| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pws1 | Structured version Visualization version GIF version | ||
| Description: Value of the ring unity in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| pws1.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pws1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| pws1 | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pws1.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 3 | 1, 2 | pwsval 17397 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 4 | 3 | fveq2d 6835 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r‘𝑌) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 5 | eqid 2733 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 6 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
| 7 | fvexd 6846 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (Scalar‘𝑅) ∈ V) | |
| 8 | fconst6g 6720 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼 × {𝑅}):𝐼⟶Ring) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}):𝐼⟶Ring) |
| 10 | 5, 6, 7, 9 | prds1 20249 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 11 | fn0g 18579 | . . . . . 6 ⊢ 0g Fn V | |
| 12 | fnmgp 20068 | . . . . . 6 ⊢ mulGrp Fn V | |
| 13 | ssv 3955 | . . . . . . 7 ⊢ ran mulGrp ⊆ V | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran mulGrp ⊆ V) |
| 15 | fnco 6607 | . . . . . 6 ⊢ ((0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V) → (0g ∘ mulGrp) Fn V) | |
| 16 | 11, 12, 14, 15 | mp3an12i 1467 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (0g ∘ mulGrp) Fn V) |
| 17 | df-ur 20108 | . . . . . 6 ⊢ 1r = (0g ∘ mulGrp) | |
| 18 | 17 | fneq1i 6586 | . . . . 5 ⊢ (1r Fn V ↔ (0g ∘ mulGrp) Fn V) |
| 19 | 16, 18 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 1r Fn V) |
| 20 | elex 3458 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) |
| 22 | fcoconst 7076 | . . . 4 ⊢ ((1r Fn V ∧ 𝑅 ∈ V) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r‘𝑅)})) | |
| 23 | 19, 21, 22 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r‘𝑅)})) |
| 24 | pws1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 25 | 24 | sneqi 4588 | . . . 4 ⊢ { 1 } = {(1r‘𝑅)} |
| 26 | 25 | xpeq2i 5648 | . . 3 ⊢ (𝐼 × { 1 }) = (𝐼 × {(1r‘𝑅)}) |
| 27 | 23, 26 | eqtr4di 2786 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × { 1 })) |
| 28 | 4, 10, 27 | 3eqtr2rd 2775 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {csn 4577 × cxp 5619 ran crn 5622 ∘ ccom 5625 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Scalarcsca 17171 0gc0g 17350 Xscprds 17356 ↑s cpws 17357 mulGrpcmgp 20066 1rcur 20107 Ringcrg 20159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-prds 17358 df-pws 17360 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mgp 20067 df-ur 20108 df-ring 20161 |
| This theorem is referenced by: pwspjmhmmgpd 20254 evlsvvval 22039 |
| Copyright terms: Public domain | W3C validator |