![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 28888 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | ffund 6726 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ∅c0 4323 𝒫 cpw 4603 {csn 4629 dom cdm 5678 Fun wfun 6542 ‘cfv 6548 Vtxcvtx 28822 iEdgciedg 28823 UHGraphcuhgr 28882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-uhgr 28884 |
This theorem is referenced by: lpvtx 28894 upgrle2 28931 uhgredgiedgb 28952 uhgriedg0edg0 28953 uhgrvtxedgiedgb 28962 edglnl 28969 numedglnl 28970 uhgr2edg 29034 ushgredgedg 29055 ushgredgedgloop 29057 0uhgrsubgr 29105 uhgrsubgrself 29106 subgruhgrfun 29108 subgruhgredgd 29110 subumgredg2 29111 subupgr 29113 uhgrspansubgrlem 29116 uhgrspansubgr 29117 uhgrspan1 29129 upgrreslem 29130 umgrreslem 29131 upgrres 29132 umgrres 29133 vtxduhgr0e 29305 vtxduhgrun 29310 vtxduhgrfiun 29311 finsumvtxdg2ssteplem1 29372 upgrewlkle2 29433 upgredginwlk 29463 wlkiswwlks1 29691 wlkiswwlksupgr2 29701 umgrwwlks2on 29781 vdn0conngrumgrv2 30019 eulerpathpr 30063 eulercrct 30065 lfuhgr 34727 loop1cycl 34747 umgr2cycllem 34750 isuspgrim0lem 47169 isuspgrim0 47170 |
Copyright terms: Public domain | W3C validator |