MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp1en Structured version   Visualization version   GIF version

Theorem xp1en 9027
Description: One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp1en (𝐴𝑉 → (𝐴 × 1o) ≈ 𝐴)

Proof of Theorem xp1en
StepHypRef Expression
1 df1o2 8441 . . 3 1o = {∅}
21xpeq2i 5665 . 2 (𝐴 × 1o) = (𝐴 × {∅})
3 0ex 5262 . . 3 ∅ ∈ V
4 xpsneng 9026 . . 3 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
53, 4mpan2 691 . 2 (𝐴𝑉 → (𝐴 × {∅}) ≈ 𝐴)
62, 5eqbrtrid 5142 1 (𝐴𝑉 → (𝐴 × 1o) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3447  c0 4296  {csn 4589   class class class wbr 5107   × cxp 5636  1oc1o 8427  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-suc 6338  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-1o 8434  df-en 8919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator