![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 28322 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | ffund 6722 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∖ cdif 3946 ∅c0 4323 𝒫 cpw 4603 {csn 4629 dom cdm 5677 Fun wfun 6538 ‘cfv 6544 Vtxcvtx 28256 iEdgciedg 28257 UHGraphcuhgr 28316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-uhgr 28318 |
This theorem is referenced by: lpvtx 28328 upgrle2 28365 uhgredgiedgb 28386 uhgriedg0edg0 28387 uhgrvtxedgiedgb 28396 edglnl 28403 numedglnl 28404 uhgr2edg 28465 ushgredgedg 28486 ushgredgedgloop 28488 0uhgrsubgr 28536 uhgrsubgrself 28537 subgruhgrfun 28539 subgruhgredgd 28541 subumgredg2 28542 subupgr 28544 uhgrspansubgrlem 28547 uhgrspansubgr 28548 uhgrspan1 28560 upgrreslem 28561 umgrreslem 28562 upgrres 28563 umgrres 28564 vtxduhgr0e 28735 vtxduhgrun 28740 vtxduhgrfiun 28741 finsumvtxdg2ssteplem1 28802 upgrewlkle2 28863 upgredginwlk 28893 wlkiswwlks1 29121 wlkiswwlksupgr2 29131 umgrwwlks2on 29211 vdn0conngrumgrv2 29449 eulerpathpr 29493 eulercrct 29495 lfuhgr 34108 loop1cycl 34128 umgr2cycllem 34131 |
Copyright terms: Public domain | W3C validator |