MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pws1 Structured version   Visualization version   GIF version

Theorem pws1 20306
Description: Value of the ring unity in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
pws1.y 𝑌 = (𝑅s 𝐼)
pws1.o 1 = (1r𝑅)
Assertion
Ref Expression
pws1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × { 1 }) = (1r𝑌))

Proof of Theorem pws1
StepHypRef Expression
1 pws1.y . . . 4 𝑌 = (𝑅s 𝐼)
2 eqid 2726 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
31, 2pwsval 17503 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
43fveq2d 6907 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r𝑌) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
5 eqid 2726 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
6 simpr 483 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐼𝑉)
7 fvexd 6918 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Scalar‘𝑅) ∈ V)
8 fconst6g 6793 . . . 4 (𝑅 ∈ Ring → (𝐼 × {𝑅}):𝐼⟶Ring)
98adantr 479 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {𝑅}):𝐼⟶Ring)
105, 6, 7, 9prds1 20304 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r ∘ (𝐼 × {𝑅})) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
11 fn0g 18658 . . . . . 6 0g Fn V
12 fnmgp 20121 . . . . . 6 mulGrp Fn V
13 ssv 4004 . . . . . . 7 ran mulGrp ⊆ V
1413a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran mulGrp ⊆ V)
15 fnco 6680 . . . . . 6 ((0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V) → (0g ∘ mulGrp) Fn V)
1611, 12, 14, 15mp3an12i 1462 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (0g ∘ mulGrp) Fn V)
17 df-ur 20167 . . . . . 6 1r = (0g ∘ mulGrp)
1817fneq1i 6659 . . . . 5 (1r Fn V ↔ (0g ∘ mulGrp) Fn V)
1916, 18sylibr 233 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 1r Fn V)
20 elex 3482 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ V)
2120adantr 479 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 ∈ V)
22 fcoconst 7150 . . . 4 ((1r Fn V ∧ 𝑅 ∈ V) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r𝑅)}))
2319, 21, 22syl2anc 582 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r𝑅)}))
24 pws1.o . . . . 5 1 = (1r𝑅)
2524sneqi 4644 . . . 4 { 1 } = {(1r𝑅)}
2625xpeq2i 5711 . . 3 (𝐼 × { 1 }) = (𝐼 × {(1r𝑅)})
2723, 26eqtr4di 2784 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × { 1 }))
284, 10, 273eqtr2rd 2773 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × { 1 }) = (1r𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  wss 3947  {csn 4633   × cxp 5682  ran crn 5685  ccom 5688   Fn wfn 6551  wf 6552  cfv 6556  (class class class)co 7426  Scalarcsca 17271  0gc0g 17456  Xscprds 17462  s cpws 17463  mulGrpcmgp 20119  1rcur 20166  Ringcrg 20218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-er 8736  df-map 8859  df-ixp 8929  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-sup 9487  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12613  df-dec 12732  df-uz 12877  df-fz 13541  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-plusg 17281  df-mulr 17282  df-sca 17284  df-vsca 17285  df-ip 17286  df-tset 17287  df-ple 17288  df-ds 17290  df-hom 17292  df-cco 17293  df-0g 17458  df-prds 17464  df-pws 17466  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-mgp 20120  df-ur 20167  df-ring 20220
This theorem is referenced by:  pwspjmhmmgpd  20309  evlsvvval  42233
  Copyright terms: Public domain W3C validator