![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 29097 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | ffund 6751 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 {csn 4648 dom cdm 5700 Fun wfun 6567 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 UHGraphcuhgr 29091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-uhgr 29093 |
This theorem is referenced by: lpvtx 29103 upgrle2 29140 uhgredgiedgb 29161 uhgriedg0edg0 29162 uhgrvtxedgiedgb 29171 edglnl 29178 numedglnl 29179 uhgr2edg 29243 ushgredgedg 29264 ushgredgedgloop 29266 0uhgrsubgr 29314 uhgrsubgrself 29315 subgruhgrfun 29317 subgruhgredgd 29319 subumgredg2 29320 subupgr 29322 uhgrspansubgrlem 29325 uhgrspansubgr 29326 uhgrspan1 29338 upgrreslem 29339 umgrreslem 29340 upgrres 29341 umgrres 29342 vtxduhgr0e 29514 vtxduhgrun 29519 vtxduhgrfiun 29520 finsumvtxdg2ssteplem1 29581 upgrewlkle2 29642 upgredginwlk 29672 wlkiswwlks1 29900 wlkiswwlksupgr2 29910 umgrwwlks2on 29990 vdn0conngrumgrv2 30228 eulerpathpr 30272 eulercrct 30274 lfuhgr 35085 loop1cycl 35105 umgr2cycllem 35108 isubgrvtxuhgr 47736 isubgrsubgr 47739 isubgr0uhgr 47743 isuspgrim0lem 47755 isuspgrim0 47756 clnbgrgrimlem 47785 clnbgrgrim 47786 grimedg 47787 |
Copyright terms: Public domain | W3C validator |