| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
| Ref | Expression |
|---|---|
| uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uhgrf 29042 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 4 | 3 | ffund 6660 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∅c0 4282 𝒫 cpw 4549 {csn 4575 dom cdm 5619 Fun wfun 6480 ‘cfv 6486 Vtxcvtx 28976 iEdgciedg 28977 UHGraphcuhgr 29036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-uhgr 29038 |
| This theorem is referenced by: lpvtx 29048 upgrle2 29085 uhgredgiedgb 29106 uhgriedg0edg0 29107 uhgrvtxedgiedgb 29116 edglnl 29123 numedglnl 29124 uhgr2edg 29188 ushgredgedg 29209 ushgredgedgloop 29211 0uhgrsubgr 29259 uhgrsubgrself 29260 subgruhgrfun 29262 subgruhgredgd 29264 subumgredg2 29265 subupgr 29267 uhgrspansubgrlem 29270 uhgrspansubgr 29271 uhgrspan1 29283 upgrreslem 29284 umgrreslem 29285 upgrres 29286 umgrres 29287 vtxduhgr0e 29459 vtxduhgrun 29464 vtxduhgrfiun 29465 finsumvtxdg2ssteplem1 29526 upgrewlkle2 29587 upgredginwlk 29616 wlkiswwlks1 29847 wlkiswwlksupgr2 29857 usgrwwlks2on 29938 umgrwwlks2on 29939 vdn0conngrumgrv2 30178 eulerpathpr 30222 eulercrct 30224 lfuhgr 35183 loop1cycl 35202 umgr2cycllem 35205 isubgrvtxuhgr 47989 isubgredg 47991 isubgrsubgr 47994 isubgr0uhgr 47998 uhgrimedgi 48015 isuspgrim0lem 48018 isuspgrim0 48019 upgrimwlklem2 48023 upgrimwlklem3 48024 upgrimtrlslem1 48029 clnbgrgrimlem 48058 clnbgrgrim 48059 grimedg 48060 |
| Copyright terms: Public domain | W3C validator |