| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfis2fgOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of wfis2fg 6350 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 11-Feb-2011.) |
| Ref | Expression |
|---|---|
| wfis2fgOLD.1 | ⊢ Ⅎ𝑦𝜓 |
| wfis2fgOLD.2 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
| wfis2fgOLD.3 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| wfis2fgOLD | ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbsbc 3774 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) | |
| 2 | wfis2fgOLD.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜓 | |
| 3 | wfis2fgOLD.2 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | sbiev 2315 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ 𝜓) |
| 5 | 1, 4 | bitr3i 277 | . . . 4 ⊢ ([𝑧 / 𝑦]𝜑 ↔ 𝜓) |
| 6 | 5 | ralbii 3083 | . . 3 ⊢ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓) |
| 7 | wfis2fgOLD.3 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
| 8 | 6, 7 | biimtrid 242 | . 2 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) |
| 9 | 8 | wfisg 6347 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 [wsb 2065 ∈ wcel 2109 ∀wral 3052 [wsbc 3770 Se wse 5609 We wwe 5610 Predcpred 6294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |