
| uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uhgrf 28996 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 4 | 3 | ffund 6695 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∅c0 4299 𝒫 cpw 4566 {csn 4592 dom cdm 5641 Fun wfun 6508 ‘cfv 6514 Vtxcvtx 28930 iEdgciedg 28931 UHGraphcuhgr 28990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-uhgr 28992 |
| This theorem is referenced by: lpvtx 29002 upgrle2 29039 uhgredgiedgb 29060 uhgriedg0edg0 29061 uhgrvtxedgiedgb 29070 edglnl 29077 numedglnl 29078 uhgr2edg 29142 ushgredgedg 29163 ushgredgedgloop 29165 0uhgrsubgr 29213 uhgrsubgrself 29214 subgruhgrfun 29216 subgruhgredgd 29218 subumgredg2 29219 subupgr 29221 uhgrspansubgrlem 29224 uhgrspansubgr 29225 uhgrspan1 29237 upgrreslem 29238 umgrreslem 29239 upgrres 29240 umgrres 29241 vtxduhgr0e 29413 vtxduhgrun 29418 vtxduhgrfiun 29419 finsumvtxdg2ssteplem1 29480 upgrewlkle2 29541 upgredginwlk 29571 wlkiswwlks1 29804 wlkiswwlksupgr2 29814 umgrwwlks2on 29894 vdn0conngrumgrv2 30132 eulerpathpr 30176 eulercrct 30178 lfuhgr 35112 loop1cycl 35131 umgr2cycllem 35134 isubgrvtxuhgr 47868 isubgredg 47870 isubgrsubgr 47873 isubgr0uhgr 47877 uhgrimedgi 47894 isuspgrim0lem 47897 isuspgrim0 47898 upgrimwlklem2 47902 upgrimwlklem3 47903 upgrimtrlslem1 47908 clnbgrgrimlem 47937 clnbgrgrim 47938 grimedg 47939 |
| Copyright terms: Public domain | W3C validator |