| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version | ||
| Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
| Ref | Expression |
|---|---|
| uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | uhgrf 29041 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 4 | 3 | ffund 6710 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∅c0 4308 𝒫 cpw 4575 {csn 4601 dom cdm 5654 Fun wfun 6525 ‘cfv 6531 Vtxcvtx 28975 iEdgciedg 28976 UHGraphcuhgr 29035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-uhgr 29037 |
| This theorem is referenced by: lpvtx 29047 upgrle2 29084 uhgredgiedgb 29105 uhgriedg0edg0 29106 uhgrvtxedgiedgb 29115 edglnl 29122 numedglnl 29123 uhgr2edg 29187 ushgredgedg 29208 ushgredgedgloop 29210 0uhgrsubgr 29258 uhgrsubgrself 29259 subgruhgrfun 29261 subgruhgredgd 29263 subumgredg2 29264 subupgr 29266 uhgrspansubgrlem 29269 uhgrspansubgr 29270 uhgrspan1 29282 upgrreslem 29283 umgrreslem 29284 upgrres 29285 umgrres 29286 vtxduhgr0e 29458 vtxduhgrun 29463 vtxduhgrfiun 29464 finsumvtxdg2ssteplem1 29525 upgrewlkle2 29586 upgredginwlk 29616 wlkiswwlks1 29849 wlkiswwlksupgr2 29859 umgrwwlks2on 29939 vdn0conngrumgrv2 30177 eulerpathpr 30221 eulercrct 30223 lfuhgr 35140 loop1cycl 35159 umgr2cycllem 35162 isubgrvtxuhgr 47877 isubgredg 47879 isubgrsubgr 47882 isubgr0uhgr 47886 uhgrimedgi 47903 isuspgrim0lem 47906 isuspgrim0 47907 upgrimwlklem2 47911 upgrimwlklem3 47912 upgrimtrlslem1 47917 clnbgrgrimlem 47946 clnbgrgrim 47947 grimedg 47948 |
| Copyright terms: Public domain | W3C validator |