Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pws1 | Structured version Visualization version GIF version |
Description: Value of the ring unit in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
pws1.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pws1.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
pws1 | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pws1.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
2 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
3 | 1, 2 | pwsval 17197 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
4 | 3 | fveq2d 6778 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r‘𝑌) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
5 | eqid 2738 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
6 | simpr 485 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
7 | fvexd 6789 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (Scalar‘𝑅) ∈ V) | |
8 | fconst6g 6663 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼 × {𝑅}):𝐼⟶Ring) | |
9 | 8 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}):𝐼⟶Ring) |
10 | 5, 6, 7, 9 | prds1 19853 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
11 | fn0g 18347 | . . . . . 6 ⊢ 0g Fn V | |
12 | fnmgp 19722 | . . . . . 6 ⊢ mulGrp Fn V | |
13 | ssv 3945 | . . . . . . 7 ⊢ ran mulGrp ⊆ V | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran mulGrp ⊆ V) |
15 | fnco 6549 | . . . . . 6 ⊢ ((0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V) → (0g ∘ mulGrp) Fn V) | |
16 | 11, 12, 14, 15 | mp3an12i 1464 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (0g ∘ mulGrp) Fn V) |
17 | df-ur 19738 | . . . . . 6 ⊢ 1r = (0g ∘ mulGrp) | |
18 | 17 | fneq1i 6530 | . . . . 5 ⊢ (1r Fn V ↔ (0g ∘ mulGrp) Fn V) |
19 | 16, 18 | sylibr 233 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 1r Fn V) |
20 | elex 3450 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | |
21 | 20 | adantr 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) |
22 | fcoconst 7006 | . . . 4 ⊢ ((1r Fn V ∧ 𝑅 ∈ V) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r‘𝑅)})) | |
23 | 19, 21, 22 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r‘𝑅)})) |
24 | pws1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
25 | 24 | sneqi 4572 | . . . 4 ⊢ { 1 } = {(1r‘𝑅)} |
26 | 25 | xpeq2i 5616 | . . 3 ⊢ (𝐼 × { 1 }) = (𝐼 × {(1r‘𝑅)}) |
27 | 23, 26 | eqtr4di 2796 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × { 1 })) |
28 | 4, 10, 27 | 3eqtr2rd 2785 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 {csn 4561 × cxp 5587 ran crn 5590 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Scalarcsca 16965 0gc0g 17150 Xscprds 17156 ↑s cpws 17157 mulGrpcmgp 19720 1rcur 19737 Ringcrg 19783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-prds 17158 df-pws 17160 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mgp 19721 df-ur 19738 df-ring 19785 |
This theorem is referenced by: pwspjmhmmgpd 40267 evlsbagval 40275 |
Copyright terms: Public domain | W3C validator |