![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 29093 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | ffund 6740 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∖ cdif 3959 ∅c0 4338 𝒫 cpw 4604 {csn 4630 dom cdm 5688 Fun wfun 6556 ‘cfv 6562 Vtxcvtx 29027 iEdgciedg 29028 UHGraphcuhgr 29087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-nul 5311 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-uhgr 29089 |
This theorem is referenced by: lpvtx 29099 upgrle2 29136 uhgredgiedgb 29157 uhgriedg0edg0 29158 uhgrvtxedgiedgb 29167 edglnl 29174 numedglnl 29175 uhgr2edg 29239 ushgredgedg 29260 ushgredgedgloop 29262 0uhgrsubgr 29310 uhgrsubgrself 29311 subgruhgrfun 29313 subgruhgredgd 29315 subumgredg2 29316 subupgr 29318 uhgrspansubgrlem 29321 uhgrspansubgr 29322 uhgrspan1 29334 upgrreslem 29335 umgrreslem 29336 upgrres 29337 umgrres 29338 vtxduhgr0e 29510 vtxduhgrun 29515 vtxduhgrfiun 29516 finsumvtxdg2ssteplem1 29577 upgrewlkle2 29638 upgredginwlk 29668 wlkiswwlks1 29896 wlkiswwlksupgr2 29906 umgrwwlks2on 29986 vdn0conngrumgrv2 30224 eulerpathpr 30268 eulercrct 30270 lfuhgr 35101 loop1cycl 35121 umgr2cycllem 35124 isubgrvtxuhgr 47787 isubgredg 47789 isubgrsubgr 47792 isubgr0uhgr 47796 isuspgrim0lem 47808 isuspgrim0 47809 clnbgrgrimlem 47838 clnbgrgrim 47839 grimedg 47840 |
Copyright terms: Public domain | W3C validator |