MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsmgp Structured version   Visualization version   GIF version

Theorem pwsmgp 19364
Description: The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsmgp.y 𝑌 = (𝑅s 𝐼)
pwsmgp.m 𝑀 = (mulGrp‘𝑅)
pwsmgp.z 𝑍 = (𝑀s 𝐼)
pwsmgp.n 𝑁 = (mulGrp‘𝑌)
pwsmgp.b 𝐵 = (Base‘𝑁)
pwsmgp.c 𝐶 = (Base‘𝑍)
pwsmgp.p + = (+g𝑁)
pwsmgp.q = (+g𝑍)
Assertion
Ref Expression
pwsmgp ((𝑅𝑉𝐼𝑊) → (𝐵 = 𝐶+ = ))

Proof of Theorem pwsmgp
StepHypRef Expression
1 eqid 2798 . . . . . 6 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2798 . . . . . 6 (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 eqid 2798 . . . . . 6 ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))
4 simpr 488 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
5 fvexd 6660 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
6 fnconstg 6541 . . . . . . 7 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
76adantr 484 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) Fn 𝐼)
81, 2, 3, 4, 5, 7prdsmgp 19356 . . . . 5 ((𝑅𝑉𝐼𝑊) → ((Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) ∧ (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))))
98simpld 498 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
10 pwsmgp.n . . . . . 6 𝑁 = (mulGrp‘𝑌)
11 pwsmgp.y . . . . . . . 8 𝑌 = (𝑅s 𝐼)
12 eqid 2798 . . . . . . . 8 (Scalar‘𝑅) = (Scalar‘𝑅)
1311, 12pwsval 16751 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6649 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (mulGrp‘𝑌) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1510, 14syl5eq 2845 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑁 = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1615fveq2d 6649 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘𝑁) = (Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
17 pwsmgp.z . . . . . 6 𝑍 = (𝑀s 𝐼)
18 pwsmgp.m . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
1918fvexi 6659 . . . . . . . 8 𝑀 ∈ V
20 eqid 2798 . . . . . . . . 9 (𝑀s 𝐼) = (𝑀s 𝐼)
21 eqid 2798 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑀)
2220, 21pwsval 16751 . . . . . . . 8 ((𝑀 ∈ V ∧ 𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀})))
2319, 4, 22sylancr 590 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀})))
2418, 12mgpsca 19239 . . . . . . . . . 10 (Scalar‘𝑅) = (Scalar‘𝑀)
2524eqcomi 2807 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑅)
2625a1i 11 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑀) = (Scalar‘𝑅))
2718sneqi 4536 . . . . . . . . . 10 {𝑀} = {(mulGrp‘𝑅)}
2827xpeq2i 5546 . . . . . . . . 9 (𝐼 × {𝑀}) = (𝐼 × {(mulGrp‘𝑅)})
29 fnmgp 19234 . . . . . . . . . 10 mulGrp Fn V
30 elex 3459 . . . . . . . . . . 11 (𝑅𝑉𝑅 ∈ V)
3130adantr 484 . . . . . . . . . 10 ((𝑅𝑉𝐼𝑊) → 𝑅 ∈ V)
32 fcoconst 6873 . . . . . . . . . 10 ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp ∘ (𝐼 × {𝑅})) = (𝐼 × {(mulGrp‘𝑅)}))
3329, 31, 32sylancr 590 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → (mulGrp ∘ (𝐼 × {𝑅})) = (𝐼 × {(mulGrp‘𝑅)}))
3428, 33eqtr4id 2852 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑀}) = (mulGrp ∘ (𝐼 × {𝑅})))
3526, 34oveq12d 7153 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → ((Scalar‘𝑀)Xs(𝐼 × {𝑀})) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3623, 35eqtrd 2833 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3717, 36syl5eq 2845 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑍 = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3837fveq2d 6649 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘𝑍) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
399, 16, 383eqtr4d 2843 . . 3 ((𝑅𝑉𝐼𝑊) → (Base‘𝑁) = (Base‘𝑍))
40 pwsmgp.b . . 3 𝐵 = (Base‘𝑁)
41 pwsmgp.c . . 3 𝐶 = (Base‘𝑍)
4239, 40, 413eqtr4g 2858 . 2 ((𝑅𝑉𝐼𝑊) → 𝐵 = 𝐶)
438simprd 499 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
4415fveq2d 6649 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g𝑁) = (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
4537fveq2d 6649 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g𝑍) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
4643, 44, 453eqtr4d 2843 . . 3 ((𝑅𝑉𝐼𝑊) → (+g𝑁) = (+g𝑍))
47 pwsmgp.p . . 3 + = (+g𝑁)
48 pwsmgp.q . . 3 = (+g𝑍)
4946, 47, 483eqtr4g 2858 . 2 ((𝑅𝑉𝐼𝑊) → + = )
5042, 49jca 515 1 ((𝑅𝑉𝐼𝑊) → (𝐵 = 𝐶+ = ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  {csn 4525   × cxp 5517  ccom 5523   Fn wfn 6319  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560  Xscprds 16711  s cpws 16712  mulGrpcmgp 19232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713  df-pws 16715  df-mgp 19233
This theorem is referenced by:  pwsco1rhm  19486  pwsco2rhm  19487  pwsdiagrhm  19562  evl1expd  20969
  Copyright terms: Public domain W3C validator