MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3b Structured version   Visualization version   GIF version

Theorem yonedalem3b 17913
Description: Lemma for yoneda 17917. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem22.g (𝜑𝐺 ∈ (𝑂 Func 𝑆))
yonedalem22.p (𝜑𝑃𝐵)
yonedalem22.a (𝜑𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
yonedalem22.k (𝜑𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
yonedalem3.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
Assertion
Ref Expression
yonedalem3b (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)))
Distinct variable groups:   𝑓,𝑎,𝑥, 1   𝐴,𝑎   𝐶,𝑎,𝑓,𝑥   𝐸,𝑎,𝑓   𝐹,𝑎,𝑓,𝑥   𝐾,𝑎   𝐵,𝑎,𝑓,𝑥   𝐺,𝑎,𝑓,𝑥   𝑂,𝑎,𝑓,𝑥   𝑆,𝑎,𝑓,𝑥   𝑄,𝑎,𝑓,𝑥   𝑇,𝑓   𝑃,𝑎,𝑓,𝑥   𝜑,𝑎,𝑓,𝑥   𝑌,𝑎,𝑓,𝑥   𝑍,𝑎,𝑓,𝑥   𝑋,𝑎,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑓,𝑎)   𝐸(𝑥)   𝐻(𝑥,𝑓,𝑎)   𝐾(𝑥,𝑓)   𝑀(𝑥,𝑓,𝑎)   𝑉(𝑥,𝑓,𝑎)   𝑊(𝑥,𝑓,𝑎)

Proof of Theorem yonedalem3b
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . . . . 8 (𝑏 = 𝑎 → (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏) = (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎))
21oveq1d 7270 . . . . . . 7 (𝑏 = 𝑎 → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)))
32fveq1d 6758 . . . . . 6 (𝑏 = 𝑎 → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃))
43fveq1d 6758 . . . . 5 (𝑏 = 𝑎 → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
54cbvmptv 5183 . . . 4 (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
6 yoneda.q . . . . . . . . 9 𝑄 = (𝑂 FuncCat 𝑆)
7 eqid 2738 . . . . . . . . 9 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
8 yoneda.o . . . . . . . . . 10 𝑂 = (oppCat‘𝐶)
9 yoneda.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
108, 9oppcbas 17345 . . . . . . . . 9 𝐵 = (Base‘𝑂)
11 eqid 2738 . . . . . . . . 9 (comp‘𝑆) = (comp‘𝑆)
12 eqid 2738 . . . . . . . . 9 (comp‘𝑄) = (comp‘𝑄)
13 eqid 2738 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
146, 7fuchom 17594 . . . . . . . . . . . 12 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
15 relfunc 17493 . . . . . . . . . . . . 13 Rel (𝐶 Func 𝑄)
16 yoneda.y . . . . . . . . . . . . . 14 𝑌 = (Yon‘𝐶)
17 yoneda.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
18 yoneda.s . . . . . . . . . . . . . 14 𝑆 = (SetCat‘𝑈)
19 yoneda.w . . . . . . . . . . . . . . 15 (𝜑𝑉𝑊)
20 yoneda.v . . . . . . . . . . . . . . . 16 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2120unssbd 4118 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
2219, 21ssexd 5243 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ V)
23 yoneda.u . . . . . . . . . . . . . 14 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2416, 17, 8, 18, 6, 22, 23yoncl 17896 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
25 1st2ndbr 7856 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
2615, 24, 25sylancr 586 . . . . . . . . . . . 12 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
27 yonedalem22.p . . . . . . . . . . . 12 (𝜑𝑃𝐵)
28 yonedalem21.x . . . . . . . . . . . 12 (𝜑𝑋𝐵)
299, 13, 14, 26, 27, 28funcf2 17499 . . . . . . . . . . 11 (𝜑 → (𝑃(2nd𝑌)𝑋):(𝑃(Hom ‘𝐶)𝑋)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
30 yonedalem22.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
3129, 30ffvelrnd 6944 . . . . . . . . . 10 (𝜑 → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
3231adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
33 simpr 484 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
34 yonedalem22.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
3534adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
366, 7, 12, 33, 35fuccocl 17598 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐺))
3727adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑃𝐵)
386, 7, 10, 11, 12, 32, 36, 37fuccoval 17597 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃)(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
396, 7, 10, 11, 12, 33, 35, 37fuccoval 17597 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃) = ((𝐴𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑃), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(𝑎𝑃)))
4022adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑈 ∈ V)
41 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘𝑆) = (Base‘𝑆)
42 relfunc 17493 . . . . . . . . . . . . . . . 16 Rel (𝑂 Func 𝑆)
436fucbas 17593 . . . . . . . . . . . . . . . . . 18 (𝑂 Func 𝑆) = (Base‘𝑄)
449, 43, 26funcf1 17497 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
4544, 28ffvelrnd 6944 . . . . . . . . . . . . . . . 16 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
46 1st2ndbr 7856 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
4742, 45, 46sylancr 586 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
4810, 41, 47funcf1 17497 . . . . . . . . . . . . . 14 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆))
4918, 22setcbas 17709 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝑆))
5049feq3d 6571 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘((1st𝑌)‘𝑋)):𝐵𝑈 ↔ (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆)))
5148, 50mpbird 256 . . . . . . . . . . . . 13 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵𝑈)
5251, 27ffvelrnd 6944 . . . . . . . . . . . 12 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∈ 𝑈)
5352adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∈ 𝑈)
54 yonedalem21.f . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
55 1st2ndbr 7856 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
5642, 54, 55sylancr 586 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
5710, 41, 56funcf1 17497 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝑆))
5849feq3d 6571 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹):𝐵𝑈 ↔ (1st𝐹):𝐵⟶(Base‘𝑆)))
5957, 58mpbird 256 . . . . . . . . . . . . 13 (𝜑 → (1st𝐹):𝐵𝑈)
6059, 27ffvelrnd 6944 . . . . . . . . . . . 12 (𝜑 → ((1st𝐹)‘𝑃) ∈ 𝑈)
6160adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑃) ∈ 𝑈)
62 yonedalem22.g . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (𝑂 Func 𝑆))
63 1st2ndbr 7856 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ 𝐺 ∈ (𝑂 Func 𝑆)) → (1st𝐺)(𝑂 Func 𝑆)(2nd𝐺))
6442, 62, 63sylancr 586 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝐺)(𝑂 Func 𝑆)(2nd𝐺))
6510, 41, 64funcf1 17497 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝑆))
6665, 27ffvelrnd 6944 . . . . . . . . . . . . 13 (𝜑 → ((1st𝐺)‘𝑃) ∈ (Base‘𝑆))
6766, 49eleqtrrd 2842 . . . . . . . . . . . 12 (𝜑 → ((1st𝐺)‘𝑃) ∈ 𝑈)
6867adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐺)‘𝑃) ∈ 𝑈)
697, 33nat1st2nd 17583 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩(𝑂 Nat 𝑆)⟨(1st𝐹), (2nd𝐹)⟩))
70 eqid 2738 . . . . . . . . . . . . 13 (Hom ‘𝑆) = (Hom ‘𝑆)
717, 69, 10, 70, 37natcl 17585 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑃) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑃)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
7218, 40, 70, 53, 61elsetchom 17712 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑃)(Hom ‘𝑆)((1st𝐹)‘𝑃)) ↔ (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃)))
7371, 72mpbid 231 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃))
747, 34nat1st2nd 17583 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝑂 Nat 𝑆)⟨(1st𝐺), (2nd𝐺)⟩))
757, 74, 10, 70, 27natcl 17585 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑃) ∈ (((1st𝐹)‘𝑃)(Hom ‘𝑆)((1st𝐺)‘𝑃)))
7618, 22, 70, 60, 67elsetchom 17712 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝑃) ∈ (((1st𝐹)‘𝑃)(Hom ‘𝑆)((1st𝐺)‘𝑃)) ↔ (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃)))
7775, 76mpbid 231 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃))
7877adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃))
7918, 40, 11, 53, 61, 68, 73, 78setcco 17714 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑃), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(𝑎𝑃)) = ((𝐴𝑃) ∘ (𝑎𝑃)))
8039, 79eqtrd 2778 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃) = ((𝐴𝑃) ∘ (𝑎𝑃)))
8180oveq1d 7270 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃)(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
8244, 27ffvelrnd 6944 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝑌)‘𝑃) ∈ (𝑂 Func 𝑆))
83 1st2ndbr 7856 . . . . . . . . . . . . . 14 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑃) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑃))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑃)))
8442, 82, 83sylancr 586 . . . . . . . . . . . . 13 (𝜑 → (1st ‘((1st𝑌)‘𝑃))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑃)))
8510, 41, 84funcf1 17497 . . . . . . . . . . . 12 (𝜑 → (1st ‘((1st𝑌)‘𝑃)):𝐵⟶(Base‘𝑆))
8685, 27ffvelrnd 6944 . . . . . . . . . . 11 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ (Base‘𝑆))
8786, 49eleqtrrd 2842 . . . . . . . . . 10 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ 𝑈)
8887adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ 𝑈)
897, 31nat1st2nd 17583 . . . . . . . . . . . 12 (𝜑 → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (⟨(1st ‘((1st𝑌)‘𝑃)), (2nd ‘((1st𝑌)‘𝑃))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩))
907, 89, 10, 70, 27natcl 17585 . . . . . . . . . . 11 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃) ∈ (((1st ‘((1st𝑌)‘𝑃))‘𝑃)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
9118, 22, 70, 87, 52elsetchom 17712 . . . . . . . . . . 11 (𝜑 → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃) ∈ (((1st ‘((1st𝑌)‘𝑃))‘𝑃)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)) ↔ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
9290, 91mpbid 231 . . . . . . . . . 10 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
9392adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
94 fco 6608 . . . . . . . . . 10 (((𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃) ∧ (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃)) → ((𝐴𝑃) ∘ (𝑎𝑃)):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐺)‘𝑃))
9578, 73, 94syl2anc 583 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃) ∘ (𝑎𝑃)):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐺)‘𝑃))
9618, 40, 11, 88, 53, 68, 93, 95setcco 17714 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
9738, 81, 963eqtrd 2782 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
9897fveq1d 6758 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)))
99 yoneda.1 . . . . . . . . . 10 1 = (Id‘𝐶)
1009, 13, 99, 17, 27catidcl 17308 . . . . . . . . 9 (𝜑 → ( 1𝑃) ∈ (𝑃(Hom ‘𝐶)𝑃))
10116, 9, 17, 27, 13, 27yon11 17898 . . . . . . . . 9 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) = (𝑃(Hom ‘𝐶)𝑃))
102100, 101eleqtrrd 2842 . . . . . . . 8 (𝜑 → ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃))
103102adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃))
104 fvco3 6849 . . . . . . 7 (((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∧ ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃)) → ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))))
10593, 103, 104syl2anc 583 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))))
10693, 103ffvelrnd 6944 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑃))
107 fvco3 6849 . . . . . . . 8 (((𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃) ∧ ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑃)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))))
10873, 106, 107syl2anc 583 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))))
10917adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐶 ∈ Cat)
11028adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑋𝐵)
111 eqid 2738 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
11230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
113100adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑃) ∈ (𝑃(Hom ‘𝐶)𝑃))
11416, 9, 109, 37, 13, 110, 111, 37, 112, 113yon2 17900 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) = (𝐾(⟨𝑃, 𝑃⟩(comp‘𝐶)𝑋)( 1𝑃)))
1159, 13, 99, 109, 37, 111, 110, 112catrid 17310 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐾(⟨𝑃, 𝑃⟩(comp‘𝐶)𝑋)( 1𝑃)) = 𝐾)
116114, 115eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) = 𝐾)
117116fveq2d 6760 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝑎𝑃)‘𝐾))
118 eqid 2738 . . . . . . . . . . . . . . 15 (Hom ‘𝑂) = (Hom ‘𝑂)
11910, 118, 70, 47, 28, 27funcf2 17499 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃):(𝑋(Hom ‘𝑂)𝑃)⟶(((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
12013, 8oppchom 17342 . . . . . . . . . . . . . . 15 (𝑋(Hom ‘𝑂)𝑃) = (𝑃(Hom ‘𝐶)𝑋)
12130, 120eleqtrrdi 2850 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (𝑋(Hom ‘𝑂)𝑃))
122119, 121ffvelrnd 6944 . . . . . . . . . . . . 13 (𝜑 → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
12351, 28ffvelrnd 6944 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
12418, 22, 70, 123, 52elsetchom 17712 . . . . . . . . . . . . 13 (𝜑 → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)) ↔ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
125122, 124mpbid 231 . . . . . . . . . . . 12 (𝜑 → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
126125adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
1279, 13, 99, 17, 28catidcl 17308 . . . . . . . . . . . . 13 (𝜑 → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
12816, 9, 17, 28, 13, 28yon11 17898 . . . . . . . . . . . . 13 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) = (𝑋(Hom ‘𝐶)𝑋))
129127, 128eleqtrrd 2842 . . . . . . . . . . . 12 (𝜑 → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
130129adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
131 fvco3 6849 . . . . . . . . . . 11 ((((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∧ ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))))
132126, 130, 131syl2anc 583 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))))
133121adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐾 ∈ (𝑋(Hom ‘𝑂)𝑃))
1347, 69, 10, 118, 11, 110, 37, 133nati 17587 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐹)‘𝑃))((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st𝐹)‘𝑋)⟩(comp‘𝑆)((1st𝐹)‘𝑃))(𝑎𝑋)))
135123adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
13618, 40, 11, 135, 53, 61, 126, 73setcco 17714 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐹)‘𝑃))((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = ((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)))
13759, 28ffvelrnd 6944 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹)‘𝑋) ∈ 𝑈)
138137adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
1397, 69, 10, 70, 110natcl 17585 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)))
14018, 40, 70, 135, 138elsetchom 17712 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)) ↔ (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋)))
141139, 140mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋))
14210, 118, 70, 56, 28, 27funcf2 17499 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(2nd𝐹)𝑃):(𝑋(Hom ‘𝑂)𝑃)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
143142, 121ffvelrnd 6944 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋(2nd𝐹)𝑃)‘𝐾) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
14418, 22, 70, 137, 60elsetchom 17712 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑋(2nd𝐹)𝑃)‘𝐾) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)) ↔ ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃)))
145143, 144mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃))
146145adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃))
14718, 40, 11, 135, 138, 61, 141, 146setcco 17714 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd𝐹)𝑃)‘𝐾)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st𝐹)‘𝑋)⟩(comp‘𝑆)((1st𝐹)‘𝑃))(𝑎𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋)))
148134, 136, 1473eqtr3d 2786 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = (((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋)))
149148fveq1d 6758 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)))
150127adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
15116, 9, 109, 110, 13, 110, 111, 37, 112, 150yon12 17899 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋)) = (( 1𝑋)(⟨𝑃, 𝑋⟩(comp‘𝐶)𝑋)𝐾))
1529, 13, 99, 109, 37, 111, 110, 112catlid 17309 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (( 1𝑋)(⟨𝑃, 𝑋⟩(comp‘𝐶)𝑋)𝐾) = 𝐾)
153151, 152eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋)) = 𝐾)
154153fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))) = ((𝑎𝑃)‘𝐾))
155132, 149, 1543eqtr3d 2786 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = ((𝑎𝑃)‘𝐾))
156 fvco3 6849 . . . . . . . . . 10 (((𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋) ∧ ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
157141, 130, 156syl2anc 583 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
158117, 155, 1573eqtr2d 2784 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
159158fveq2d 6760 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
160108, 159eqtrd 2778 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
16198, 105, 1603eqtrd 2782 . . . . 5 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
162161mpteq2dva 5170 . . . 4 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
1635, 162eqtrid 2790 . . 3 (𝜑 → (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
164 eqid 2738 . . . . . . . . . . 11 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
165164, 43, 10xpcbas 17811 . . . . . . . . . 10 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
166 eqid 2738 . . . . . . . . . 10 (Hom ‘(𝑄 ×c 𝑂)) = (Hom ‘(𝑄 ×c 𝑂))
167 eqid 2738 . . . . . . . . . 10 (Hom ‘𝑇) = (Hom ‘𝑇)
168 relfunc 17493 . . . . . . . . . . 11 Rel ((𝑄 ×c 𝑂) Func 𝑇)
169 yoneda.t . . . . . . . . . . . . 13 𝑇 = (SetCat‘𝑉)
170 yoneda.h . . . . . . . . . . . . 13 𝐻 = (HomF𝑄)
171 yoneda.r . . . . . . . . . . . . 13 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
172 yoneda.e . . . . . . . . . . . . 13 𝐸 = (𝑂 evalF 𝑆)
173 yoneda.z . . . . . . . . . . . . 13 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17416, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20yonedalem1 17906 . . . . . . . . . . . 12 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
175174simpld 494 . . . . . . . . . . 11 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
176 1st2ndbr 7856 . . . . . . . . . . 11 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
177168, 175, 176sylancr 586 . . . . . . . . . 10 (𝜑 → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
17854, 28opelxpd 5618 . . . . . . . . . 10 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
17962, 27opelxpd 5618 . . . . . . . . . 10 (𝜑 → ⟨𝐺, 𝑃⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
180165, 166, 167, 177, 178, 179funcf2 17499 . . . . . . . . 9 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)))
181164, 43, 10, 14, 118, 54, 28, 62, 27, 166xpchom2 17819 . . . . . . . . . . 11 (𝜑 → (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑋(Hom ‘𝑂)𝑃)))
182120xpeq2i 5607 . . . . . . . . . . 11 ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑋(Hom ‘𝑂)𝑃)) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))
183181, 182eqtrdi 2795 . . . . . . . . . 10 (𝜑 → (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋)))
184 df-ov 7258 . . . . . . . . . . . . 13 (𝐹(1st𝑍)𝑋) = ((1st𝑍)‘⟨𝐹, 𝑋⟩)
185 df-ov 7258 . . . . . . . . . . . . 13 (𝐺(1st𝑍)𝑃) = ((1st𝑍)‘⟨𝐺, 𝑃⟩)
186184, 185oveq12i 7267 . . . . . . . . . . . 12 ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)) = (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩))
187186eqcomi 2747 . . . . . . . . . . 11 (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃))
188187a1i 11 . . . . . . . . . 10 (𝜑 → (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
189183, 188feq23d 6579 . . . . . . . . 9 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) ↔ (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃))))
190180, 189mpbid 231 . . . . . . . 8 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
191190, 34, 30fovrnd 7422 . . . . . . 7 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
192 eqid 2738 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
193165, 192, 177funcf1 17497 . . . . . . . . . 10 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
194193, 54, 28fovrnd 7422 . . . . . . . . 9 (𝜑 → (𝐹(1st𝑍)𝑋) ∈ (Base‘𝑇))
195169, 19setcbas 17709 . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑇))
196194, 195eleqtrrd 2842 . . . . . . . 8 (𝜑 → (𝐹(1st𝑍)𝑋) ∈ 𝑉)
197193, 62, 27fovrnd 7422 . . . . . . . . 9 (𝜑 → (𝐺(1st𝑍)𝑃) ∈ (Base‘𝑇))
198197, 195eleqtrrd 2842 . . . . . . . 8 (𝜑 → (𝐺(1st𝑍)𝑃) ∈ 𝑉)
199169, 19, 167, 196, 198elsetchom 17712 . . . . . . 7 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)) ↔ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃)))
200191, 199mpbid 231 . . . . . 6 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃))
20116, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28, 62, 27, 34, 30yonedalem22 17912 . . . . . . . 8 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴))
2028oppccat 17350 . . . . . . . . . . 11 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
20317, 202syl 17 . . . . . . . . . 10 (𝜑𝑂 ∈ Cat)
20418setccat 17716 . . . . . . . . . . 11 (𝑈 ∈ V → 𝑆 ∈ Cat)
20522, 204syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Cat)
2066, 203, 205fuccat 17604 . . . . . . . . 9 (𝜑𝑄 ∈ Cat)
207170, 206, 43, 14, 45, 54, 82, 62, 12, 31, 34hof2val 17890 . . . . . . . 8 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))))
208201, 207eqtrd 2778 . . . . . . 7 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))))
20916, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28yonedalem21 17907 . . . . . . 7 (𝜑 → (𝐹(1st𝑍)𝑋) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
21016, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 62, 27yonedalem21 17907 . . . . . . 7 (𝜑 → (𝐺(1st𝑍)𝑃) = (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
211208, 209, 210feq123d 6573 . . . . . 6 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃) ↔ (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺)))
212200, 211mpbid 231 . . . . 5 (𝜑 → (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
213 eqid 2738 . . . . . 6 (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)))
214213fmpt 6966 . . . . 5 (∀𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↔ (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
215212, 214sylibr 233 . . . 4 (𝜑 → ∀𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
216 yonedalem3.m . . . . . 6 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
21716, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 62, 27, 216yonedalem3a 17908 . . . . 5 (𝜑 → ((𝐺𝑀𝑃) = (𝑎 ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↦ ((𝑎𝑃)‘( 1𝑃))) ∧ (𝐺𝑀𝑃):(𝐺(1st𝑍)𝑃)⟶(𝐺(1st𝐸)𝑃)))
218217simpld 494 . . . 4 (𝜑 → (𝐺𝑀𝑃) = (𝑎 ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↦ ((𝑎𝑃)‘( 1𝑃))))
219 fveq1 6755 . . . . 5 (𝑎 = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) → (𝑎𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃))
220219fveq1d 6758 . . . 4 (𝑎 = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) → ((𝑎𝑃)‘( 1𝑃)) = ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
221215, 208, 218, 220fmptcof 6984 . . 3 (𝜑 → ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))))
222 eqid 2738 . . . . . . 7 (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩) = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)
223172, 203, 205, 10, 118, 11, 7, 54, 62, 28, 27, 222, 34, 121evlf2val 17853 . . . . . 6 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) = ((𝐴𝑃)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))((𝑋(2nd𝐹)𝑃)‘𝐾)))
22418, 22, 11, 137, 60, 67, 145, 77setcco 17714 . . . . . 6 (𝜑 → ((𝐴𝑃)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))((𝑋(2nd𝐹)𝑃)‘𝐾)) = ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)))
225223, 224eqtrd 2778 . . . . 5 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) = ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)))
226225coeq1d 5759 . . . 4 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)) = (((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) ∘ (𝐹𝑀𝑋)))
22716, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28, 216yonedalem3a 17908 . . . . . . . 8 (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋)))
228227simprd 495 . . . . . . 7 (𝜑 → (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋))
229227simpld 494 . . . . . . . 8 (𝜑 → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
230172, 203, 205, 10, 54, 28evlf1 17854 . . . . . . . 8 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
231229, 209, 230feq123d 6573 . . . . . . 7 (𝜑 → ((𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋)))
232228, 231mpbid 231 . . . . . 6 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
233 eqid 2738 . . . . . . 7 (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋)))
234233fmpt 6966 . . . . . 6 (∀𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
235232, 234sylibr 233 . . . . 5 (𝜑 → ∀𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋))
236 fcompt 6987 . . . . . 6 (((𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃) ∧ ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃)) → ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) = (𝑦 ∈ ((1st𝐹)‘𝑋) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦))))
23777, 145, 236syl2anc 583 . . . . 5 (𝜑 → ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) = (𝑦 ∈ ((1st𝐹)‘𝑋) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦))))
238 2fveq3 6761 . . . . 5 (𝑦 = ((𝑎𝑋)‘( 1𝑋)) → ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦)) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
239235, 229, 237, 238fmptcof 6984 . . . 4 (𝜑 → (((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) ∘ (𝐹𝑀𝑋)) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
240226, 239eqtrd 2778 . . 3 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
241163, 221, 2403eqtr4d 2788 . 2 (𝜑 → ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)))
242 eqid 2738 . . 3 (comp‘𝑇) = (comp‘𝑇)
243174simprd 495 . . . . . . 7 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
244 1st2ndbr 7856 . . . . . . 7 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
245168, 243, 244sylancr 586 . . . . . 6 (𝜑 → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
246165, 192, 245funcf1 17497 . . . . 5 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
247246, 62, 27fovrnd 7422 . . . 4 (𝜑 → (𝐺(1st𝐸)𝑃) ∈ (Base‘𝑇))
248247, 195eleqtrrd 2842 . . 3 (𝜑 → (𝐺(1st𝐸)𝑃) ∈ 𝑉)
249217simprd 495 . . 3 (𝜑 → (𝐺𝑀𝑃):(𝐺(1st𝑍)𝑃)⟶(𝐺(1st𝐸)𝑃))
250169, 19, 242, 196, 198, 248, 200, 249setcco 17714 . 2 (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)))
251246, 54, 28fovrnd 7422 . . . 4 (𝜑 → (𝐹(1st𝐸)𝑋) ∈ (Base‘𝑇))
252251, 195eleqtrrd 2842 . . 3 (𝜑 → (𝐹(1st𝐸)𝑋) ∈ 𝑉)
253165, 166, 167, 245, 178, 179funcf2 17499 . . . . . 6 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)))
254 df-ov 7258 . . . . . . . . . 10 (𝐹(1st𝐸)𝑋) = ((1st𝐸)‘⟨𝐹, 𝑋⟩)
255 df-ov 7258 . . . . . . . . . 10 (𝐺(1st𝐸)𝑃) = ((1st𝐸)‘⟨𝐺, 𝑃⟩)
256254, 255oveq12i 7267 . . . . . . . . 9 ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)) = (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩))
257256eqcomi 2747 . . . . . . . 8 (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃))
258257a1i 11 . . . . . . 7 (𝜑 → (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
259183, 258feq23d 6579 . . . . . 6 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) ↔ (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃))))
260253, 259mpbid 231 . . . . 5 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
261260, 34, 30fovrnd 7422 . . . 4 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
262169, 19, 167, 252, 248elsetchom 17712 . . . 4 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)) ↔ (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝐸)𝑋)⟶(𝐺(1st𝐸)𝑃)))
263261, 262mpbid 231 . . 3 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝐸)𝑋)⟶(𝐺(1st𝐸)𝑃))
264169, 19, 242, 196, 252, 248, 228, 263setcco 17714 . 2 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)))
265241, 250, 2643eqtr4d 2788 1 (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cun 3881  wss 3883  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  ccom 5584  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  tpos ctpos 8012  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291  Homf chomf 17292  oppCatcoppc 17337   Func cfunc 17485  func ccofu 17487   Nat cnat 17573   FuncCat cfuc 17574  SetCatcsetc 17706   ×c cxpc 17801   1stF c1stf 17802   2ndF c2ndf 17803   ⟨,⟩F cprf 17804   evalF cevlf 17843  HomFchof 17882  Yoncyon 17883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-homf 17296  df-comf 17297  df-oppc 17338  df-ssc 17439  df-resc 17440  df-subc 17441  df-func 17489  df-cofu 17491  df-nat 17575  df-fuc 17576  df-setc 17707  df-xpc 17805  df-1stf 17806  df-2ndf 17807  df-prf 17808  df-evlf 17847  df-curf 17848  df-hof 17884  df-yon 17885
This theorem is referenced by:  yonedalem3  17914
  Copyright terms: Public domain W3C validator