Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 27007 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | ffund 6508 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ∖ cdif 3840 ∅c0 4211 𝒫 cpw 4488 {csn 4516 dom cdm 5525 Fun wfun 6333 ‘cfv 6339 Vtxcvtx 26941 iEdgciedg 26942 UHGraphcuhgr 27001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-nul 5174 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-uhgr 27003 |
This theorem is referenced by: lpvtx 27013 upgrle2 27050 uhgredgiedgb 27071 uhgriedg0edg0 27072 uhgrvtxedgiedgb 27081 edglnl 27088 numedglnl 27089 uhgr2edg 27150 ushgredgedg 27171 ushgredgedgloop 27173 0uhgrsubgr 27221 uhgrsubgrself 27222 subgruhgrfun 27224 subgruhgredgd 27226 subumgredg2 27227 subupgr 27229 uhgrspansubgrlem 27232 uhgrspansubgr 27233 uhgrspan1 27245 upgrreslem 27246 umgrreslem 27247 upgrres 27248 umgrres 27249 vtxduhgr0e 27420 vtxduhgrun 27425 vtxduhgrfiun 27426 finsumvtxdg2ssteplem1 27487 upgrewlkle2 27548 upgredginwlk 27577 wlkiswwlks1 27805 wlkiswwlksupgr2 27815 umgrwwlks2on 27895 vdn0conngrumgrv2 28133 eulerpathpr 28177 eulercrct 28179 lfuhgr 32650 loop1cycl 32670 umgr2cycllem 32673 |
Copyright terms: Public domain | W3C validator |