| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pws1 | Structured version Visualization version GIF version | ||
| Description: Value of the ring unity in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| pws1.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pws1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| pws1 | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pws1.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 3 | 1, 2 | pwsval 17449 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 4 | 3 | fveq2d 6862 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r‘𝑌) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 5 | eqid 2729 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 6 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
| 7 | fvexd 6873 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (Scalar‘𝑅) ∈ V) | |
| 8 | fconst6g 6749 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼 × {𝑅}):𝐼⟶Ring) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × {𝑅}):𝐼⟶Ring) |
| 10 | 5, 6, 7, 9 | prds1 20232 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 11 | fn0g 18590 | . . . . . 6 ⊢ 0g Fn V | |
| 12 | fnmgp 20051 | . . . . . 6 ⊢ mulGrp Fn V | |
| 13 | ssv 3971 | . . . . . . 7 ⊢ ran mulGrp ⊆ V | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran mulGrp ⊆ V) |
| 15 | fnco 6636 | . . . . . 6 ⊢ ((0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V) → (0g ∘ mulGrp) Fn V) | |
| 16 | 11, 12, 14, 15 | mp3an12i 1467 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (0g ∘ mulGrp) Fn V) |
| 17 | df-ur 20091 | . . . . . 6 ⊢ 1r = (0g ∘ mulGrp) | |
| 18 | 17 | fneq1i 6615 | . . . . 5 ⊢ (1r Fn V ↔ (0g ∘ mulGrp) Fn V) |
| 19 | 16, 18 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 1r Fn V) |
| 20 | elex 3468 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) |
| 22 | fcoconst 7106 | . . . 4 ⊢ ((1r Fn V ∧ 𝑅 ∈ V) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r‘𝑅)})) | |
| 23 | 19, 21, 22 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r‘𝑅)})) |
| 24 | pws1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 25 | 24 | sneqi 4600 | . . . 4 ⊢ { 1 } = {(1r‘𝑅)} |
| 26 | 25 | xpeq2i 5665 | . . 3 ⊢ (𝐼 × { 1 }) = (𝐼 × {(1r‘𝑅)}) |
| 27 | 23, 26 | eqtr4di 2782 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × { 1 })) |
| 28 | 4, 10, 27 | 3eqtr2rd 2771 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 1 }) = (1r‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 × cxp 5636 ran crn 5639 ∘ ccom 5642 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Scalarcsca 17223 0gc0g 17402 Xscprds 17408 ↑s cpws 17409 mulGrpcmgp 20049 1rcur 20090 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mgp 20050 df-ur 20091 df-ring 20144 |
| This theorem is referenced by: pwspjmhmmgpd 20237 evlsvvval 42551 |
| Copyright terms: Public domain | W3C validator |