Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 27413 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | ffund 6600 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 ∅c0 4261 𝒫 cpw 4538 {csn 4566 dom cdm 5588 Fun wfun 6424 ‘cfv 6430 Vtxcvtx 27347 iEdgciedg 27348 UHGraphcuhgr 27407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-uhgr 27409 |
This theorem is referenced by: lpvtx 27419 upgrle2 27456 uhgredgiedgb 27477 uhgriedg0edg0 27478 uhgrvtxedgiedgb 27487 edglnl 27494 numedglnl 27495 uhgr2edg 27556 ushgredgedg 27577 ushgredgedgloop 27579 0uhgrsubgr 27627 uhgrsubgrself 27628 subgruhgrfun 27630 subgruhgredgd 27632 subumgredg2 27633 subupgr 27635 uhgrspansubgrlem 27638 uhgrspansubgr 27639 uhgrspan1 27651 upgrreslem 27652 umgrreslem 27653 upgrres 27654 umgrres 27655 vtxduhgr0e 27826 vtxduhgrun 27831 vtxduhgrfiun 27832 finsumvtxdg2ssteplem1 27893 upgrewlkle2 27954 upgredginwlk 27983 wlkiswwlks1 28211 wlkiswwlksupgr2 28221 umgrwwlks2on 28301 vdn0conngrumgrv2 28539 eulerpathpr 28583 eulercrct 28585 lfuhgr 33058 loop1cycl 33078 umgr2cycllem 33081 |
Copyright terms: Public domain | W3C validator |