| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
| Ref | Expression |
|---|---|
| uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uhgrf 29008 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 4 | 3 | ffund 6720 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∖ cdif 3928 ∅c0 4313 𝒫 cpw 4580 {csn 4606 dom cdm 5665 Fun wfun 6535 ‘cfv 6541 Vtxcvtx 28942 iEdgciedg 28943 UHGraphcuhgr 29002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-uhgr 29004 |
| This theorem is referenced by: lpvtx 29014 upgrle2 29051 uhgredgiedgb 29072 uhgriedg0edg0 29073 uhgrvtxedgiedgb 29082 edglnl 29089 numedglnl 29090 uhgr2edg 29154 ushgredgedg 29175 ushgredgedgloop 29177 0uhgrsubgr 29225 uhgrsubgrself 29226 subgruhgrfun 29228 subgruhgredgd 29230 subumgredg2 29231 subupgr 29233 uhgrspansubgrlem 29236 uhgrspansubgr 29237 uhgrspan1 29249 upgrreslem 29250 umgrreslem 29251 upgrres 29252 umgrres 29253 vtxduhgr0e 29425 vtxduhgrun 29430 vtxduhgrfiun 29431 finsumvtxdg2ssteplem1 29492 upgrewlkle2 29553 upgredginwlk 29583 wlkiswwlks1 29816 wlkiswwlksupgr2 29826 umgrwwlks2on 29906 vdn0conngrumgrv2 30144 eulerpathpr 30188 eulercrct 30190 lfuhgr 35098 loop1cycl 35117 umgr2cycllem 35120 isubgrvtxuhgr 47823 isubgredg 47825 isubgrsubgr 47828 isubgr0uhgr 47832 isuspgrim0lem 47844 isuspgrim0 47845 clnbgrgrimlem 47874 clnbgrgrim 47875 grimedg 47876 |
| Copyright terms: Public domain | W3C validator |