MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp1en Structured version   Visualization version   GIF version

Theorem xp1en 9034
Description: One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp1en (𝐴𝑉 → (𝐴 × 1o) ≈ 𝐴)

Proof of Theorem xp1en
StepHypRef Expression
1 df1o2 8450 . . 3 1o = {∅}
21xpeq2i 5673 . 2 (𝐴 × 1o) = (𝐴 × {∅})
3 0ex 5270 . . 3 ∅ ∈ V
4 xpsneng 9033 . . 3 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
53, 4mpan2 691 . 2 (𝐴𝑉 → (𝐴 × {∅}) ≈ 𝐴)
62, 5eqbrtrid 5150 1 (𝐴𝑉 → (𝐴 × 1o) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3455  c0 4304  {csn 4597   class class class wbr 5115   × cxp 5644  1oc1o 8436  cen 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-suc 6346  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-1o 8443  df-en 8923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator