Proof of Theorem pwsmgp
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . . 6
⊢
((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) |
| 2 | | eqid 2736 |
. . . . . 6
⊢
(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 3 | | eqid 2736 |
. . . . . 6
⊢
((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))) |
| 4 | | simpr 484 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) |
| 5 | | fvexd 6896 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) ∈ V) |
| 6 | | fnconstg 6771 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) |
| 7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐼 × {𝑅}) Fn 𝐼) |
| 8 | 1, 2, 3, 4, 5, 7 | prdsmgp 20116 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) →
((Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) ∧
(+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) =
(+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))) |
| 9 | 8 | simpld 494 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) →
(Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))) |
| 10 | | pwsmgp.n |
. . . . . 6
⊢ 𝑁 = (mulGrp‘𝑌) |
| 11 | | pwsmgp.y |
. . . . . . . 8
⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| 12 | | eqid 2736 |
. . . . . . . 8
⊢
(Scalar‘𝑅) =
(Scalar‘𝑅) |
| 13 | 11, 12 | pwsval 17505 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 14 | 13 | fveq2d 6885 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (mulGrp‘𝑌) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 15 | 10, 14 | eqtrid 2783 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑁 = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 16 | 15 | fveq2d 6885 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑁) =
(Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))) |
| 17 | | pwsmgp.z |
. . . . . 6
⊢ 𝑍 = (𝑀 ↑s 𝐼) |
| 18 | | pwsmgp.m |
. . . . . . . . 9
⊢ 𝑀 = (mulGrp‘𝑅) |
| 19 | 18 | fvexi 6895 |
. . . . . . . 8
⊢ 𝑀 ∈ V |
| 20 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑀 ↑s 𝐼) = (𝑀 ↑s 𝐼) |
| 21 | | eqid 2736 |
. . . . . . . . 9
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
| 22 | 20, 21 | pwsval 17505 |
. . . . . . . 8
⊢ ((𝑀 ∈ V ∧ 𝐼 ∈ 𝑊) → (𝑀 ↑s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀}))) |
| 23 | 19, 4, 22 | sylancr 587 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑀 ↑s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀}))) |
| 24 | 18, 12 | mgpsca 20111 |
. . . . . . . . . 10
⊢
(Scalar‘𝑅) =
(Scalar‘𝑀) |
| 25 | 24 | eqcomi 2745 |
. . . . . . . . 9
⊢
(Scalar‘𝑀) =
(Scalar‘𝑅) |
| 26 | 25 | a1i 11 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑀) = (Scalar‘𝑅)) |
| 27 | 18 | sneqi 4617 |
. . . . . . . . . 10
⊢ {𝑀} = {(mulGrp‘𝑅)} |
| 28 | 27 | xpeq2i 5686 |
. . . . . . . . 9
⊢ (𝐼 × {𝑀}) = (𝐼 × {(mulGrp‘𝑅)}) |
| 29 | | fnmgp 20107 |
. . . . . . . . . 10
⊢ mulGrp Fn
V |
| 30 | | elex 3485 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
| 31 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) |
| 32 | | fcoconst 7129 |
. . . . . . . . . 10
⊢ ((mulGrp
Fn V ∧ 𝑅 ∈ V)
→ (mulGrp ∘ (𝐼
× {𝑅})) = (𝐼 × {(mulGrp‘𝑅)})) |
| 33 | 29, 31, 32 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (mulGrp ∘ (𝐼 × {𝑅})) = (𝐼 × {(mulGrp‘𝑅)})) |
| 34 | 28, 33 | eqtr4id 2790 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐼 × {𝑀}) = (mulGrp ∘ (𝐼 × {𝑅}))) |
| 35 | 26, 34 | oveq12d 7428 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((Scalar‘𝑀)Xs(𝐼 × {𝑀})) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) |
| 36 | 23, 35 | eqtrd 2771 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑀 ↑s 𝐼) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) |
| 37 | 17, 36 | eqtrid 2783 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑍 = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) |
| 38 | 37 | fveq2d 6885 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑍) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))) |
| 39 | 9, 16, 38 | 3eqtr4d 2781 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑁) = (Base‘𝑍)) |
| 40 | | pwsmgp.b |
. . 3
⊢ 𝐵 = (Base‘𝑁) |
| 41 | | pwsmgp.c |
. . 3
⊢ 𝐶 = (Base‘𝑍) |
| 42 | 39, 40, 41 | 3eqtr4g 2796 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐵 = 𝐶) |
| 43 | 8 | simprd 495 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) →
(+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) =
(+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))) |
| 44 | 15 | fveq2d 6885 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (+g‘𝑁) =
(+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))) |
| 45 | 37 | fveq2d 6885 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (+g‘𝑍) =
(+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))) |
| 46 | 43, 44, 45 | 3eqtr4d 2781 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (+g‘𝑁) = (+g‘𝑍)) |
| 47 | | pwsmgp.p |
. . 3
⊢ + =
(+g‘𝑁) |
| 48 | | pwsmgp.q |
. . 3
⊢ ✚ =
(+g‘𝑍) |
| 49 | 46, 47, 48 | 3eqtr4g 2796 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → + = ✚ ) |
| 50 | 42, 49 | jca 511 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 = 𝐶 ∧ + = ✚ )) |