![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2800 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 26296 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | ffund 6261 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ∖ cdif 3767 ∅c0 4116 𝒫 cpw 4350 {csn 4369 dom cdm 5313 Fun wfun 6096 ‘cfv 6102 Vtxcvtx 26230 iEdgciedg 26231 UHGraphcuhgr 26290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-nul 4984 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-fv 6110 df-uhgr 26292 |
This theorem is referenced by: lpvtx 26302 upgrle2 26339 uhgredgiedgb 26360 uhgriedg0edg0 26361 uhgrvtxedgiedgb 26370 uhgrvtxedgiedgbOLD 26371 edglnl 26378 numedglnl 26379 uhgr2edg 26440 ushgredgedg 26461 ushgredgedgloop 26463 ushgredgedgloopOLD 26464 0uhgrsubgr 26512 uhgrsubgrself 26513 subgruhgrfun 26515 subgruhgredgd 26517 subumgredg2 26518 subupgr 26520 uhgrspansubgrlem 26523 uhgrspansubgr 26524 uhgrspan1 26536 upgrreslem 26537 umgrreslem 26538 upgrres 26539 umgrres 26540 vtxduhgr0e 26727 vtxduhgrun 26732 vtxduhgrfiun 26733 finsumvtxdg2ssteplem1 26794 upgrewlkle2 26855 upgredginwlk 26884 wlkiswwlks1 27123 wlkiswwlksupgr2 27133 umgrwwlks2on 27246 vdn0conngrumgrv2 27539 eulerpathpr 27584 eulercrct 27586 |
Copyright terms: Public domain | W3C validator |