MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3b Structured version   Visualization version   GIF version

Theorem yonedalem3b 18185
Description: Lemma for yoneda 18189. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem22.g (𝜑𝐺 ∈ (𝑂 Func 𝑆))
yonedalem22.p (𝜑𝑃𝐵)
yonedalem22.a (𝜑𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
yonedalem22.k (𝜑𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
yonedalem3.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
Assertion
Ref Expression
yonedalem3b (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)))
Distinct variable groups:   𝑓,𝑎,𝑥, 1   𝐴,𝑎   𝐶,𝑎,𝑓,𝑥   𝐸,𝑎,𝑓   𝐹,𝑎,𝑓,𝑥   𝐾,𝑎   𝐵,𝑎,𝑓,𝑥   𝐺,𝑎,𝑓,𝑥   𝑂,𝑎,𝑓,𝑥   𝑆,𝑎,𝑓,𝑥   𝑄,𝑎,𝑓,𝑥   𝑇,𝑓   𝑃,𝑎,𝑓,𝑥   𝜑,𝑎,𝑓,𝑥   𝑌,𝑎,𝑓,𝑥   𝑍,𝑎,𝑓,𝑥   𝑋,𝑎,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑓,𝑎)   𝐸(𝑥)   𝐻(𝑥,𝑓,𝑎)   𝐾(𝑥,𝑓)   𝑀(𝑥,𝑓,𝑎)   𝑉(𝑥,𝑓,𝑎)   𝑊(𝑥,𝑓,𝑎)

Proof of Theorem yonedalem3b
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . . . . 8 (𝑏 = 𝑎 → (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏) = (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎))
21oveq1d 7361 . . . . . . 7 (𝑏 = 𝑎 → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)))
32fveq1d 6824 . . . . . 6 (𝑏 = 𝑎 → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃))
43fveq1d 6824 . . . . 5 (𝑏 = 𝑎 → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
54cbvmptv 5193 . . . 4 (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
6 yoneda.q . . . . . . . . 9 𝑄 = (𝑂 FuncCat 𝑆)
7 eqid 2731 . . . . . . . . 9 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
8 yoneda.o . . . . . . . . . 10 𝑂 = (oppCat‘𝐶)
9 yoneda.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
108, 9oppcbas 17624 . . . . . . . . 9 𝐵 = (Base‘𝑂)
11 eqid 2731 . . . . . . . . 9 (comp‘𝑆) = (comp‘𝑆)
12 eqid 2731 . . . . . . . . 9 (comp‘𝑄) = (comp‘𝑄)
13 eqid 2731 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
146, 7fuchom 17871 . . . . . . . . . . . 12 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
15 relfunc 17769 . . . . . . . . . . . . 13 Rel (𝐶 Func 𝑄)
16 yoneda.y . . . . . . . . . . . . . 14 𝑌 = (Yon‘𝐶)
17 yoneda.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
18 yoneda.s . . . . . . . . . . . . . 14 𝑆 = (SetCat‘𝑈)
19 yoneda.w . . . . . . . . . . . . . . 15 (𝜑𝑉𝑊)
20 yoneda.v . . . . . . . . . . . . . . . 16 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2120unssbd 4141 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
2219, 21ssexd 5260 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ V)
23 yoneda.u . . . . . . . . . . . . . 14 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2416, 17, 8, 18, 6, 22, 23yoncl 18168 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
25 1st2ndbr 7974 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
2615, 24, 25sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
27 yonedalem22.p . . . . . . . . . . . 12 (𝜑𝑃𝐵)
28 yonedalem21.x . . . . . . . . . . . 12 (𝜑𝑋𝐵)
299, 13, 14, 26, 27, 28funcf2 17775 . . . . . . . . . . 11 (𝜑 → (𝑃(2nd𝑌)𝑋):(𝑃(Hom ‘𝐶)𝑋)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
30 yonedalem22.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
3129, 30ffvelcdmd 7018 . . . . . . . . . 10 (𝜑 → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
3231adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
33 simpr 484 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
34 yonedalem22.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
3534adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
366, 7, 12, 33, 35fuccocl 17874 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐺))
3727adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑃𝐵)
386, 7, 10, 11, 12, 32, 36, 37fuccoval 17873 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃)(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
396, 7, 10, 11, 12, 33, 35, 37fuccoval 17873 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃) = ((𝐴𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑃), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(𝑎𝑃)))
4022adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑈 ∈ V)
41 eqid 2731 . . . . . . . . . . . . . . 15 (Base‘𝑆) = (Base‘𝑆)
42 relfunc 17769 . . . . . . . . . . . . . . . 16 Rel (𝑂 Func 𝑆)
436fucbas 17870 . . . . . . . . . . . . . . . . . 18 (𝑂 Func 𝑆) = (Base‘𝑄)
449, 43, 26funcf1 17773 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
4544, 28ffvelcdmd 7018 . . . . . . . . . . . . . . . 16 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
46 1st2ndbr 7974 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
4742, 45, 46sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
4810, 41, 47funcf1 17773 . . . . . . . . . . . . . 14 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆))
4918, 22setcbas 17985 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝑆))
5049feq3d 6636 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘((1st𝑌)‘𝑋)):𝐵𝑈 ↔ (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆)))
5148, 50mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵𝑈)
5251, 27ffvelcdmd 7018 . . . . . . . . . . . 12 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∈ 𝑈)
5352adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∈ 𝑈)
54 yonedalem21.f . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
55 1st2ndbr 7974 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
5642, 54, 55sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
5710, 41, 56funcf1 17773 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝑆))
5849feq3d 6636 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹):𝐵𝑈 ↔ (1st𝐹):𝐵⟶(Base‘𝑆)))
5957, 58mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (1st𝐹):𝐵𝑈)
6059, 27ffvelcdmd 7018 . . . . . . . . . . . 12 (𝜑 → ((1st𝐹)‘𝑃) ∈ 𝑈)
6160adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑃) ∈ 𝑈)
62 yonedalem22.g . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (𝑂 Func 𝑆))
63 1st2ndbr 7974 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ 𝐺 ∈ (𝑂 Func 𝑆)) → (1st𝐺)(𝑂 Func 𝑆)(2nd𝐺))
6442, 62, 63sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝐺)(𝑂 Func 𝑆)(2nd𝐺))
6510, 41, 64funcf1 17773 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝑆))
6665, 27ffvelcdmd 7018 . . . . . . . . . . . . 13 (𝜑 → ((1st𝐺)‘𝑃) ∈ (Base‘𝑆))
6766, 49eleqtrrd 2834 . . . . . . . . . . . 12 (𝜑 → ((1st𝐺)‘𝑃) ∈ 𝑈)
6867adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐺)‘𝑃) ∈ 𝑈)
697, 33nat1st2nd 17861 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩(𝑂 Nat 𝑆)⟨(1st𝐹), (2nd𝐹)⟩))
70 eqid 2731 . . . . . . . . . . . . 13 (Hom ‘𝑆) = (Hom ‘𝑆)
717, 69, 10, 70, 37natcl 17863 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑃) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑃)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
7218, 40, 70, 53, 61elsetchom 17988 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑃)(Hom ‘𝑆)((1st𝐹)‘𝑃)) ↔ (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃)))
7371, 72mpbid 232 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃))
747, 34nat1st2nd 17861 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝑂 Nat 𝑆)⟨(1st𝐺), (2nd𝐺)⟩))
757, 74, 10, 70, 27natcl 17863 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑃) ∈ (((1st𝐹)‘𝑃)(Hom ‘𝑆)((1st𝐺)‘𝑃)))
7618, 22, 70, 60, 67elsetchom 17988 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝑃) ∈ (((1st𝐹)‘𝑃)(Hom ‘𝑆)((1st𝐺)‘𝑃)) ↔ (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃)))
7775, 76mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃))
7877adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃))
7918, 40, 11, 53, 61, 68, 73, 78setcco 17990 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑃), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(𝑎𝑃)) = ((𝐴𝑃) ∘ (𝑎𝑃)))
8039, 79eqtrd 2766 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃) = ((𝐴𝑃) ∘ (𝑎𝑃)))
8180oveq1d 7361 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃)(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
8244, 27ffvelcdmd 7018 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝑌)‘𝑃) ∈ (𝑂 Func 𝑆))
83 1st2ndbr 7974 . . . . . . . . . . . . . 14 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑃) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑃))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑃)))
8442, 82, 83sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (1st ‘((1st𝑌)‘𝑃))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑃)))
8510, 41, 84funcf1 17773 . . . . . . . . . . . 12 (𝜑 → (1st ‘((1st𝑌)‘𝑃)):𝐵⟶(Base‘𝑆))
8685, 27ffvelcdmd 7018 . . . . . . . . . . 11 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ (Base‘𝑆))
8786, 49eleqtrrd 2834 . . . . . . . . . 10 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ 𝑈)
8887adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ 𝑈)
897, 31nat1st2nd 17861 . . . . . . . . . . . 12 (𝜑 → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (⟨(1st ‘((1st𝑌)‘𝑃)), (2nd ‘((1st𝑌)‘𝑃))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩))
907, 89, 10, 70, 27natcl 17863 . . . . . . . . . . 11 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃) ∈ (((1st ‘((1st𝑌)‘𝑃))‘𝑃)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
9118, 22, 70, 87, 52elsetchom 17988 . . . . . . . . . . 11 (𝜑 → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃) ∈ (((1st ‘((1st𝑌)‘𝑃))‘𝑃)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)) ↔ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
9290, 91mpbid 232 . . . . . . . . . 10 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
9392adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
94 fco 6675 . . . . . . . . . 10 (((𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃) ∧ (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃)) → ((𝐴𝑃) ∘ (𝑎𝑃)):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐺)‘𝑃))
9578, 73, 94syl2anc 584 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃) ∘ (𝑎𝑃)):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐺)‘𝑃))
9618, 40, 11, 88, 53, 68, 93, 95setcco 17990 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
9738, 81, 963eqtrd 2770 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
9897fveq1d 6824 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)))
99 yoneda.1 . . . . . . . . . 10 1 = (Id‘𝐶)
1009, 13, 99, 17, 27catidcl 17588 . . . . . . . . 9 (𝜑 → ( 1𝑃) ∈ (𝑃(Hom ‘𝐶)𝑃))
10116, 9, 17, 27, 13, 27yon11 18170 . . . . . . . . 9 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) = (𝑃(Hom ‘𝐶)𝑃))
102100, 101eleqtrrd 2834 . . . . . . . 8 (𝜑 → ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃))
103102adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃))
104 fvco3 6921 . . . . . . 7 (((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∧ ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃)) → ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))))
10593, 103, 104syl2anc 584 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))))
10693, 103ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑃))
107 fvco3 6921 . . . . . . . 8 (((𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃) ∧ ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑃)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))))
10873, 106, 107syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))))
10917adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐶 ∈ Cat)
11028adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑋𝐵)
111 eqid 2731 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
11230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
113100adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑃) ∈ (𝑃(Hom ‘𝐶)𝑃))
11416, 9, 109, 37, 13, 110, 111, 37, 112, 113yon2 18172 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) = (𝐾(⟨𝑃, 𝑃⟩(comp‘𝐶)𝑋)( 1𝑃)))
1159, 13, 99, 109, 37, 111, 110, 112catrid 17590 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐾(⟨𝑃, 𝑃⟩(comp‘𝐶)𝑋)( 1𝑃)) = 𝐾)
116114, 115eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) = 𝐾)
117116fveq2d 6826 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝑎𝑃)‘𝐾))
118 eqid 2731 . . . . . . . . . . . . . . 15 (Hom ‘𝑂) = (Hom ‘𝑂)
11910, 118, 70, 47, 28, 27funcf2 17775 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃):(𝑋(Hom ‘𝑂)𝑃)⟶(((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
12013, 8oppchom 17621 . . . . . . . . . . . . . . 15 (𝑋(Hom ‘𝑂)𝑃) = (𝑃(Hom ‘𝐶)𝑋)
12130, 120eleqtrrdi 2842 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (𝑋(Hom ‘𝑂)𝑃))
122119, 121ffvelcdmd 7018 . . . . . . . . . . . . 13 (𝜑 → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
12351, 28ffvelcdmd 7018 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
12418, 22, 70, 123, 52elsetchom 17988 . . . . . . . . . . . . 13 (𝜑 → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)) ↔ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
125122, 124mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
126125adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
1279, 13, 99, 17, 28catidcl 17588 . . . . . . . . . . . . 13 (𝜑 → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
12816, 9, 17, 28, 13, 28yon11 18170 . . . . . . . . . . . . 13 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) = (𝑋(Hom ‘𝐶)𝑋))
129127, 128eleqtrrd 2834 . . . . . . . . . . . 12 (𝜑 → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
130129adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
131 fvco3 6921 . . . . . . . . . . 11 ((((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∧ ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))))
132126, 130, 131syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))))
133121adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐾 ∈ (𝑋(Hom ‘𝑂)𝑃))
1347, 69, 10, 118, 11, 110, 37, 133nati 17865 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐹)‘𝑃))((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st𝐹)‘𝑋)⟩(comp‘𝑆)((1st𝐹)‘𝑃))(𝑎𝑋)))
135123adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
13618, 40, 11, 135, 53, 61, 126, 73setcco 17990 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐹)‘𝑃))((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = ((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)))
13759, 28ffvelcdmd 7018 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹)‘𝑋) ∈ 𝑈)
138137adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
1397, 69, 10, 70, 110natcl 17863 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)))
14018, 40, 70, 135, 138elsetchom 17988 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)) ↔ (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋)))
141139, 140mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋))
14210, 118, 70, 56, 28, 27funcf2 17775 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(2nd𝐹)𝑃):(𝑋(Hom ‘𝑂)𝑃)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
143142, 121ffvelcdmd 7018 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋(2nd𝐹)𝑃)‘𝐾) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
14418, 22, 70, 137, 60elsetchom 17988 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑋(2nd𝐹)𝑃)‘𝐾) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)) ↔ ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃)))
145143, 144mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃))
146145adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃))
14718, 40, 11, 135, 138, 61, 141, 146setcco 17990 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd𝐹)𝑃)‘𝐾)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st𝐹)‘𝑋)⟩(comp‘𝑆)((1st𝐹)‘𝑃))(𝑎𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋)))
148134, 136, 1473eqtr3d 2774 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = (((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋)))
149148fveq1d 6824 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)))
150127adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
15116, 9, 109, 110, 13, 110, 111, 37, 112, 150yon12 18171 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋)) = (( 1𝑋)(⟨𝑃, 𝑋⟩(comp‘𝐶)𝑋)𝐾))
1529, 13, 99, 109, 37, 111, 110, 112catlid 17589 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (( 1𝑋)(⟨𝑃, 𝑋⟩(comp‘𝐶)𝑋)𝐾) = 𝐾)
153151, 152eqtrd 2766 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋)) = 𝐾)
154153fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))) = ((𝑎𝑃)‘𝐾))
155132, 149, 1543eqtr3d 2774 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = ((𝑎𝑃)‘𝐾))
156 fvco3 6921 . . . . . . . . . 10 (((𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋) ∧ ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
157141, 130, 156syl2anc 584 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
158117, 155, 1573eqtr2d 2772 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
159158fveq2d 6826 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
160108, 159eqtrd 2766 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
16198, 105, 1603eqtrd 2770 . . . . 5 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
162161mpteq2dva 5182 . . . 4 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
1635, 162eqtrid 2778 . . 3 (𝜑 → (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
164 eqid 2731 . . . . . . . . . . 11 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
165164, 43, 10xpcbas 18084 . . . . . . . . . 10 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
166 eqid 2731 . . . . . . . . . 10 (Hom ‘(𝑄 ×c 𝑂)) = (Hom ‘(𝑄 ×c 𝑂))
167 eqid 2731 . . . . . . . . . 10 (Hom ‘𝑇) = (Hom ‘𝑇)
168 relfunc 17769 . . . . . . . . . . 11 Rel ((𝑄 ×c 𝑂) Func 𝑇)
169 yoneda.t . . . . . . . . . . . . 13 𝑇 = (SetCat‘𝑉)
170 yoneda.h . . . . . . . . . . . . 13 𝐻 = (HomF𝑄)
171 yoneda.r . . . . . . . . . . . . 13 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
172 yoneda.e . . . . . . . . . . . . 13 𝐸 = (𝑂 evalF 𝑆)
173 yoneda.z . . . . . . . . . . . . 13 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17416, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20yonedalem1 18178 . . . . . . . . . . . 12 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
175174simpld 494 . . . . . . . . . . 11 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
176 1st2ndbr 7974 . . . . . . . . . . 11 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
177168, 175, 176sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
17854, 28opelxpd 5653 . . . . . . . . . 10 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
17962, 27opelxpd 5653 . . . . . . . . . 10 (𝜑 → ⟨𝐺, 𝑃⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
180165, 166, 167, 177, 178, 179funcf2 17775 . . . . . . . . 9 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)))
181164, 43, 10, 14, 118, 54, 28, 62, 27, 166xpchom2 18092 . . . . . . . . . . 11 (𝜑 → (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑋(Hom ‘𝑂)𝑃)))
182120xpeq2i 5641 . . . . . . . . . . 11 ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑋(Hom ‘𝑂)𝑃)) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))
183181, 182eqtrdi 2782 . . . . . . . . . 10 (𝜑 → (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋)))
184 df-ov 7349 . . . . . . . . . . . . 13 (𝐹(1st𝑍)𝑋) = ((1st𝑍)‘⟨𝐹, 𝑋⟩)
185 df-ov 7349 . . . . . . . . . . . . 13 (𝐺(1st𝑍)𝑃) = ((1st𝑍)‘⟨𝐺, 𝑃⟩)
186184, 185oveq12i 7358 . . . . . . . . . . . 12 ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)) = (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩))
187186eqcomi 2740 . . . . . . . . . . 11 (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃))
188187a1i 11 . . . . . . . . . 10 (𝜑 → (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
189183, 188feq23d 6646 . . . . . . . . 9 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) ↔ (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃))))
190180, 189mpbid 232 . . . . . . . 8 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
191190, 34, 30fovcdmd 7518 . . . . . . 7 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
192 eqid 2731 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
193165, 192, 177funcf1 17773 . . . . . . . . . 10 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
194193, 54, 28fovcdmd 7518 . . . . . . . . 9 (𝜑 → (𝐹(1st𝑍)𝑋) ∈ (Base‘𝑇))
195169, 19setcbas 17985 . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑇))
196194, 195eleqtrrd 2834 . . . . . . . 8 (𝜑 → (𝐹(1st𝑍)𝑋) ∈ 𝑉)
197193, 62, 27fovcdmd 7518 . . . . . . . . 9 (𝜑 → (𝐺(1st𝑍)𝑃) ∈ (Base‘𝑇))
198197, 195eleqtrrd 2834 . . . . . . . 8 (𝜑 → (𝐺(1st𝑍)𝑃) ∈ 𝑉)
199169, 19, 167, 196, 198elsetchom 17988 . . . . . . 7 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)) ↔ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃)))
200191, 199mpbid 232 . . . . . 6 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃))
20116, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28, 62, 27, 34, 30yonedalem22 18184 . . . . . . . 8 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴))
2028oppccat 17628 . . . . . . . . . . 11 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
20317, 202syl 17 . . . . . . . . . 10 (𝜑𝑂 ∈ Cat)
20418setccat 17992 . . . . . . . . . . 11 (𝑈 ∈ V → 𝑆 ∈ Cat)
20522, 204syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Cat)
2066, 203, 205fuccat 17880 . . . . . . . . 9 (𝜑𝑄 ∈ Cat)
207170, 206, 43, 14, 45, 54, 82, 62, 12, 31, 34hof2val 18162 . . . . . . . 8 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))))
208201, 207eqtrd 2766 . . . . . . 7 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))))
20916, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28yonedalem21 18179 . . . . . . 7 (𝜑 → (𝐹(1st𝑍)𝑋) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
21016, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 62, 27yonedalem21 18179 . . . . . . 7 (𝜑 → (𝐺(1st𝑍)𝑃) = (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
211208, 209, 210feq123d 6640 . . . . . 6 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃) ↔ (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺)))
212200, 211mpbid 232 . . . . 5 (𝜑 → (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
213 eqid 2731 . . . . . 6 (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)))
214213fmpt 7043 . . . . 5 (∀𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↔ (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
215212, 214sylibr 234 . . . 4 (𝜑 → ∀𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
216 yonedalem3.m . . . . . 6 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
21716, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 62, 27, 216yonedalem3a 18180 . . . . 5 (𝜑 → ((𝐺𝑀𝑃) = (𝑎 ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↦ ((𝑎𝑃)‘( 1𝑃))) ∧ (𝐺𝑀𝑃):(𝐺(1st𝑍)𝑃)⟶(𝐺(1st𝐸)𝑃)))
218217simpld 494 . . . 4 (𝜑 → (𝐺𝑀𝑃) = (𝑎 ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↦ ((𝑎𝑃)‘( 1𝑃))))
219 fveq1 6821 . . . . 5 (𝑎 = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) → (𝑎𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃))
220219fveq1d 6824 . . . 4 (𝑎 = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) → ((𝑎𝑃)‘( 1𝑃)) = ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
221215, 208, 218, 220fmptcof 7063 . . 3 (𝜑 → ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))))
222 eqid 2731 . . . . . . 7 (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩) = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)
223172, 203, 205, 10, 118, 11, 7, 54, 62, 28, 27, 222, 34, 121evlf2val 18125 . . . . . 6 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) = ((𝐴𝑃)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))((𝑋(2nd𝐹)𝑃)‘𝐾)))
22418, 22, 11, 137, 60, 67, 145, 77setcco 17990 . . . . . 6 (𝜑 → ((𝐴𝑃)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))((𝑋(2nd𝐹)𝑃)‘𝐾)) = ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)))
225223, 224eqtrd 2766 . . . . 5 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) = ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)))
226225coeq1d 5800 . . . 4 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)) = (((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) ∘ (𝐹𝑀𝑋)))
22716, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28, 216yonedalem3a 18180 . . . . . . . 8 (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋)))
228227simprd 495 . . . . . . 7 (𝜑 → (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋))
229227simpld 494 . . . . . . . 8 (𝜑 → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
230172, 203, 205, 10, 54, 28evlf1 18126 . . . . . . . 8 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
231229, 209, 230feq123d 6640 . . . . . . 7 (𝜑 → ((𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋)))
232228, 231mpbid 232 . . . . . 6 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
233 eqid 2731 . . . . . . 7 (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋)))
234233fmpt 7043 . . . . . 6 (∀𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
235232, 234sylibr 234 . . . . 5 (𝜑 → ∀𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋))
236 fcompt 7066 . . . . . 6 (((𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃) ∧ ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃)) → ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) = (𝑦 ∈ ((1st𝐹)‘𝑋) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦))))
23777, 145, 236syl2anc 584 . . . . 5 (𝜑 → ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) = (𝑦 ∈ ((1st𝐹)‘𝑋) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦))))
238 2fveq3 6827 . . . . 5 (𝑦 = ((𝑎𝑋)‘( 1𝑋)) → ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦)) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
239235, 229, 237, 238fmptcof 7063 . . . 4 (𝜑 → (((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) ∘ (𝐹𝑀𝑋)) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
240226, 239eqtrd 2766 . . 3 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
241163, 221, 2403eqtr4d 2776 . 2 (𝜑 → ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)))
242 eqid 2731 . . 3 (comp‘𝑇) = (comp‘𝑇)
243174simprd 495 . . . . . . 7 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
244 1st2ndbr 7974 . . . . . . 7 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
245168, 243, 244sylancr 587 . . . . . 6 (𝜑 → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
246165, 192, 245funcf1 17773 . . . . 5 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
247246, 62, 27fovcdmd 7518 . . . 4 (𝜑 → (𝐺(1st𝐸)𝑃) ∈ (Base‘𝑇))
248247, 195eleqtrrd 2834 . . 3 (𝜑 → (𝐺(1st𝐸)𝑃) ∈ 𝑉)
249217simprd 495 . . 3 (𝜑 → (𝐺𝑀𝑃):(𝐺(1st𝑍)𝑃)⟶(𝐺(1st𝐸)𝑃))
250169, 19, 242, 196, 198, 248, 200, 249setcco 17990 . 2 (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)))
251246, 54, 28fovcdmd 7518 . . . 4 (𝜑 → (𝐹(1st𝐸)𝑋) ∈ (Base‘𝑇))
252251, 195eleqtrrd 2834 . . 3 (𝜑 → (𝐹(1st𝐸)𝑋) ∈ 𝑉)
253165, 166, 167, 245, 178, 179funcf2 17775 . . . . . 6 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)))
254 df-ov 7349 . . . . . . . . . 10 (𝐹(1st𝐸)𝑋) = ((1st𝐸)‘⟨𝐹, 𝑋⟩)
255 df-ov 7349 . . . . . . . . . 10 (𝐺(1st𝐸)𝑃) = ((1st𝐸)‘⟨𝐺, 𝑃⟩)
256254, 255oveq12i 7358 . . . . . . . . 9 ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)) = (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩))
257256eqcomi 2740 . . . . . . . 8 (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃))
258257a1i 11 . . . . . . 7 (𝜑 → (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
259183, 258feq23d 6646 . . . . . 6 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) ↔ (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃))))
260253, 259mpbid 232 . . . . 5 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
261260, 34, 30fovcdmd 7518 . . . 4 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
262169, 19, 167, 252, 248elsetchom 17988 . . . 4 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)) ↔ (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝐸)𝑋)⟶(𝐺(1st𝐸)𝑃)))
263261, 262mpbid 232 . . 3 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝐸)𝑋)⟶(𝐺(1st𝐸)𝑃))
264169, 19, 242, 196, 252, 248, 228, 263setcco 17990 . 2 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)))
265241, 250, 2643eqtr4d 2776 1 (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cun 3895  wss 3897  cop 4579   class class class wbr 5089  cmpt 5170   × cxp 5612  ran crn 5615  ccom 5618  Rel wrel 5619  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  tpos ctpos 8155  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  Homf chomf 17572  oppCatcoppc 17617   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   FuncCat cfuc 17852  SetCatcsetc 17982   ×c cxpc 18074   1stF c1stf 18075   2ndF c2ndf 18076   ⟨,⟩F cprf 18077   evalF cevlf 18115  HomFchof 18154  Yoncyon 18155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-homf 17576  df-comf 17577  df-oppc 17618  df-ssc 17717  df-resc 17718  df-subc 17719  df-func 17765  df-cofu 17767  df-nat 17853  df-fuc 17854  df-setc 17983  df-xpc 18078  df-1stf 18079  df-2ndf 18080  df-prf 18081  df-evlf 18119  df-curf 18120  df-hof 18156  df-yon 18157
This theorem is referenced by:  yonedalem3  18186
  Copyright terms: Public domain W3C validator