Proof of Theorem pwsmgp
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢
((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) |
2 | | eqid 2738 |
. . . . . 6
⊢
(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
3 | | eqid 2738 |
. . . . . 6
⊢
((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))) |
4 | | simpr 484 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) |
5 | | fvexd 6771 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) ∈ V) |
6 | | fnconstg 6646 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) |
7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐼 × {𝑅}) Fn 𝐼) |
8 | 1, 2, 3, 4, 5, 7 | prdsmgp 19764 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) →
((Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) ∧
(+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) =
(+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))) |
9 | 8 | simpld 494 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) →
(Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))) |
10 | | pwsmgp.n |
. . . . . 6
⊢ 𝑁 = (mulGrp‘𝑌) |
11 | | pwsmgp.y |
. . . . . . . 8
⊢ 𝑌 = (𝑅 ↑s 𝐼) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(Scalar‘𝑅) =
(Scalar‘𝑅) |
13 | 11, 12 | pwsval 17114 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
14 | 13 | fveq2d 6760 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (mulGrp‘𝑌) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
15 | 10, 14 | eqtrid 2790 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑁 = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
16 | 15 | fveq2d 6760 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑁) =
(Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))) |
17 | | pwsmgp.z |
. . . . . 6
⊢ 𝑍 = (𝑀 ↑s 𝐼) |
18 | | pwsmgp.m |
. . . . . . . . 9
⊢ 𝑀 = (mulGrp‘𝑅) |
19 | 18 | fvexi 6770 |
. . . . . . . 8
⊢ 𝑀 ∈ V |
20 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑀 ↑s 𝐼) = (𝑀 ↑s 𝐼) |
21 | | eqid 2738 |
. . . . . . . . 9
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
22 | 20, 21 | pwsval 17114 |
. . . . . . . 8
⊢ ((𝑀 ∈ V ∧ 𝐼 ∈ 𝑊) → (𝑀 ↑s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀}))) |
23 | 19, 4, 22 | sylancr 586 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑀 ↑s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀}))) |
24 | 18, 12 | mgpsca 19643 |
. . . . . . . . . 10
⊢
(Scalar‘𝑅) =
(Scalar‘𝑀) |
25 | 24 | eqcomi 2747 |
. . . . . . . . 9
⊢
(Scalar‘𝑀) =
(Scalar‘𝑅) |
26 | 25 | a1i 11 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑀) = (Scalar‘𝑅)) |
27 | 18 | sneqi 4569 |
. . . . . . . . . 10
⊢ {𝑀} = {(mulGrp‘𝑅)} |
28 | 27 | xpeq2i 5607 |
. . . . . . . . 9
⊢ (𝐼 × {𝑀}) = (𝐼 × {(mulGrp‘𝑅)}) |
29 | | fnmgp 19637 |
. . . . . . . . . 10
⊢ mulGrp Fn
V |
30 | | elex 3440 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
31 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) |
32 | | fcoconst 6988 |
. . . . . . . . . 10
⊢ ((mulGrp
Fn V ∧ 𝑅 ∈ V)
→ (mulGrp ∘ (𝐼
× {𝑅})) = (𝐼 × {(mulGrp‘𝑅)})) |
33 | 29, 31, 32 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (mulGrp ∘ (𝐼 × {𝑅})) = (𝐼 × {(mulGrp‘𝑅)})) |
34 | 28, 33 | eqtr4id 2798 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐼 × {𝑀}) = (mulGrp ∘ (𝐼 × {𝑅}))) |
35 | 26, 34 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((Scalar‘𝑀)Xs(𝐼 × {𝑀})) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) |
36 | 23, 35 | eqtrd 2778 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑀 ↑s 𝐼) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) |
37 | 17, 36 | eqtrid 2790 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑍 = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) |
38 | 37 | fveq2d 6760 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑍) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))) |
39 | 9, 16, 38 | 3eqtr4d 2788 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑁) = (Base‘𝑍)) |
40 | | pwsmgp.b |
. . 3
⊢ 𝐵 = (Base‘𝑁) |
41 | | pwsmgp.c |
. . 3
⊢ 𝐶 = (Base‘𝑍) |
42 | 39, 40, 41 | 3eqtr4g 2804 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐵 = 𝐶) |
43 | 8 | simprd 495 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) →
(+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) =
(+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))) |
44 | 15 | fveq2d 6760 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (+g‘𝑁) =
(+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))) |
45 | 37 | fveq2d 6760 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (+g‘𝑍) =
(+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))) |
46 | 43, 44, 45 | 3eqtr4d 2788 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (+g‘𝑁) = (+g‘𝑍)) |
47 | | pwsmgp.p |
. . 3
⊢ + =
(+g‘𝑁) |
48 | | pwsmgp.q |
. . 3
⊢ ✚ =
(+g‘𝑍) |
49 | 46, 47, 48 | 3eqtr4g 2804 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → + = ✚ ) |
50 | 42, 49 | jca 511 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 = 𝐶 ∧ + = ✚ )) |