MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem4 Structured version   Visualization version   GIF version

Theorem fparlem4 8040
Description: Lemma for fpar 8041. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem4 (𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺

Proof of Theorem fparlem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coiun 6199 . 2 ((2nd ↾ (V × V)) ∘ 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))) = 𝑦𝐵 ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
2 inss1 4182 . . . . 5 (dom 𝐺 ∩ ran (2nd ↾ (V × V))) ⊆ dom 𝐺
3 fndm 6579 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
42, 3sseqtrid 3972 . . . 4 (𝐺 Fn 𝐵 → (dom 𝐺 ∩ ran (2nd ↾ (V × V))) ⊆ 𝐵)
5 dfco2a 6188 . . . 4 ((dom 𝐺 ∩ ran (2nd ↾ (V × V))) ⊆ 𝐵 → (𝐺 ∘ (2nd ↾ (V × V))) = 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
64, 5syl 17 . . 3 (𝐺 Fn 𝐵 → (𝐺 ∘ (2nd ↾ (V × V))) = 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
76coeq2d 5797 . 2 (𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = ((2nd ↾ (V × V)) ∘ 𝑦𝐵 (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
8 inss1 4182 . . . . . . . . 9 (dom ({(𝐺𝑦)} × (V × {𝑦})) ∩ ran (2nd ↾ (V × V))) ⊆ dom ({(𝐺𝑦)} × (V × {𝑦}))
9 dmxpss 6113 . . . . . . . . 9 dom ({(𝐺𝑦)} × (V × {𝑦})) ⊆ {(𝐺𝑦)}
108, 9sstri 3939 . . . . . . . 8 (dom ({(𝐺𝑦)} × (V × {𝑦})) ∩ ran (2nd ↾ (V × V))) ⊆ {(𝐺𝑦)}
11 dfco2a 6188 . . . . . . . 8 ((dom ({(𝐺𝑦)} × (V × {𝑦})) ∩ ran (2nd ↾ (V × V))) ⊆ {(𝐺𝑦)} → (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = 𝑥 ∈ {(𝐺𝑦)} (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥})))
1210, 11ax-mp 5 . . . . . . 7 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = 𝑥 ∈ {(𝐺𝑦)} (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥}))
13 fvex 6830 . . . . . . . 8 (𝐺𝑦) ∈ V
14 fparlem2 8038 . . . . . . . . . 10 ((2nd ↾ (V × V)) “ {𝑥}) = (V × {𝑥})
15 sneq 4581 . . . . . . . . . . 11 (𝑥 = (𝐺𝑦) → {𝑥} = {(𝐺𝑦)})
1615xpeq2d 5641 . . . . . . . . . 10 (𝑥 = (𝐺𝑦) → (V × {𝑥}) = (V × {(𝐺𝑦)}))
1714, 16eqtrid 2778 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → ((2nd ↾ (V × V)) “ {𝑥}) = (V × {(𝐺𝑦)}))
1815imaeq2d 6004 . . . . . . . . . 10 (𝑥 = (𝐺𝑦) → (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥}) = (({(𝐺𝑦)} × (V × {𝑦})) “ {(𝐺𝑦)}))
19 df-ima 5624 . . . . . . . . . . 11 (({(𝐺𝑦)} × (V × {𝑦})) “ {(𝐺𝑦)}) = ran (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)})
20 ssid 3952 . . . . . . . . . . . . . 14 {(𝐺𝑦)} ⊆ {(𝐺𝑦)}
21 xpssres 5962 . . . . . . . . . . . . . 14 ({(𝐺𝑦)} ⊆ {(𝐺𝑦)} → (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = ({(𝐺𝑦)} × (V × {𝑦})))
2220, 21ax-mp 5 . . . . . . . . . . . . 13 (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = ({(𝐺𝑦)} × (V × {𝑦}))
2322rneqi 5872 . . . . . . . . . . . 12 ran (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = ran ({(𝐺𝑦)} × (V × {𝑦}))
2413snnz 4724 . . . . . . . . . . . . 13 {(𝐺𝑦)} ≠ ∅
25 rnxp 6112 . . . . . . . . . . . . 13 ({(𝐺𝑦)} ≠ ∅ → ran ({(𝐺𝑦)} × (V × {𝑦})) = (V × {𝑦}))
2624, 25ax-mp 5 . . . . . . . . . . . 12 ran ({(𝐺𝑦)} × (V × {𝑦})) = (V × {𝑦})
2723, 26eqtri 2754 . . . . . . . . . . 11 ran (({(𝐺𝑦)} × (V × {𝑦})) ↾ {(𝐺𝑦)}) = (V × {𝑦})
2819, 27eqtri 2754 . . . . . . . . . 10 (({(𝐺𝑦)} × (V × {𝑦})) “ {(𝐺𝑦)}) = (V × {𝑦})
2918, 28eqtrdi 2782 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥}) = (V × {𝑦}))
3017, 29xpeq12d 5642 . . . . . . . 8 (𝑥 = (𝐺𝑦) → (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥})) = ((V × {(𝐺𝑦)}) × (V × {𝑦})))
3113, 30iunxsn 5034 . . . . . . 7 𝑥 ∈ {(𝐺𝑦)} (((2nd ↾ (V × V)) “ {𝑥}) × (({(𝐺𝑦)} × (V × {𝑦})) “ {𝑥})) = ((V × {(𝐺𝑦)}) × (V × {𝑦}))
3212, 31eqtri 2754 . . . . . 6 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = ((V × {(𝐺𝑦)}) × (V × {𝑦}))
3332cnveqi 5809 . . . . 5 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = ((V × {(𝐺𝑦)}) × (V × {𝑦}))
34 cnvco 5820 . . . . 5 (({(𝐺𝑦)} × (V × {𝑦})) ∘ (2nd ↾ (V × V))) = ((2nd ↾ (V × V)) ∘ ({(𝐺𝑦)} × (V × {𝑦})))
35 cnvxp 6099 . . . . 5 ((V × {(𝐺𝑦)}) × (V × {𝑦})) = ((V × {𝑦}) × (V × {(𝐺𝑦)}))
3633, 34, 353eqtr3i 2762 . . . 4 ((2nd ↾ (V × V)) ∘ ({(𝐺𝑦)} × (V × {𝑦}))) = ((V × {𝑦}) × (V × {(𝐺𝑦)}))
37 fparlem2 8038 . . . . . . . . 9 ((2nd ↾ (V × V)) “ {𝑦}) = (V × {𝑦})
3837xpeq2i 5638 . . . . . . . 8 ({(𝐺𝑦)} × ((2nd ↾ (V × V)) “ {𝑦})) = ({(𝐺𝑦)} × (V × {𝑦}))
39 fnsnfv 6896 . . . . . . . . 9 ((𝐺 Fn 𝐵𝑦𝐵) → {(𝐺𝑦)} = (𝐺 “ {𝑦}))
4039xpeq1d 5640 . . . . . . . 8 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × ((2nd ↾ (V × V)) “ {𝑦})) = ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})))
4138, 40eqtr3id 2780 . . . . . . 7 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × (V × {𝑦})) = ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})))
4241cnveqd 5810 . . . . . 6 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × (V × {𝑦})) = ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})))
43 cnvxp 6099 . . . . . 6 ((𝐺 “ {𝑦}) × ((2nd ↾ (V × V)) “ {𝑦})) = (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))
4442, 43eqtrdi 2782 . . . . 5 ((𝐺 Fn 𝐵𝑦𝐵) → ({(𝐺𝑦)} × (V × {𝑦})) = (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦})))
4544coeq2d 5797 . . . 4 ((𝐺 Fn 𝐵𝑦𝐵) → ((2nd ↾ (V × V)) ∘ ({(𝐺𝑦)} × (V × {𝑦}))) = ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
4636, 45eqtr3id 2780 . . 3 ((𝐺 Fn 𝐵𝑦𝐵) → ((V × {𝑦}) × (V × {(𝐺𝑦)})) = ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
4746iuneq2dv 4961 . 2 (𝐺 Fn 𝐵 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})) = 𝑦𝐵 ((2nd ↾ (V × V)) ∘ (((2nd ↾ (V × V)) “ {𝑦}) × (𝐺 “ {𝑦}))))
481, 7, 473eqtr4a 2792 1 (𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cin 3896  wss 3897  c0 4278  {csn 4571   ciun 4936   × cxp 5609  ccnv 5610  dom cdm 5611  ran crn 5612  cres 5613  cima 5614  ccom 5615   Fn wfn 6471  cfv 6476  2nd c2nd 7915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-1st 7916  df-2nd 7917
This theorem is referenced by:  fpar  8041
  Copyright terms: Public domain W3C validator