MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3b Structured version   Visualization version   GIF version

Theorem yonedalem3b 18221
Description: Lemma for yoneda 18225. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem22.g (𝜑𝐺 ∈ (𝑂 Func 𝑆))
yonedalem22.p (𝜑𝑃𝐵)
yonedalem22.a (𝜑𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
yonedalem22.k (𝜑𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
yonedalem3.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
Assertion
Ref Expression
yonedalem3b (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)))
Distinct variable groups:   𝑓,𝑎,𝑥, 1   𝐴,𝑎   𝐶,𝑎,𝑓,𝑥   𝐸,𝑎,𝑓   𝐹,𝑎,𝑓,𝑥   𝐾,𝑎   𝐵,𝑎,𝑓,𝑥   𝐺,𝑎,𝑓,𝑥   𝑂,𝑎,𝑓,𝑥   𝑆,𝑎,𝑓,𝑥   𝑄,𝑎,𝑓,𝑥   𝑇,𝑓   𝑃,𝑎,𝑓,𝑥   𝜑,𝑎,𝑓,𝑥   𝑌,𝑎,𝑓,𝑥   𝑍,𝑎,𝑓,𝑥   𝑋,𝑎,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑓,𝑎)   𝐸(𝑥)   𝐻(𝑥,𝑓,𝑎)   𝐾(𝑥,𝑓)   𝑀(𝑥,𝑓,𝑎)   𝑉(𝑥,𝑓,𝑎)   𝑊(𝑥,𝑓,𝑎)

Proof of Theorem yonedalem3b
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . . . . . 8 (𝑏 = 𝑎 → (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏) = (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎))
21oveq1d 7384 . . . . . . 7 (𝑏 = 𝑎 → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)))
32fveq1d 6842 . . . . . 6 (𝑏 = 𝑎 → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃))
43fveq1d 6842 . . . . 5 (𝑏 = 𝑎 → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
54cbvmptv 5206 . . . 4 (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
6 yoneda.q . . . . . . . . 9 𝑄 = (𝑂 FuncCat 𝑆)
7 eqid 2729 . . . . . . . . 9 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
8 yoneda.o . . . . . . . . . 10 𝑂 = (oppCat‘𝐶)
9 yoneda.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
108, 9oppcbas 17660 . . . . . . . . 9 𝐵 = (Base‘𝑂)
11 eqid 2729 . . . . . . . . 9 (comp‘𝑆) = (comp‘𝑆)
12 eqid 2729 . . . . . . . . 9 (comp‘𝑄) = (comp‘𝑄)
13 eqid 2729 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
146, 7fuchom 17907 . . . . . . . . . . . 12 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
15 relfunc 17805 . . . . . . . . . . . . 13 Rel (𝐶 Func 𝑄)
16 yoneda.y . . . . . . . . . . . . . 14 𝑌 = (Yon‘𝐶)
17 yoneda.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
18 yoneda.s . . . . . . . . . . . . . 14 𝑆 = (SetCat‘𝑈)
19 yoneda.w . . . . . . . . . . . . . . 15 (𝜑𝑉𝑊)
20 yoneda.v . . . . . . . . . . . . . . . 16 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2120unssbd 4153 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
2219, 21ssexd 5274 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ V)
23 yoneda.u . . . . . . . . . . . . . 14 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2416, 17, 8, 18, 6, 22, 23yoncl 18204 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
25 1st2ndbr 8000 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
2615, 24, 25sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
27 yonedalem22.p . . . . . . . . . . . 12 (𝜑𝑃𝐵)
28 yonedalem21.x . . . . . . . . . . . 12 (𝜑𝑋𝐵)
299, 13, 14, 26, 27, 28funcf2 17811 . . . . . . . . . . 11 (𝜑 → (𝑃(2nd𝑌)𝑋):(𝑃(Hom ‘𝐶)𝑋)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
30 yonedalem22.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
3129, 30ffvelcdmd 7039 . . . . . . . . . 10 (𝜑 → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
3231adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
33 simpr 484 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
34 yonedalem22.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
3534adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
366, 7, 12, 33, 35fuccocl 17910 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐺))
3727adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑃𝐵)
386, 7, 10, 11, 12, 32, 36, 37fuccoval 17909 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃)(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
396, 7, 10, 11, 12, 33, 35, 37fuccoval 17909 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃) = ((𝐴𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑃), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(𝑎𝑃)))
4022adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑈 ∈ V)
41 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝑆) = (Base‘𝑆)
42 relfunc 17805 . . . . . . . . . . . . . . . 16 Rel (𝑂 Func 𝑆)
436fucbas 17906 . . . . . . . . . . . . . . . . . 18 (𝑂 Func 𝑆) = (Base‘𝑄)
449, 43, 26funcf1 17809 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
4544, 28ffvelcdmd 7039 . . . . . . . . . . . . . . . 16 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
46 1st2ndbr 8000 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
4742, 45, 46sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
4810, 41, 47funcf1 17809 . . . . . . . . . . . . . 14 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆))
4918, 22setcbas 18021 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝑆))
5049feq3d 6655 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘((1st𝑌)‘𝑋)):𝐵𝑈 ↔ (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆)))
5148, 50mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵𝑈)
5251, 27ffvelcdmd 7039 . . . . . . . . . . . 12 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∈ 𝑈)
5352adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∈ 𝑈)
54 yonedalem21.f . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
55 1st2ndbr 8000 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
5642, 54, 55sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
5710, 41, 56funcf1 17809 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝑆))
5849feq3d 6655 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹):𝐵𝑈 ↔ (1st𝐹):𝐵⟶(Base‘𝑆)))
5957, 58mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (1st𝐹):𝐵𝑈)
6059, 27ffvelcdmd 7039 . . . . . . . . . . . 12 (𝜑 → ((1st𝐹)‘𝑃) ∈ 𝑈)
6160adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑃) ∈ 𝑈)
62 yonedalem22.g . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (𝑂 Func 𝑆))
63 1st2ndbr 8000 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ 𝐺 ∈ (𝑂 Func 𝑆)) → (1st𝐺)(𝑂 Func 𝑆)(2nd𝐺))
6442, 62, 63sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝐺)(𝑂 Func 𝑆)(2nd𝐺))
6510, 41, 64funcf1 17809 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝑆))
6665, 27ffvelcdmd 7039 . . . . . . . . . . . . 13 (𝜑 → ((1st𝐺)‘𝑃) ∈ (Base‘𝑆))
6766, 49eleqtrrd 2831 . . . . . . . . . . . 12 (𝜑 → ((1st𝐺)‘𝑃) ∈ 𝑈)
6867adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐺)‘𝑃) ∈ 𝑈)
697, 33nat1st2nd 17897 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩(𝑂 Nat 𝑆)⟨(1st𝐹), (2nd𝐹)⟩))
70 eqid 2729 . . . . . . . . . . . . 13 (Hom ‘𝑆) = (Hom ‘𝑆)
717, 69, 10, 70, 37natcl 17899 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑃) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑃)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
7218, 40, 70, 53, 61elsetchom 18024 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑃)(Hom ‘𝑆)((1st𝐹)‘𝑃)) ↔ (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃)))
7371, 72mpbid 232 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃))
747, 34nat1st2nd 17897 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝑂 Nat 𝑆)⟨(1st𝐺), (2nd𝐺)⟩))
757, 74, 10, 70, 27natcl 17899 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑃) ∈ (((1st𝐹)‘𝑃)(Hom ‘𝑆)((1st𝐺)‘𝑃)))
7618, 22, 70, 60, 67elsetchom 18024 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝑃) ∈ (((1st𝐹)‘𝑃)(Hom ‘𝑆)((1st𝐺)‘𝑃)) ↔ (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃)))
7775, 76mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃))
7877adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃))
7918, 40, 11, 53, 61, 68, 73, 78setcco 18026 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑃), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(𝑎𝑃)) = ((𝐴𝑃) ∘ (𝑎𝑃)))
8039, 79eqtrd 2764 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃) = ((𝐴𝑃) ∘ (𝑎𝑃)))
8180oveq1d 7384 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃)(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
8244, 27ffvelcdmd 7039 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝑌)‘𝑃) ∈ (𝑂 Func 𝑆))
83 1st2ndbr 8000 . . . . . . . . . . . . . 14 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑃) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑃))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑃)))
8442, 82, 83sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (1st ‘((1st𝑌)‘𝑃))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑃)))
8510, 41, 84funcf1 17809 . . . . . . . . . . . 12 (𝜑 → (1st ‘((1st𝑌)‘𝑃)):𝐵⟶(Base‘𝑆))
8685, 27ffvelcdmd 7039 . . . . . . . . . . 11 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ (Base‘𝑆))
8786, 49eleqtrrd 2831 . . . . . . . . . 10 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ 𝑈)
8887adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ 𝑈)
897, 31nat1st2nd 17897 . . . . . . . . . . . 12 (𝜑 → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (⟨(1st ‘((1st𝑌)‘𝑃)), (2nd ‘((1st𝑌)‘𝑃))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩))
907, 89, 10, 70, 27natcl 17899 . . . . . . . . . . 11 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃) ∈ (((1st ‘((1st𝑌)‘𝑃))‘𝑃)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
9118, 22, 70, 87, 52elsetchom 18024 . . . . . . . . . . 11 (𝜑 → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃) ∈ (((1st ‘((1st𝑌)‘𝑃))‘𝑃)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)) ↔ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
9290, 91mpbid 232 . . . . . . . . . 10 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
9392adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
94 fco 6694 . . . . . . . . . 10 (((𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃) ∧ (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃)) → ((𝐴𝑃) ∘ (𝑎𝑃)):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐺)‘𝑃))
9578, 73, 94syl2anc 584 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃) ∘ (𝑎𝑃)):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐺)‘𝑃))
9618, 40, 11, 88, 53, 68, 93, 95setcco 18026 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
9738, 81, 963eqtrd 2768 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
9897fveq1d 6842 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)))
99 yoneda.1 . . . . . . . . . 10 1 = (Id‘𝐶)
1009, 13, 99, 17, 27catidcl 17624 . . . . . . . . 9 (𝜑 → ( 1𝑃) ∈ (𝑃(Hom ‘𝐶)𝑃))
10116, 9, 17, 27, 13, 27yon11 18206 . . . . . . . . 9 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) = (𝑃(Hom ‘𝐶)𝑃))
102100, 101eleqtrrd 2831 . . . . . . . 8 (𝜑 → ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃))
103102adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃))
104 fvco3 6942 . . . . . . 7 (((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∧ ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃)) → ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))))
10593, 103, 104syl2anc 584 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))))
10693, 103ffvelcdmd 7039 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑃))
107 fvco3 6942 . . . . . . . 8 (((𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃) ∧ ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑃)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))))
10873, 106, 107syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))))
10917adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐶 ∈ Cat)
11028adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑋𝐵)
111 eqid 2729 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
11230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
113100adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑃) ∈ (𝑃(Hom ‘𝐶)𝑃))
11416, 9, 109, 37, 13, 110, 111, 37, 112, 113yon2 18208 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) = (𝐾(⟨𝑃, 𝑃⟩(comp‘𝐶)𝑋)( 1𝑃)))
1159, 13, 99, 109, 37, 111, 110, 112catrid 17626 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐾(⟨𝑃, 𝑃⟩(comp‘𝐶)𝑋)( 1𝑃)) = 𝐾)
116114, 115eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) = 𝐾)
117116fveq2d 6844 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝑎𝑃)‘𝐾))
118 eqid 2729 . . . . . . . . . . . . . . 15 (Hom ‘𝑂) = (Hom ‘𝑂)
11910, 118, 70, 47, 28, 27funcf2 17811 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃):(𝑋(Hom ‘𝑂)𝑃)⟶(((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
12013, 8oppchom 17657 . . . . . . . . . . . . . . 15 (𝑋(Hom ‘𝑂)𝑃) = (𝑃(Hom ‘𝐶)𝑋)
12130, 120eleqtrrdi 2839 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (𝑋(Hom ‘𝑂)𝑃))
122119, 121ffvelcdmd 7039 . . . . . . . . . . . . 13 (𝜑 → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
12351, 28ffvelcdmd 7039 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
12418, 22, 70, 123, 52elsetchom 18024 . . . . . . . . . . . . 13 (𝜑 → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)) ↔ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
125122, 124mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
126125adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
1279, 13, 99, 17, 28catidcl 17624 . . . . . . . . . . . . 13 (𝜑 → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
12816, 9, 17, 28, 13, 28yon11 18206 . . . . . . . . . . . . 13 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) = (𝑋(Hom ‘𝐶)𝑋))
129127, 128eleqtrrd 2831 . . . . . . . . . . . 12 (𝜑 → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
130129adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
131 fvco3 6942 . . . . . . . . . . 11 ((((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∧ ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))))
132126, 130, 131syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))))
133121adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐾 ∈ (𝑋(Hom ‘𝑂)𝑃))
1347, 69, 10, 118, 11, 110, 37, 133nati 17901 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐹)‘𝑃))((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st𝐹)‘𝑋)⟩(comp‘𝑆)((1st𝐹)‘𝑃))(𝑎𝑋)))
135123adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
13618, 40, 11, 135, 53, 61, 126, 73setcco 18026 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐹)‘𝑃))((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = ((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)))
13759, 28ffvelcdmd 7039 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹)‘𝑋) ∈ 𝑈)
138137adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
1397, 69, 10, 70, 110natcl 17899 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)))
14018, 40, 70, 135, 138elsetchom 18024 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)) ↔ (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋)))
141139, 140mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋))
14210, 118, 70, 56, 28, 27funcf2 17811 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(2nd𝐹)𝑃):(𝑋(Hom ‘𝑂)𝑃)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
143142, 121ffvelcdmd 7039 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋(2nd𝐹)𝑃)‘𝐾) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
14418, 22, 70, 137, 60elsetchom 18024 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑋(2nd𝐹)𝑃)‘𝐾) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)) ↔ ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃)))
145143, 144mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃))
146145adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃))
14718, 40, 11, 135, 138, 61, 141, 146setcco 18026 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd𝐹)𝑃)‘𝐾)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st𝐹)‘𝑋)⟩(comp‘𝑆)((1st𝐹)‘𝑃))(𝑎𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋)))
148134, 136, 1473eqtr3d 2772 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = (((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋)))
149148fveq1d 6842 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)))
150127adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
15116, 9, 109, 110, 13, 110, 111, 37, 112, 150yon12 18207 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋)) = (( 1𝑋)(⟨𝑃, 𝑋⟩(comp‘𝐶)𝑋)𝐾))
1529, 13, 99, 109, 37, 111, 110, 112catlid 17625 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (( 1𝑋)(⟨𝑃, 𝑋⟩(comp‘𝐶)𝑋)𝐾) = 𝐾)
153151, 152eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋)) = 𝐾)
154153fveq2d 6844 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))) = ((𝑎𝑃)‘𝐾))
155132, 149, 1543eqtr3d 2772 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = ((𝑎𝑃)‘𝐾))
156 fvco3 6942 . . . . . . . . . 10 (((𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋) ∧ ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
157141, 130, 156syl2anc 584 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
158117, 155, 1573eqtr2d 2770 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
159158fveq2d 6844 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
160108, 159eqtrd 2764 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
16198, 105, 1603eqtrd 2768 . . . . 5 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
162161mpteq2dva 5195 . . . 4 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
1635, 162eqtrid 2776 . . 3 (𝜑 → (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
164 eqid 2729 . . . . . . . . . . 11 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
165164, 43, 10xpcbas 18120 . . . . . . . . . 10 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
166 eqid 2729 . . . . . . . . . 10 (Hom ‘(𝑄 ×c 𝑂)) = (Hom ‘(𝑄 ×c 𝑂))
167 eqid 2729 . . . . . . . . . 10 (Hom ‘𝑇) = (Hom ‘𝑇)
168 relfunc 17805 . . . . . . . . . . 11 Rel ((𝑄 ×c 𝑂) Func 𝑇)
169 yoneda.t . . . . . . . . . . . . 13 𝑇 = (SetCat‘𝑉)
170 yoneda.h . . . . . . . . . . . . 13 𝐻 = (HomF𝑄)
171 yoneda.r . . . . . . . . . . . . 13 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
172 yoneda.e . . . . . . . . . . . . 13 𝐸 = (𝑂 evalF 𝑆)
173 yoneda.z . . . . . . . . . . . . 13 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17416, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20yonedalem1 18214 . . . . . . . . . . . 12 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
175174simpld 494 . . . . . . . . . . 11 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
176 1st2ndbr 8000 . . . . . . . . . . 11 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
177168, 175, 176sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
17854, 28opelxpd 5670 . . . . . . . . . 10 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
17962, 27opelxpd 5670 . . . . . . . . . 10 (𝜑 → ⟨𝐺, 𝑃⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
180165, 166, 167, 177, 178, 179funcf2 17811 . . . . . . . . 9 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)))
181164, 43, 10, 14, 118, 54, 28, 62, 27, 166xpchom2 18128 . . . . . . . . . . 11 (𝜑 → (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑋(Hom ‘𝑂)𝑃)))
182120xpeq2i 5658 . . . . . . . . . . 11 ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑋(Hom ‘𝑂)𝑃)) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))
183181, 182eqtrdi 2780 . . . . . . . . . 10 (𝜑 → (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋)))
184 df-ov 7372 . . . . . . . . . . . . 13 (𝐹(1st𝑍)𝑋) = ((1st𝑍)‘⟨𝐹, 𝑋⟩)
185 df-ov 7372 . . . . . . . . . . . . 13 (𝐺(1st𝑍)𝑃) = ((1st𝑍)‘⟨𝐺, 𝑃⟩)
186184, 185oveq12i 7381 . . . . . . . . . . . 12 ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)) = (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩))
187186eqcomi 2738 . . . . . . . . . . 11 (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃))
188187a1i 11 . . . . . . . . . 10 (𝜑 → (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
189183, 188feq23d 6665 . . . . . . . . 9 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) ↔ (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃))))
190180, 189mpbid 232 . . . . . . . 8 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
191190, 34, 30fovcdmd 7541 . . . . . . 7 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
192 eqid 2729 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
193165, 192, 177funcf1 17809 . . . . . . . . . 10 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
194193, 54, 28fovcdmd 7541 . . . . . . . . 9 (𝜑 → (𝐹(1st𝑍)𝑋) ∈ (Base‘𝑇))
195169, 19setcbas 18021 . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑇))
196194, 195eleqtrrd 2831 . . . . . . . 8 (𝜑 → (𝐹(1st𝑍)𝑋) ∈ 𝑉)
197193, 62, 27fovcdmd 7541 . . . . . . . . 9 (𝜑 → (𝐺(1st𝑍)𝑃) ∈ (Base‘𝑇))
198197, 195eleqtrrd 2831 . . . . . . . 8 (𝜑 → (𝐺(1st𝑍)𝑃) ∈ 𝑉)
199169, 19, 167, 196, 198elsetchom 18024 . . . . . . 7 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)) ↔ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃)))
200191, 199mpbid 232 . . . . . 6 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃))
20116, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28, 62, 27, 34, 30yonedalem22 18220 . . . . . . . 8 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴))
2028oppccat 17664 . . . . . . . . . . 11 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
20317, 202syl 17 . . . . . . . . . 10 (𝜑𝑂 ∈ Cat)
20418setccat 18028 . . . . . . . . . . 11 (𝑈 ∈ V → 𝑆 ∈ Cat)
20522, 204syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Cat)
2066, 203, 205fuccat 17916 . . . . . . . . 9 (𝜑𝑄 ∈ Cat)
207170, 206, 43, 14, 45, 54, 82, 62, 12, 31, 34hof2val 18198 . . . . . . . 8 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))))
208201, 207eqtrd 2764 . . . . . . 7 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))))
20916, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28yonedalem21 18215 . . . . . . 7 (𝜑 → (𝐹(1st𝑍)𝑋) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
21016, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 62, 27yonedalem21 18215 . . . . . . 7 (𝜑 → (𝐺(1st𝑍)𝑃) = (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
211208, 209, 210feq123d 6659 . . . . . 6 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃) ↔ (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺)))
212200, 211mpbid 232 . . . . 5 (𝜑 → (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
213 eqid 2729 . . . . . 6 (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)))
214213fmpt 7064 . . . . 5 (∀𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↔ (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
215212, 214sylibr 234 . . . 4 (𝜑 → ∀𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
216 yonedalem3.m . . . . . 6 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
21716, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 62, 27, 216yonedalem3a 18216 . . . . 5 (𝜑 → ((𝐺𝑀𝑃) = (𝑎 ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↦ ((𝑎𝑃)‘( 1𝑃))) ∧ (𝐺𝑀𝑃):(𝐺(1st𝑍)𝑃)⟶(𝐺(1st𝐸)𝑃)))
218217simpld 494 . . . 4 (𝜑 → (𝐺𝑀𝑃) = (𝑎 ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↦ ((𝑎𝑃)‘( 1𝑃))))
219 fveq1 6839 . . . . 5 (𝑎 = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) → (𝑎𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃))
220219fveq1d 6842 . . . 4 (𝑎 = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) → ((𝑎𝑃)‘( 1𝑃)) = ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
221215, 208, 218, 220fmptcof 7084 . . 3 (𝜑 → ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))))
222 eqid 2729 . . . . . . 7 (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩) = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)
223172, 203, 205, 10, 118, 11, 7, 54, 62, 28, 27, 222, 34, 121evlf2val 18161 . . . . . 6 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) = ((𝐴𝑃)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))((𝑋(2nd𝐹)𝑃)‘𝐾)))
22418, 22, 11, 137, 60, 67, 145, 77setcco 18026 . . . . . 6 (𝜑 → ((𝐴𝑃)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))((𝑋(2nd𝐹)𝑃)‘𝐾)) = ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)))
225223, 224eqtrd 2764 . . . . 5 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) = ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)))
226225coeq1d 5815 . . . 4 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)) = (((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) ∘ (𝐹𝑀𝑋)))
22716, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28, 216yonedalem3a 18216 . . . . . . . 8 (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋)))
228227simprd 495 . . . . . . 7 (𝜑 → (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋))
229227simpld 494 . . . . . . . 8 (𝜑 → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
230172, 203, 205, 10, 54, 28evlf1 18162 . . . . . . . 8 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
231229, 209, 230feq123d 6659 . . . . . . 7 (𝜑 → ((𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋)))
232228, 231mpbid 232 . . . . . 6 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
233 eqid 2729 . . . . . . 7 (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋)))
234233fmpt 7064 . . . . . 6 (∀𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
235232, 234sylibr 234 . . . . 5 (𝜑 → ∀𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋))
236 fcompt 7087 . . . . . 6 (((𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃) ∧ ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃)) → ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) = (𝑦 ∈ ((1st𝐹)‘𝑋) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦))))
23777, 145, 236syl2anc 584 . . . . 5 (𝜑 → ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) = (𝑦 ∈ ((1st𝐹)‘𝑋) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦))))
238 2fveq3 6845 . . . . 5 (𝑦 = ((𝑎𝑋)‘( 1𝑋)) → ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦)) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
239235, 229, 237, 238fmptcof 7084 . . . 4 (𝜑 → (((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) ∘ (𝐹𝑀𝑋)) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
240226, 239eqtrd 2764 . . 3 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
241163, 221, 2403eqtr4d 2774 . 2 (𝜑 → ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)))
242 eqid 2729 . . 3 (comp‘𝑇) = (comp‘𝑇)
243174simprd 495 . . . . . . 7 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
244 1st2ndbr 8000 . . . . . . 7 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
245168, 243, 244sylancr 587 . . . . . 6 (𝜑 → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
246165, 192, 245funcf1 17809 . . . . 5 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
247246, 62, 27fovcdmd 7541 . . . 4 (𝜑 → (𝐺(1st𝐸)𝑃) ∈ (Base‘𝑇))
248247, 195eleqtrrd 2831 . . 3 (𝜑 → (𝐺(1st𝐸)𝑃) ∈ 𝑉)
249217simprd 495 . . 3 (𝜑 → (𝐺𝑀𝑃):(𝐺(1st𝑍)𝑃)⟶(𝐺(1st𝐸)𝑃))
250169, 19, 242, 196, 198, 248, 200, 249setcco 18026 . 2 (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)))
251246, 54, 28fovcdmd 7541 . . . 4 (𝜑 → (𝐹(1st𝐸)𝑋) ∈ (Base‘𝑇))
252251, 195eleqtrrd 2831 . . 3 (𝜑 → (𝐹(1st𝐸)𝑋) ∈ 𝑉)
253165, 166, 167, 245, 178, 179funcf2 17811 . . . . . 6 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)))
254 df-ov 7372 . . . . . . . . . 10 (𝐹(1st𝐸)𝑋) = ((1st𝐸)‘⟨𝐹, 𝑋⟩)
255 df-ov 7372 . . . . . . . . . 10 (𝐺(1st𝐸)𝑃) = ((1st𝐸)‘⟨𝐺, 𝑃⟩)
256254, 255oveq12i 7381 . . . . . . . . 9 ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)) = (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩))
257256eqcomi 2738 . . . . . . . 8 (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃))
258257a1i 11 . . . . . . 7 (𝜑 → (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
259183, 258feq23d 6665 . . . . . 6 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) ↔ (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃))))
260253, 259mpbid 232 . . . . 5 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
261260, 34, 30fovcdmd 7541 . . . 4 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
262169, 19, 167, 252, 248elsetchom 18024 . . . 4 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)) ↔ (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝐸)𝑋)⟶(𝐺(1st𝐸)𝑃)))
263261, 262mpbid 232 . . 3 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝐸)𝑋)⟶(𝐺(1st𝐸)𝑃))
264169, 19, 242, 196, 252, 248, 228, 263setcco 18026 . 2 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)))
265241, 250, 2643eqtr4d 2774 1 (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cun 3909  wss 3911  cop 4591   class class class wbr 5102  cmpt 5183   × cxp 5629  ran crn 5632  ccom 5635  Rel wrel 5636  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  tpos ctpos 8181  Basecbs 17156  Hom chom 17208  compcco 17209  Catccat 17606  Idccid 17607  Homf chomf 17608  oppCatcoppc 17653   Func cfunc 17797  func ccofu 17799   Nat cnat 17887   FuncCat cfuc 17888  SetCatcsetc 18018   ×c cxpc 18110   1stF c1stf 18111   2ndF c2ndf 18112   ⟨,⟩F cprf 18113   evalF cevlf 18151  HomFchof 18190  Yoncyon 18191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-fz 13447  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-hom 17221  df-cco 17222  df-cat 17610  df-cid 17611  df-homf 17612  df-comf 17613  df-oppc 17654  df-ssc 17753  df-resc 17754  df-subc 17755  df-func 17801  df-cofu 17803  df-nat 17889  df-fuc 17890  df-setc 18019  df-xpc 18114  df-1stf 18115  df-2ndf 18116  df-prf 18117  df-evlf 18155  df-curf 18156  df-hof 18192  df-yon 18193
This theorem is referenced by:  yonedalem3  18222
  Copyright terms: Public domain W3C validator