MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsmgp Structured version   Visualization version   GIF version

Theorem pwsmgp 19370
Description: The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsmgp.y 𝑌 = (𝑅s 𝐼)
pwsmgp.m 𝑀 = (mulGrp‘𝑅)
pwsmgp.z 𝑍 = (𝑀s 𝐼)
pwsmgp.n 𝑁 = (mulGrp‘𝑌)
pwsmgp.b 𝐵 = (Base‘𝑁)
pwsmgp.c 𝐶 = (Base‘𝑍)
pwsmgp.p + = (+g𝑁)
pwsmgp.q = (+g𝑍)
Assertion
Ref Expression
pwsmgp ((𝑅𝑉𝐼𝑊) → (𝐵 = 𝐶+ = ))

Proof of Theorem pwsmgp
StepHypRef Expression
1 eqid 2823 . . . . . 6 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2823 . . . . . 6 (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 eqid 2823 . . . . . 6 ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))
4 simpr 487 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
5 fvexd 6687 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
6 fnconstg 6569 . . . . . . 7 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
76adantr 483 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) Fn 𝐼)
81, 2, 3, 4, 5, 7prdsmgp 19362 . . . . 5 ((𝑅𝑉𝐼𝑊) → ((Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) ∧ (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))))
98simpld 497 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
10 pwsmgp.n . . . . . 6 𝑁 = (mulGrp‘𝑌)
11 pwsmgp.y . . . . . . . 8 𝑌 = (𝑅s 𝐼)
12 eqid 2823 . . . . . . . 8 (Scalar‘𝑅) = (Scalar‘𝑅)
1311, 12pwsval 16761 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6676 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (mulGrp‘𝑌) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1510, 14syl5eq 2870 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑁 = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1615fveq2d 6676 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘𝑁) = (Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
17 pwsmgp.z . . . . . 6 𝑍 = (𝑀s 𝐼)
18 pwsmgp.m . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
1918fvexi 6686 . . . . . . . 8 𝑀 ∈ V
20 eqid 2823 . . . . . . . . 9 (𝑀s 𝐼) = (𝑀s 𝐼)
21 eqid 2823 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑀)
2220, 21pwsval 16761 . . . . . . . 8 ((𝑀 ∈ V ∧ 𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀})))
2319, 4, 22sylancr 589 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀})))
2418, 12mgpsca 19248 . . . . . . . . . 10 (Scalar‘𝑅) = (Scalar‘𝑀)
2524eqcomi 2832 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑅)
2625a1i 11 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑀) = (Scalar‘𝑅))
27 fnmgp 19243 . . . . . . . . . 10 mulGrp Fn V
28 elex 3514 . . . . . . . . . . 11 (𝑅𝑉𝑅 ∈ V)
2928adantr 483 . . . . . . . . . 10 ((𝑅𝑉𝐼𝑊) → 𝑅 ∈ V)
30 fcoconst 6898 . . . . . . . . . 10 ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp ∘ (𝐼 × {𝑅})) = (𝐼 × {(mulGrp‘𝑅)}))
3127, 29, 30sylancr 589 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → (mulGrp ∘ (𝐼 × {𝑅})) = (𝐼 × {(mulGrp‘𝑅)}))
3218sneqi 4580 . . . . . . . . . 10 {𝑀} = {(mulGrp‘𝑅)}
3332xpeq2i 5584 . . . . . . . . 9 (𝐼 × {𝑀}) = (𝐼 × {(mulGrp‘𝑅)})
3431, 33syl6reqr 2877 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑀}) = (mulGrp ∘ (𝐼 × {𝑅})))
3526, 34oveq12d 7176 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → ((Scalar‘𝑀)Xs(𝐼 × {𝑀})) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3623, 35eqtrd 2858 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3717, 36syl5eq 2870 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑍 = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3837fveq2d 6676 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘𝑍) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
399, 16, 383eqtr4d 2868 . . 3 ((𝑅𝑉𝐼𝑊) → (Base‘𝑁) = (Base‘𝑍))
40 pwsmgp.b . . 3 𝐵 = (Base‘𝑁)
41 pwsmgp.c . . 3 𝐶 = (Base‘𝑍)
4239, 40, 413eqtr4g 2883 . 2 ((𝑅𝑉𝐼𝑊) → 𝐵 = 𝐶)
438simprd 498 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
4415fveq2d 6676 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g𝑁) = (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
4537fveq2d 6676 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g𝑍) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
4643, 44, 453eqtr4d 2868 . . 3 ((𝑅𝑉𝐼𝑊) → (+g𝑁) = (+g𝑍))
47 pwsmgp.p . . 3 + = (+g𝑁)
48 pwsmgp.q . . 3 = (+g𝑍)
4946, 47, 483eqtr4g 2883 . 2 ((𝑅𝑉𝐼𝑊) → + = )
5042, 49jca 514 1 ((𝑅𝑉𝐼𝑊) → (𝐵 = 𝐶+ = ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  {csn 4569   × cxp 5555  ccom 5561   Fn wfn 6352  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  Scalarcsca 16570  Xscprds 16721  s cpws 16722  mulGrpcmgp 19241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-prds 16723  df-pws 16725  df-mgp 19242
This theorem is referenced by:  pwsco1rhm  19492  pwsco2rhm  19493  pwsdiagrhm  19571  evl1expd  20510
  Copyright terms: Public domain W3C validator