MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem4 Structured version   Visualization version   GIF version

Theorem fparlem4 8071
Description: Lemma for fpar 8072. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem4 (𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺

Proof of Theorem fparlem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coiun 6217 . 2 ((2nd ↾ (V × V)) ∘ 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))) = 𝑦𝐵 ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
2 inss1 4196 . . . . 5 (dom 𝐺 ∩ ran (2nd ↾ (V × V))) ⊆ dom 𝐺
3 fndm 6603 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
42, 3sseqtrid 3986 . . . 4 (𝐺 Fn 𝐵 → (dom 𝐺 ∩ ran (2nd ↾ (V × V))) ⊆ 𝐵)
5 dfco2a 6207 . . . 4 ((dom 𝐺 ∩ ran (2nd ↾ (V × V))) ⊆ 𝐵 → (𝐺 ∘ (2nd ↾ (V × V))) = 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
64, 5syl 17 . . 3 (𝐺 Fn 𝐵 → (𝐺 ∘ (2nd ↾ (V × V))) = 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
76coeq2d 5816 . 2 (𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = ((2nd ↾ (V × V)) ∘ 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
8 inss1 4196 . . . . . . . . 9 (dom ({(𝐺𝑦)} × (V × {𝑦})) ∩ ran (2nd ↾ (V × V))) ⊆ dom ({(𝐺𝑦)} × (V × {𝑦}))
9 dmxpss 6132 . . . . . . . . 9 dom ({(𝐺𝑦)} × (V × {𝑦})) ⊆ {(𝐺𝑦)}
108, 9sstri 3953 . . . . . . . 8 (dom ({(𝐺𝑦)} × (V × {𝑦})) ∩ ran (2nd ↾ (V × V))) ⊆ {(𝐺𝑦)}
11 dfco2a 6207 . . . . . . . 8 ((dom ({(𝐺𝑦)} × (V × {𝑦})) ∩ ran (2nd ↾ (V × V))) ⊆ {(𝐺𝑦)} → (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = 𝑥 ∈ {(𝐺𝑦)} (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥})))
1210, 11ax-mp 5 . . . . . . 7 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = 𝑥 ∈ {(𝐺𝑦)} (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥}))
13 fvex 6853 . . . . . . . 8 (𝐺𝑦) ∈ V
14 fparlem2 8069 . . . . . . . . . 10 ((2nd ↾ (V × V)) “ {𝑥}) = (V × {𝑥})
15 sneq 4595 . . . . . . . . . . 11 (𝑥 = (𝐺𝑦) → {𝑥} = {(𝐺𝑦)})
1615xpeq2d 5661 . . . . . . . . . 10 (𝑥 = (𝐺𝑦) → (V × {𝑥}) = (V × {(𝐺𝑦)}))
1714, 16eqtrid 2776 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → ((2nd ↾ (V × V)) “ {𝑥}) = (V × {(𝐺𝑦)}))
1815imaeq2d 6020 . . . . . . . . . 10 (𝑥 = (𝐺𝑦) → (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥}) = (({(𝐺𝑦)} × (V × {𝑦})) “ {(𝐺𝑦)}))
19 df-ima 5644 . . . . . . . . . . 11 (({(𝐺𝑦)} × (V × {𝑦})) “ {(𝐺𝑦)}) = ran (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)})
20 ssid 3966 . . . . . . . . . . . . . 14 {(𝐺𝑦)} ⊆ {(𝐺𝑦)}
21 xpssres 5978 . . . . . . . . . . . . . 14 ({(𝐺𝑦)} ⊆ {(𝐺𝑦)} → (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = ({(𝐺𝑦)} × (V × {𝑦})))
2220, 21ax-mp 5 . . . . . . . . . . . . 13 (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = ({(𝐺𝑦)} × (V × {𝑦}))
2322rneqi 5890 . . . . . . . . . . . 12 ran (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = ran ({(𝐺𝑦)} × (V × {𝑦}))
2413snnz 4736 . . . . . . . . . . . . 13 {(𝐺𝑦)} ≠ ∅
25 rnxp 6131 . . . . . . . . . . . . 13 ({(𝐺𝑦)} ≠ ∅ → ran ({(𝐺𝑦)} × (V × {𝑦})) = (V × {𝑦}))
2624, 25ax-mp 5 . . . . . . . . . . . 12 ran ({(𝐺𝑦)} × (V × {𝑦})) = (V × {𝑦})
2723, 26eqtri 2752 . . . . . . . . . . 11 ran (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = (V × {𝑦})
2819, 27eqtri 2752 . . . . . . . . . 10 (({(𝐺𝑦)} × (V × {𝑦})) “ {(𝐺𝑦)}) = (V × {𝑦})
2918, 28eqtrdi 2780 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥}) = (V × {𝑦}))
3017, 29xpeq12d 5662 . . . . . . . 8 (𝑥 = (𝐺𝑦) → (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥})) = ((V × {(𝐺𝑦)}) × (V × {𝑦})))
3113, 30iunxsn 5050 . . . . . . 7 𝑥 ∈ {(𝐺𝑦)} (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥})) = ((V × {(𝐺𝑦)}) × (V × {𝑦}))
3212, 31eqtri 2752 . . . . . 6 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = ((V × {(𝐺𝑦)}) × (V × {𝑦}))
3332cnveqi 5828 . . . . 5 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = ((V × {(𝐺𝑦)}) × (V × {𝑦}))
34 cnvco 5839 . . . . 5 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = ((2nd ↾ (V × V)) ∘ ({(𝐺𝑦)} × (V × {𝑦})))
35 cnvxp 6118 . . . . 5 ((V × {(𝐺𝑦)}) × (V × {𝑦})) = ((V × {𝑦}) × (V × {(𝐺𝑦)}))
3633, 34, 353eqtr3i 2760 . . . 4 ((2nd ↾ (V × V)) ∘ ({(𝐺𝑦)} × (V × {𝑦}))) = ((V × {𝑦}) × (V × {(𝐺𝑦)}))
37 fparlem2 8069 . . . . . . . . 9 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})
3837xpeq2i 5658 . . . . . . . 8 ({(𝐺𝑦)} × ((2nd ↾ (V × V)) “ {𝑦})) = ({(𝐺𝑦)} × (V × {𝑦}))
39 fnsnfv 6922 . . . . . . . . 9 ((𝐺 Fn 𝐵𝑦𝐵) → {(𝐺𝑦)} = (𝐺 “ {𝑦}))
4039xpeq1d 5660 . . . . . . . 8 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × ((2nd ↾ (V × V)) “ {𝑦})) = ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})))
4138, 40eqtr3id 2778 . . . . . . 7 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × (V × {𝑦})) = ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})))
4241cnveqd 5829 . . . . . 6 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × (V × {𝑦})) = ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})))
43 cnvxp 6118 . . . . . 6 ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})) = (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))
4442, 43eqtrdi 2780 . . . . 5 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × (V × {𝑦})) = (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
4544coeq2d 5816 . . . 4 ((𝐺 Fn 𝐵𝑦𝐵) → ((2nd ↾ (V × V)) ∘ ({(𝐺𝑦)} × (V × {𝑦}))) = ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
4636, 45eqtr3id 2778 . . 3 ((𝐺 Fn 𝐵𝑦𝐵) → ((V × {𝑦}) × (V × {(𝐺𝑦)})) = ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
4746iuneq2dv 4976 . 2 (𝐺 Fn 𝐵 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})) = 𝑦𝐵 ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
481, 7, 473eqtr4a 2790 1 (𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cin 3910  wss 3911  c0 4292  {csn 4585   ciun 4951   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  ccom 5635   Fn wfn 6494  cfv 6499  2nd c2nd 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-1st 7947  df-2nd 7948
This theorem is referenced by:  fpar  8072
  Copyright terms: Public domain W3C validator