MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3b Structured version   Visualization version   GIF version

Theorem yonedalem3b 17997
Description: Lemma for yoneda 18001. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem22.g (𝜑𝐺 ∈ (𝑂 Func 𝑆))
yonedalem22.p (𝜑𝑃𝐵)
yonedalem22.a (𝜑𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
yonedalem22.k (𝜑𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
yonedalem3.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
Assertion
Ref Expression
yonedalem3b (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)))
Distinct variable groups:   𝑓,𝑎,𝑥, 1   𝐴,𝑎   𝐶,𝑎,𝑓,𝑥   𝐸,𝑎,𝑓   𝐹,𝑎,𝑓,𝑥   𝐾,𝑎   𝐵,𝑎,𝑓,𝑥   𝐺,𝑎,𝑓,𝑥   𝑂,𝑎,𝑓,𝑥   𝑆,𝑎,𝑓,𝑥   𝑄,𝑎,𝑓,𝑥   𝑇,𝑓   𝑃,𝑎,𝑓,𝑥   𝜑,𝑎,𝑓,𝑥   𝑌,𝑎,𝑓,𝑥   𝑍,𝑎,𝑓,𝑥   𝑋,𝑎,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑓,𝑎)   𝐸(𝑥)   𝐻(𝑥,𝑓,𝑎)   𝐾(𝑥,𝑓)   𝑀(𝑥,𝑓,𝑎)   𝑉(𝑥,𝑓,𝑎)   𝑊(𝑥,𝑓,𝑎)

Proof of Theorem yonedalem3b
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . . . . . 8 (𝑏 = 𝑎 → (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏) = (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎))
21oveq1d 7290 . . . . . . 7 (𝑏 = 𝑎 → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)))
32fveq1d 6776 . . . . . 6 (𝑏 = 𝑎 → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃))
43fveq1d 6776 . . . . 5 (𝑏 = 𝑎 → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
54cbvmptv 5187 . . . 4 (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
6 yoneda.q . . . . . . . . 9 𝑄 = (𝑂 FuncCat 𝑆)
7 eqid 2738 . . . . . . . . 9 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
8 yoneda.o . . . . . . . . . 10 𝑂 = (oppCat‘𝐶)
9 yoneda.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
108, 9oppcbas 17428 . . . . . . . . 9 𝐵 = (Base‘𝑂)
11 eqid 2738 . . . . . . . . 9 (comp‘𝑆) = (comp‘𝑆)
12 eqid 2738 . . . . . . . . 9 (comp‘𝑄) = (comp‘𝑄)
13 eqid 2738 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
146, 7fuchom 17678 . . . . . . . . . . . 12 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
15 relfunc 17577 . . . . . . . . . . . . 13 Rel (𝐶 Func 𝑄)
16 yoneda.y . . . . . . . . . . . . . 14 𝑌 = (Yon‘𝐶)
17 yoneda.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
18 yoneda.s . . . . . . . . . . . . . 14 𝑆 = (SetCat‘𝑈)
19 yoneda.w . . . . . . . . . . . . . . 15 (𝜑𝑉𝑊)
20 yoneda.v . . . . . . . . . . . . . . . 16 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2120unssbd 4122 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
2219, 21ssexd 5248 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ V)
23 yoneda.u . . . . . . . . . . . . . 14 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2416, 17, 8, 18, 6, 22, 23yoncl 17980 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
25 1st2ndbr 7883 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
2615, 24, 25sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
27 yonedalem22.p . . . . . . . . . . . 12 (𝜑𝑃𝐵)
28 yonedalem21.x . . . . . . . . . . . 12 (𝜑𝑋𝐵)
299, 13, 14, 26, 27, 28funcf2 17583 . . . . . . . . . . 11 (𝜑 → (𝑃(2nd𝑌)𝑋):(𝑃(Hom ‘𝐶)𝑋)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
30 yonedalem22.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
3129, 30ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
3231adantr 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)((1st𝑌)‘𝑋)))
33 simpr 485 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
34 yonedalem22.a . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
3534adantr 481 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
366, 7, 12, 33, 35fuccocl 17682 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐺))
3727adantr 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑃𝐵)
386, 7, 10, 11, 12, 32, 36, 37fuccoval 17681 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃)(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
396, 7, 10, 11, 12, 33, 35, 37fuccoval 17681 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃) = ((𝐴𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑃), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(𝑎𝑃)))
4022adantr 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑈 ∈ V)
41 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘𝑆) = (Base‘𝑆)
42 relfunc 17577 . . . . . . . . . . . . . . . 16 Rel (𝑂 Func 𝑆)
436fucbas 17677 . . . . . . . . . . . . . . . . . 18 (𝑂 Func 𝑆) = (Base‘𝑄)
449, 43, 26funcf1 17581 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
4544, 28ffvelrnd 6962 . . . . . . . . . . . . . . . 16 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
46 1st2ndbr 7883 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
4742, 45, 46sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
4810, 41, 47funcf1 17581 . . . . . . . . . . . . . 14 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆))
4918, 22setcbas 17793 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝑆))
5049feq3d 6587 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘((1st𝑌)‘𝑋)):𝐵𝑈 ↔ (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆)))
5148, 50mpbird 256 . . . . . . . . . . . . 13 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵𝑈)
5251, 27ffvelrnd 6962 . . . . . . . . . . . 12 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∈ 𝑈)
5352adantr 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∈ 𝑈)
54 yonedalem21.f . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
55 1st2ndbr 7883 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
5642, 54, 55sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
5710, 41, 56funcf1 17581 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝑆))
5849feq3d 6587 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹):𝐵𝑈 ↔ (1st𝐹):𝐵⟶(Base‘𝑆)))
5957, 58mpbird 256 . . . . . . . . . . . . 13 (𝜑 → (1st𝐹):𝐵𝑈)
6059, 27ffvelrnd 6962 . . . . . . . . . . . 12 (𝜑 → ((1st𝐹)‘𝑃) ∈ 𝑈)
6160adantr 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑃) ∈ 𝑈)
62 yonedalem22.g . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (𝑂 Func 𝑆))
63 1st2ndbr 7883 . . . . . . . . . . . . . . . 16 ((Rel (𝑂 Func 𝑆) ∧ 𝐺 ∈ (𝑂 Func 𝑆)) → (1st𝐺)(𝑂 Func 𝑆)(2nd𝐺))
6442, 62, 63sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝐺)(𝑂 Func 𝑆)(2nd𝐺))
6510, 41, 64funcf1 17581 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐺):𝐵⟶(Base‘𝑆))
6665, 27ffvelrnd 6962 . . . . . . . . . . . . 13 (𝜑 → ((1st𝐺)‘𝑃) ∈ (Base‘𝑆))
6766, 49eleqtrrd 2842 . . . . . . . . . . . 12 (𝜑 → ((1st𝐺)‘𝑃) ∈ 𝑈)
6867adantr 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐺)‘𝑃) ∈ 𝑈)
697, 33nat1st2nd 17667 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩(𝑂 Nat 𝑆)⟨(1st𝐹), (2nd𝐹)⟩))
70 eqid 2738 . . . . . . . . . . . . 13 (Hom ‘𝑆) = (Hom ‘𝑆)
717, 69, 10, 70, 37natcl 17669 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑃) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑃)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
7218, 40, 70, 53, 61elsetchom 17796 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑃)(Hom ‘𝑆)((1st𝐹)‘𝑃)) ↔ (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃)))
7371, 72mpbid 231 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃))
747, 34nat1st2nd 17667 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩(𝑂 Nat 𝑆)⟨(1st𝐺), (2nd𝐺)⟩))
757, 74, 10, 70, 27natcl 17669 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑃) ∈ (((1st𝐹)‘𝑃)(Hom ‘𝑆)((1st𝐺)‘𝑃)))
7618, 22, 70, 60, 67elsetchom 17796 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝑃) ∈ (((1st𝐹)‘𝑃)(Hom ‘𝑆)((1st𝐺)‘𝑃)) ↔ (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃)))
7775, 76mpbid 231 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃))
7877adantr 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃))
7918, 40, 11, 53, 61, 68, 73, 78setcco 17798 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑃), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(𝑎𝑃)) = ((𝐴𝑃) ∘ (𝑎𝑃)))
8039, 79eqtrd 2778 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃) = ((𝐴𝑃) ∘ (𝑎𝑃)))
8180oveq1d 7290 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)‘𝑃)(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
8244, 27ffvelrnd 6962 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝑌)‘𝑃) ∈ (𝑂 Func 𝑆))
83 1st2ndbr 7883 . . . . . . . . . . . . . 14 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑃) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑃))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑃)))
8442, 82, 83sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (1st ‘((1st𝑌)‘𝑃))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑃)))
8510, 41, 84funcf1 17581 . . . . . . . . . . . 12 (𝜑 → (1st ‘((1st𝑌)‘𝑃)):𝐵⟶(Base‘𝑆))
8685, 27ffvelrnd 6962 . . . . . . . . . . 11 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ (Base‘𝑆))
8786, 49eleqtrrd 2842 . . . . . . . . . 10 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ 𝑈)
8887adantr 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) ∈ 𝑈)
897, 31nat1st2nd 17667 . . . . . . . . . . . 12 (𝜑 → ((𝑃(2nd𝑌)𝑋)‘𝐾) ∈ (⟨(1st ‘((1st𝑌)‘𝑃)), (2nd ‘((1st𝑌)‘𝑃))⟩(𝑂 Nat 𝑆)⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩))
907, 89, 10, 70, 27natcl 17669 . . . . . . . . . . 11 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃) ∈ (((1st ‘((1st𝑌)‘𝑃))‘𝑃)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
9118, 22, 70, 87, 52elsetchom 17796 . . . . . . . . . . 11 (𝜑 → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃) ∈ (((1st ‘((1st𝑌)‘𝑃))‘𝑃)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)) ↔ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
9290, 91mpbid 231 . . . . . . . . . 10 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
9392adantr 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
94 fco 6624 . . . . . . . . . 10 (((𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃) ∧ (𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃)) → ((𝐴𝑃) ∘ (𝑎𝑃)):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐺)‘𝑃))
9578, 73, 94syl2anc 584 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃) ∘ (𝑎𝑃)):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐺)‘𝑃))
9618, 40, 11, 88, 53, 68, 93, 95setcco 17798 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))(⟨((1st ‘((1st𝑌)‘𝑃))‘𝑃), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))(((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
9738, 81, 963eqtrd 2782 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃) = (((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)))
9897fveq1d 6776 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)))
99 yoneda.1 . . . . . . . . . 10 1 = (Id‘𝐶)
1009, 13, 99, 17, 27catidcl 17391 . . . . . . . . 9 (𝜑 → ( 1𝑃) ∈ (𝑃(Hom ‘𝐶)𝑃))
10116, 9, 17, 27, 13, 27yon11 17982 . . . . . . . . 9 (𝜑 → ((1st ‘((1st𝑌)‘𝑃))‘𝑃) = (𝑃(Hom ‘𝐶)𝑃))
102100, 101eleqtrrd 2842 . . . . . . . 8 (𝜑 → ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃))
103102adantr 481 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃))
104 fvco3 6867 . . . . . . 7 (((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃):((1st ‘((1st𝑌)‘𝑃))‘𝑃)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∧ ( 1𝑃) ∈ ((1st ‘((1st𝑌)‘𝑃))‘𝑃)) → ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))))
10593, 103, 104syl2anc 584 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴𝑃) ∘ (𝑎𝑃)) ∘ (((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃))‘( 1𝑃)) = (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))))
10693, 103ffvelrnd 6962 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑃))
107 fvco3 6867 . . . . . . . 8 (((𝑎𝑃):((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟶((1st𝐹)‘𝑃) ∧ ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑃)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))))
10873, 106, 107syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))))
10917adantr 481 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐶 ∈ Cat)
11028adantr 481 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑋𝐵)
111 eqid 2738 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
11230adantr 481 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
113100adantr 481 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑃) ∈ (𝑃(Hom ‘𝐶)𝑃))
11416, 9, 109, 37, 13, 110, 111, 37, 112, 113yon2 17984 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) = (𝐾(⟨𝑃, 𝑃⟩(comp‘𝐶)𝑋)( 1𝑃)))
1159, 13, 99, 109, 37, 111, 110, 112catrid 17393 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝐾(⟨𝑃, 𝑃⟩(comp‘𝐶)𝑋)( 1𝑃)) = 𝐾)
116114, 115eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)) = 𝐾)
117116fveq2d 6778 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝑎𝑃)‘𝐾))
118 eqid 2738 . . . . . . . . . . . . . . 15 (Hom ‘𝑂) = (Hom ‘𝑂)
11910, 118, 70, 47, 28, 27funcf2 17583 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃):(𝑋(Hom ‘𝑂)𝑃)⟶(((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
12013, 8oppchom 17425 . . . . . . . . . . . . . . 15 (𝑋(Hom ‘𝑂)𝑃) = (𝑃(Hom ‘𝐶)𝑋)
12130, 120eleqtrrdi 2850 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (𝑋(Hom ‘𝑂)𝑃))
122119, 121ffvelrnd 6962 . . . . . . . . . . . . 13 (𝜑 → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
12351, 28ffvelrnd 6962 . . . . . . . . . . . . . 14 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
12418, 22, 70, 123, 52elsetchom 17796 . . . . . . . . . . . . 13 (𝜑 → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑃)) ↔ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃)))
125122, 124mpbid 231 . . . . . . . . . . . 12 (𝜑 → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
126125adantr 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃))
1279, 13, 99, 17, 28catidcl 17391 . . . . . . . . . . . . 13 (𝜑 → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
12816, 9, 17, 28, 13, 28yon11 17982 . . . . . . . . . . . . 13 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) = (𝑋(Hom ‘𝐶)𝑋))
129127, 128eleqtrrd 2842 . . . . . . . . . . . 12 (𝜑 → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
130129adantr 481 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
131 fvco3 6867 . . . . . . . . . . 11 ((((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑃) ∧ ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))))
132126, 130, 131syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))))
133121adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝐾 ∈ (𝑋(Hom ‘𝑂)𝑃))
1347, 69, 10, 118, 11, 110, 37, 133nati 17671 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐹)‘𝑃))((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st𝐹)‘𝑋)⟩(comp‘𝑆)((1st𝐹)‘𝑃))(𝑎𝑋)))
135123adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
13618, 40, 11, 135, 53, 61, 126, 73setcco 17798 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st ‘((1st𝑌)‘𝑋))‘𝑃)⟩(comp‘𝑆)((1st𝐹)‘𝑃))((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = ((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)))
13759, 28ffvelrnd 6962 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹)‘𝑋) ∈ 𝑈)
138137adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
1397, 69, 10, 70, 110natcl 17669 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)))
14018, 40, 70, 135, 138elsetchom 17796 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)) ↔ (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋)))
141139, 140mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋))
14210, 118, 70, 56, 28, 27funcf2 17583 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(2nd𝐹)𝑃):(𝑋(Hom ‘𝑂)𝑃)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
143142, 121ffvelrnd 6962 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋(2nd𝐹)𝑃)‘𝐾) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)))
14418, 22, 70, 137, 60elsetchom 17796 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑋(2nd𝐹)𝑃)‘𝐾) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑃)) ↔ ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃)))
145143, 144mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃))
146145adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃))
14718, 40, 11, 135, 138, 61, 141, 146setcco 17798 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd𝐹)𝑃)‘𝐾)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑋), ((1st𝐹)‘𝑋)⟩(comp‘𝑆)((1st𝐹)‘𝑃))(𝑎𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋)))
148134, 136, 1473eqtr3d 2786 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)) = (((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋)))
149148fveq1d 6776 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑎𝑃) ∘ ((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾))‘( 1𝑋)) = ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)))
150127adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
15116, 9, 109, 110, 13, 110, 111, 37, 112, 150yon12 17983 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋)) = (( 1𝑋)(⟨𝑃, 𝑋⟩(comp‘𝐶)𝑋)𝐾))
1529, 13, 99, 109, 37, 111, 110, 112catlid 17392 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (( 1𝑋)(⟨𝑃, 𝑋⟩(comp‘𝐶)𝑋)𝐾) = 𝐾)
153151, 152eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋)) = 𝐾)
154153fveq2d 6778 . . . . . . . . . 10 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘(((𝑋(2nd ‘((1st𝑌)‘𝑋))𝑃)‘𝐾)‘( 1𝑋))) = ((𝑎𝑃)‘𝐾))
155132, 149, 1543eqtr3d 2786 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = ((𝑎𝑃)‘𝐾))
156 fvco3 6867 . . . . . . . . . 10 (((𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋) ∧ ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
157141, 130, 156syl2anc 584 . . . . . . . . 9 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝑋(2nd𝐹)𝑃)‘𝐾) ∘ (𝑎𝑋))‘( 1𝑋)) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
158117, 155, 1573eqtr2d 2784 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = (((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))
159158fveq2d 6778 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝐴𝑃)‘((𝑎𝑃)‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃)))) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
160108, 159eqtrd 2778 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (((𝐴𝑃) ∘ (𝑎𝑃))‘((((𝑃(2nd𝑌)𝑋)‘𝐾)‘𝑃)‘( 1𝑃))) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
16198, 105, 1603eqtrd 2782 . . . . 5 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
162161mpteq2dva 5174 . . . 4 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑎)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
1635, 162eqtrid 2790 . . 3 (𝜑 → (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
164 eqid 2738 . . . . . . . . . . 11 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
165164, 43, 10xpcbas 17895 . . . . . . . . . 10 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
166 eqid 2738 . . . . . . . . . 10 (Hom ‘(𝑄 ×c 𝑂)) = (Hom ‘(𝑄 ×c 𝑂))
167 eqid 2738 . . . . . . . . . 10 (Hom ‘𝑇) = (Hom ‘𝑇)
168 relfunc 17577 . . . . . . . . . . 11 Rel ((𝑄 ×c 𝑂) Func 𝑇)
169 yoneda.t . . . . . . . . . . . . 13 𝑇 = (SetCat‘𝑉)
170 yoneda.h . . . . . . . . . . . . 13 𝐻 = (HomF𝑄)
171 yoneda.r . . . . . . . . . . . . 13 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
172 yoneda.e . . . . . . . . . . . . 13 𝐸 = (𝑂 evalF 𝑆)
173 yoneda.z . . . . . . . . . . . . 13 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17416, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20yonedalem1 17990 . . . . . . . . . . . 12 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
175174simpld 495 . . . . . . . . . . 11 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
176 1st2ndbr 7883 . . . . . . . . . . 11 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
177168, 175, 176sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
17854, 28opelxpd 5627 . . . . . . . . . 10 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
17962, 27opelxpd 5627 . . . . . . . . . 10 (𝜑 → ⟨𝐺, 𝑃⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
180165, 166, 167, 177, 178, 179funcf2 17583 . . . . . . . . 9 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)))
181164, 43, 10, 14, 118, 54, 28, 62, 27, 166xpchom2 17903 . . . . . . . . . . 11 (𝜑 → (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑋(Hom ‘𝑂)𝑃)))
182120xpeq2i 5616 . . . . . . . . . . 11 ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑋(Hom ‘𝑂)𝑃)) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))
183181, 182eqtrdi 2794 . . . . . . . . . 10 (𝜑 → (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋)))
184 df-ov 7278 . . . . . . . . . . . . 13 (𝐹(1st𝑍)𝑋) = ((1st𝑍)‘⟨𝐹, 𝑋⟩)
185 df-ov 7278 . . . . . . . . . . . . 13 (𝐺(1st𝑍)𝑃) = ((1st𝑍)‘⟨𝐺, 𝑃⟩)
186184, 185oveq12i 7287 . . . . . . . . . . . 12 ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)) = (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩))
187186eqcomi 2747 . . . . . . . . . . 11 (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃))
188187a1i 11 . . . . . . . . . 10 (𝜑 → (((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
189183, 188feq23d 6595 . . . . . . . . 9 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝑍)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝑍)‘⟨𝐺, 𝑃⟩)) ↔ (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃))))
190180, 189mpbid 231 . . . . . . . 8 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
191190, 34, 30fovrnd 7444 . . . . . . 7 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)))
192 eqid 2738 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
193165, 192, 177funcf1 17581 . . . . . . . . . 10 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
194193, 54, 28fovrnd 7444 . . . . . . . . 9 (𝜑 → (𝐹(1st𝑍)𝑋) ∈ (Base‘𝑇))
195169, 19setcbas 17793 . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑇))
196194, 195eleqtrrd 2842 . . . . . . . 8 (𝜑 → (𝐹(1st𝑍)𝑋) ∈ 𝑉)
197193, 62, 27fovrnd 7444 . . . . . . . . 9 (𝜑 → (𝐺(1st𝑍)𝑃) ∈ (Base‘𝑇))
198197, 195eleqtrrd 2842 . . . . . . . 8 (𝜑 → (𝐺(1st𝑍)𝑃) ∈ 𝑉)
199169, 19, 167, 196, 198elsetchom 17796 . . . . . . 7 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝑍)𝑋)(Hom ‘𝑇)(𝐺(1st𝑍)𝑃)) ↔ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃)))
200191, 199mpbid 231 . . . . . 6 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃))
20116, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28, 62, 27, 34, 30yonedalem22 17996 . . . . . . . 8 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴))
2028oppccat 17433 . . . . . . . . . . 11 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
20317, 202syl 17 . . . . . . . . . 10 (𝜑𝑂 ∈ Cat)
20418setccat 17800 . . . . . . . . . . 11 (𝑈 ∈ V → 𝑆 ∈ Cat)
20522, 204syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Cat)
2066, 203, 205fuccat 17688 . . . . . . . . 9 (𝜑𝑄 ∈ Cat)
207170, 206, 43, 14, 45, 54, 82, 62, 12, 31, 34hof2val 17974 . . . . . . . 8 (𝜑 → (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))))
208201, 207eqtrd 2778 . . . . . . 7 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))))
20916, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28yonedalem21 17991 . . . . . . 7 (𝜑 → (𝐹(1st𝑍)𝑋) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
21016, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 62, 27yonedalem21 17991 . . . . . . 7 (𝜑 → (𝐺(1st𝑍)𝑃) = (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
211208, 209, 210feq123d 6589 . . . . . 6 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝑍)𝑋)⟶(𝐺(1st𝑍)𝑃) ↔ (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺)))
212200, 211mpbid 231 . . . . 5 (𝜑 → (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
213 eqid 2738 . . . . . 6 (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)))
214213fmpt 6984 . . . . 5 (∀𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↔ (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶(((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
215212, 214sylibr 233 . . . 4 (𝜑 → ∀𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺))
216 yonedalem3.m . . . . . 6 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
21716, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 62, 27, 216yonedalem3a 17992 . . . . 5 (𝜑 → ((𝐺𝑀𝑃) = (𝑎 ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↦ ((𝑎𝑃)‘( 1𝑃))) ∧ (𝐺𝑀𝑃):(𝐺(1st𝑍)𝑃)⟶(𝐺(1st𝐸)𝑃)))
218217simpld 495 . . . 4 (𝜑 → (𝐺𝑀𝑃) = (𝑎 ∈ (((1st𝑌)‘𝑃)(𝑂 Nat 𝑆)𝐺) ↦ ((𝑎𝑃)‘( 1𝑃))))
219 fveq1 6773 . . . . 5 (𝑎 = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) → (𝑎𝑃) = (((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃))
220219fveq1d 6776 . . . 4 (𝑎 = ((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾)) → ((𝑎𝑃)‘( 1𝑃)) = ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃)))
221215, 208, 218, 220fmptcof 7002 . . 3 (𝜑 → ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = (𝑏 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((((𝐴(⟨((1st𝑌)‘𝑋), 𝐹⟩(comp‘𝑄)𝐺)𝑏)(⟨((1st𝑌)‘𝑃), ((1st𝑌)‘𝑋)⟩(comp‘𝑄)𝐺)((𝑃(2nd𝑌)𝑋)‘𝐾))‘𝑃)‘( 1𝑃))))
222 eqid 2738 . . . . . . 7 (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩) = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)
223172, 203, 205, 10, 118, 11, 7, 54, 62, 28, 27, 222, 34, 121evlf2val 17937 . . . . . 6 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) = ((𝐴𝑃)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))((𝑋(2nd𝐹)𝑃)‘𝐾)))
22418, 22, 11, 137, 60, 67, 145, 77setcco 17798 . . . . . 6 (𝜑 → ((𝐴𝑃)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑃)⟩(comp‘𝑆)((1st𝐺)‘𝑃))((𝑋(2nd𝐹)𝑃)‘𝐾)) = ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)))
225223, 224eqtrd 2778 . . . . 5 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) = ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)))
226225coeq1d 5770 . . . 4 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)) = (((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) ∘ (𝐹𝑀𝑋)))
22716, 9, 99, 8, 18, 169, 6, 170, 171, 172, 173, 17, 19, 23, 20, 54, 28, 216yonedalem3a 17992 . . . . . . . 8 (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋)))
228227simprd 496 . . . . . . 7 (𝜑 → (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋))
229227simpld 495 . . . . . . . 8 (𝜑 → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
230172, 203, 205, 10, 54, 28evlf1 17938 . . . . . . . 8 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
231229, 209, 230feq123d 6589 . . . . . . 7 (𝜑 → ((𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋)))
232228, 231mpbid 231 . . . . . 6 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
233 eqid 2738 . . . . . . 7 (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋)))
234233fmpt 6984 . . . . . 6 (∀𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
235232, 234sylibr 233 . . . . 5 (𝜑 → ∀𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋))
236 fcompt 7005 . . . . . 6 (((𝐴𝑃):((1st𝐹)‘𝑃)⟶((1st𝐺)‘𝑃) ∧ ((𝑋(2nd𝐹)𝑃)‘𝐾):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑃)) → ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) = (𝑦 ∈ ((1st𝐹)‘𝑋) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦))))
23777, 145, 236syl2anc 584 . . . . 5 (𝜑 → ((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) = (𝑦 ∈ ((1st𝐹)‘𝑋) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦))))
238 2fveq3 6779 . . . . 5 (𝑦 = ((𝑎𝑋)‘( 1𝑋)) → ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘𝑦)) = ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋)))))
239235, 229, 237, 238fmptcof 7002 . . . 4 (𝜑 → (((𝐴𝑃) ∘ ((𝑋(2nd𝐹)𝑃)‘𝐾)) ∘ (𝐹𝑀𝑋)) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
240226, 239eqtrd 2778 . . 3 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝐴𝑃)‘(((𝑋(2nd𝐹)𝑃)‘𝐾)‘((𝑎𝑋)‘( 1𝑋))))))
241163, 221, 2403eqtr4d 2788 . 2 (𝜑 → ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)))
242 eqid 2738 . . 3 (comp‘𝑇) = (comp‘𝑇)
243174simprd 496 . . . . . . 7 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
244 1st2ndbr 7883 . . . . . . 7 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
245168, 243, 244sylancr 587 . . . . . 6 (𝜑 → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
246165, 192, 245funcf1 17581 . . . . 5 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
247246, 62, 27fovrnd 7444 . . . 4 (𝜑 → (𝐺(1st𝐸)𝑃) ∈ (Base‘𝑇))
248247, 195eleqtrrd 2842 . . 3 (𝜑 → (𝐺(1st𝐸)𝑃) ∈ 𝑉)
249217simprd 496 . . 3 (𝜑 → (𝐺𝑀𝑃):(𝐺(1st𝑍)𝑃)⟶(𝐺(1st𝐸)𝑃))
250169, 19, 242, 196, 198, 248, 200, 249setcco 17798 . 2 (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐺𝑀𝑃) ∘ (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)))
251246, 54, 28fovrnd 7444 . . . 4 (𝜑 → (𝐹(1st𝐸)𝑋) ∈ (Base‘𝑇))
252251, 195eleqtrrd 2842 . . 3 (𝜑 → (𝐹(1st𝐸)𝑋) ∈ 𝑉)
253165, 166, 167, 245, 178, 179funcf2 17583 . . . . . 6 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)))
254 df-ov 7278 . . . . . . . . . 10 (𝐹(1st𝐸)𝑋) = ((1st𝐸)‘⟨𝐹, 𝑋⟩)
255 df-ov 7278 . . . . . . . . . 10 (𝐺(1st𝐸)𝑃) = ((1st𝐸)‘⟨𝐺, 𝑃⟩)
256254, 255oveq12i 7287 . . . . . . . . 9 ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)) = (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩))
257256eqcomi 2747 . . . . . . . 8 (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃))
258257a1i 11 . . . . . . 7 (𝜑 → (((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) = ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
259183, 258feq23d 6595 . . . . . 6 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):(⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)⟶(((1st𝐸)‘⟨𝐹, 𝑋⟩)(Hom ‘𝑇)((1st𝐸)‘⟨𝐺, 𝑃⟩)) ↔ (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃))))
260253, 259mpbid 231 . . . . 5 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩):((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑃(Hom ‘𝐶)𝑋))⟶((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
261260, 34, 30fovrnd 7444 . . . 4 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)))
262169, 19, 167, 252, 248elsetchom 17796 . . . 4 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∈ ((𝐹(1st𝐸)𝑋)(Hom ‘𝑇)(𝐺(1st𝐸)𝑃)) ↔ (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝐸)𝑋)⟶(𝐺(1st𝐸)𝑃)))
263261, 262mpbid 231 . . 3 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾):(𝐹(1st𝐸)𝑋)⟶(𝐺(1st𝐸)𝑃))
264169, 19, 242, 196, 252, 248, 228, 263setcco 17798 . 2 (𝜑 → ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾) ∘ (𝐹𝑀𝑋)))
265241, 250, 2643eqtr4d 2788 1 (𝜑 → ((𝐺𝑀𝑃)(⟨(𝐹(1st𝑍)𝑋), (𝐺(1st𝑍)𝑃)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾)) = ((𝐴(⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑃⟩)𝐾)(⟨(𝐹(1st𝑍)𝑋), (𝐹(1st𝐸)𝑋)⟩(comp‘𝑇)(𝐺(1st𝐸)𝑃))(𝐹𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cun 3885  wss 3887  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  ran crn 5590  ccom 5593  Rel wrel 5594  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  tpos ctpos 8041  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Idccid 17374  Homf chomf 17375  oppCatcoppc 17420   Func cfunc 17569  func ccofu 17571   Nat cnat 17657   FuncCat cfuc 17658  SetCatcsetc 17790   ×c cxpc 17885   1stF c1stf 17886   2ndF c2ndf 17887   ⟨,⟩F cprf 17888   evalF cevlf 17927  HomFchof 17966  Yoncyon 17967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-homf 17379  df-comf 17380  df-oppc 17421  df-ssc 17522  df-resc 17523  df-subc 17524  df-func 17573  df-cofu 17575  df-nat 17659  df-fuc 17660  df-setc 17791  df-xpc 17889  df-1stf 17890  df-2ndf 17891  df-prf 17892  df-evlf 17931  df-curf 17932  df-hof 17968  df-yon 17969
This theorem is referenced by:  yonedalem3  17998
  Copyright terms: Public domain W3C validator