MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsmgp Structured version   Visualization version   GIF version

Theorem pwsmgp 19772
Description: The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsmgp.y 𝑌 = (𝑅s 𝐼)
pwsmgp.m 𝑀 = (mulGrp‘𝑅)
pwsmgp.z 𝑍 = (𝑀s 𝐼)
pwsmgp.n 𝑁 = (mulGrp‘𝑌)
pwsmgp.b 𝐵 = (Base‘𝑁)
pwsmgp.c 𝐶 = (Base‘𝑍)
pwsmgp.p + = (+g𝑁)
pwsmgp.q = (+g𝑍)
Assertion
Ref Expression
pwsmgp ((𝑅𝑉𝐼𝑊) → (𝐵 = 𝐶+ = ))

Proof of Theorem pwsmgp
StepHypRef Expression
1 eqid 2738 . . . . . 6 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2738 . . . . . 6 (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 eqid 2738 . . . . . 6 ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))
4 simpr 484 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
5 fvexd 6771 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
6 fnconstg 6646 . . . . . . 7 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
76adantr 480 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) Fn 𝐼)
81, 2, 3, 4, 5, 7prdsmgp 19764 . . . . 5 ((𝑅𝑉𝐼𝑊) → ((Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) ∧ (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))))
98simpld 494 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
10 pwsmgp.n . . . . . 6 𝑁 = (mulGrp‘𝑌)
11 pwsmgp.y . . . . . . . 8 𝑌 = (𝑅s 𝐼)
12 eqid 2738 . . . . . . . 8 (Scalar‘𝑅) = (Scalar‘𝑅)
1311, 12pwsval 17114 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6760 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (mulGrp‘𝑌) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1510, 14eqtrid 2790 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑁 = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1615fveq2d 6760 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘𝑁) = (Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
17 pwsmgp.z . . . . . 6 𝑍 = (𝑀s 𝐼)
18 pwsmgp.m . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
1918fvexi 6770 . . . . . . . 8 𝑀 ∈ V
20 eqid 2738 . . . . . . . . 9 (𝑀s 𝐼) = (𝑀s 𝐼)
21 eqid 2738 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑀)
2220, 21pwsval 17114 . . . . . . . 8 ((𝑀 ∈ V ∧ 𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀})))
2319, 4, 22sylancr 586 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀})))
2418, 12mgpsca 19643 . . . . . . . . . 10 (Scalar‘𝑅) = (Scalar‘𝑀)
2524eqcomi 2747 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑅)
2625a1i 11 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑀) = (Scalar‘𝑅))
2718sneqi 4569 . . . . . . . . . 10 {𝑀} = {(mulGrp‘𝑅)}
2827xpeq2i 5607 . . . . . . . . 9 (𝐼 × {𝑀}) = (𝐼 × {(mulGrp‘𝑅)})
29 fnmgp 19637 . . . . . . . . . 10 mulGrp Fn V
30 elex 3440 . . . . . . . . . . 11 (𝑅𝑉𝑅 ∈ V)
3130adantr 480 . . . . . . . . . 10 ((𝑅𝑉𝐼𝑊) → 𝑅 ∈ V)
32 fcoconst 6988 . . . . . . . . . 10 ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp ∘ (𝐼 × {𝑅})) = (𝐼 × {(mulGrp‘𝑅)}))
3329, 31, 32sylancr 586 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → (mulGrp ∘ (𝐼 × {𝑅})) = (𝐼 × {(mulGrp‘𝑅)}))
3428, 33eqtr4id 2798 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑀}) = (mulGrp ∘ (𝐼 × {𝑅})))
3526, 34oveq12d 7273 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → ((Scalar‘𝑀)Xs(𝐼 × {𝑀})) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3623, 35eqtrd 2778 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3717, 36eqtrid 2790 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑍 = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3837fveq2d 6760 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘𝑍) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
399, 16, 383eqtr4d 2788 . . 3 ((𝑅𝑉𝐼𝑊) → (Base‘𝑁) = (Base‘𝑍))
40 pwsmgp.b . . 3 𝐵 = (Base‘𝑁)
41 pwsmgp.c . . 3 𝐶 = (Base‘𝑍)
4239, 40, 413eqtr4g 2804 . 2 ((𝑅𝑉𝐼𝑊) → 𝐵 = 𝐶)
438simprd 495 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
4415fveq2d 6760 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g𝑁) = (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
4537fveq2d 6760 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g𝑍) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
4643, 44, 453eqtr4d 2788 . . 3 ((𝑅𝑉𝐼𝑊) → (+g𝑁) = (+g𝑍))
47 pwsmgp.p . . 3 + = (+g𝑁)
48 pwsmgp.q . . 3 = (+g𝑍)
4946, 47, 483eqtr4g 2804 . 2 ((𝑅𝑉𝐼𝑊) → + = )
5042, 49jca 511 1 ((𝑅𝑉𝐼𝑊) → (𝐵 = 𝐶+ = ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558   × cxp 5578  ccom 5584   Fn wfn 6413  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891  Xscprds 17073  s cpws 17074  mulGrpcmgp 19635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-prds 17075  df-pws 17077  df-mgp 19636
This theorem is referenced by:  pwsco1rhm  19897  pwsco2rhm  19898  pwsdiagrhm  19973  evl1expd  21421
  Copyright terms: Public domain W3C validator