| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pws1 | Structured version Visualization version GIF version | ||
| Description: Value of the ring unity in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| pws1.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pws1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| pws1 | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pws1.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 3 | 1, 2 | pwsval 17385 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 4 | 3 | fveq2d 6821 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r‘𝑌) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 5 | eqid 2731 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 6 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
| 7 | fvexd 6832 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (Scalar‘𝑅) ∈ V) | |
| 8 | fconst6g 6707 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼 × {𝑅}):𝐼⟶Ring) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}):𝐼⟶Ring) |
| 10 | 5, 6, 7, 9 | prds1 20236 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 11 | fn0g 18566 | . . . . . 6 ⊢ 0g Fn V | |
| 12 | fnmgp 20055 | . . . . . 6 ⊢ mulGrp Fn V | |
| 13 | ssv 3954 | . . . . . . 7 ⊢ ran mulGrp ⊆ V | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran mulGrp ⊆ V) |
| 15 | fnco 6594 | . . . . . 6 ⊢ ((0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V) → (0g ∘ mulGrp) Fn V) | |
| 16 | 11, 12, 14, 15 | mp3an12i 1467 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (0g ∘ mulGrp) Fn V) |
| 17 | df-ur 20095 | . . . . . 6 ⊢ 1r = (0g ∘ mulGrp) | |
| 18 | 17 | fneq1i 6573 | . . . . 5 ⊢ (1r Fn V ↔ (0g ∘ mulGrp) Fn V) |
| 19 | 16, 18 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 1r Fn V) |
| 20 | elex 3457 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) |
| 22 | fcoconst 7062 | . . . 4 ⊢ ((1r Fn V ∧ 𝑅 ∈ V) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r‘𝑅)})) | |
| 23 | 19, 21, 22 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r‘𝑅)})) |
| 24 | pws1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 25 | 24 | sneqi 4582 | . . . 4 ⊢ { 1 } = {(1r‘𝑅)} |
| 26 | 25 | xpeq2i 5638 | . . 3 ⊢ (𝐼 × { 1 }) = (𝐼 × {(1r‘𝑅)}) |
| 27 | 23, 26 | eqtr4di 2784 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × { 1 })) |
| 28 | 4, 10, 27 | 3eqtr2rd 2773 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 {csn 4571 × cxp 5609 ran crn 5612 ∘ ccom 5615 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Scalarcsca 17159 0gc0g 17338 Xscprds 17344 ↑s cpws 17345 mulGrpcmgp 20053 1rcur 20094 Ringcrg 20146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-prds 17346 df-pws 17348 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mgp 20054 df-ur 20095 df-ring 20148 |
| This theorem is referenced by: pwspjmhmmgpd 20241 evlsvvval 42596 |
| Copyright terms: Public domain | W3C validator |