![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 28589 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | ffund 6720 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∖ cdif 3944 ∅c0 4321 𝒫 cpw 4601 {csn 4627 dom cdm 5675 Fun wfun 6536 ‘cfv 6542 Vtxcvtx 28523 iEdgciedg 28524 UHGraphcuhgr 28583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-uhgr 28585 |
This theorem is referenced by: lpvtx 28595 upgrle2 28632 uhgredgiedgb 28653 uhgriedg0edg0 28654 uhgrvtxedgiedgb 28663 edglnl 28670 numedglnl 28671 uhgr2edg 28732 ushgredgedg 28753 ushgredgedgloop 28755 0uhgrsubgr 28803 uhgrsubgrself 28804 subgruhgrfun 28806 subgruhgredgd 28808 subumgredg2 28809 subupgr 28811 uhgrspansubgrlem 28814 uhgrspansubgr 28815 uhgrspan1 28827 upgrreslem 28828 umgrreslem 28829 upgrres 28830 umgrres 28831 vtxduhgr0e 29002 vtxduhgrun 29007 vtxduhgrfiun 29008 finsumvtxdg2ssteplem1 29069 upgrewlkle2 29130 upgredginwlk 29160 wlkiswwlks1 29388 wlkiswwlksupgr2 29398 umgrwwlks2on 29478 vdn0conngrumgrv2 29716 eulerpathpr 29760 eulercrct 29762 lfuhgr 34406 loop1cycl 34426 umgr2cycllem 34429 |
Copyright terms: Public domain | W3C validator |