![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pws1 | Structured version Visualization version GIF version |
Description: Value of the ring unity in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
pws1.y | β’ π = (π βs πΌ) |
pws1.o | β’ 1 = (1rβπ ) |
Ref | Expression |
---|---|
pws1 | β’ ((π β Ring β§ πΌ β π) β (πΌ Γ { 1 }) = (1rβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pws1.y | . . . 4 β’ π = (π βs πΌ) | |
2 | eqid 2724 | . . . 4 β’ (Scalarβπ ) = (Scalarβπ ) | |
3 | 1, 2 | pwsval 17433 | . . 3 β’ ((π β Ring β§ πΌ β π) β π = ((Scalarβπ )Xs(πΌ Γ {π }))) |
4 | 3 | fveq2d 6886 | . 2 β’ ((π β Ring β§ πΌ β π) β (1rβπ) = (1rβ((Scalarβπ )Xs(πΌ Γ {π })))) |
5 | eqid 2724 | . . 3 β’ ((Scalarβπ )Xs(πΌ Γ {π })) = ((Scalarβπ )Xs(πΌ Γ {π })) | |
6 | simpr 484 | . . 3 β’ ((π β Ring β§ πΌ β π) β πΌ β π) | |
7 | fvexd 6897 | . . 3 β’ ((π β Ring β§ πΌ β π) β (Scalarβπ ) β V) | |
8 | fconst6g 6771 | . . . 4 β’ (π β Ring β (πΌ Γ {π }):πΌβΆRing) | |
9 | 8 | adantr 480 | . . 3 β’ ((π β Ring β§ πΌ β π) β (πΌ Γ {π }):πΌβΆRing) |
10 | 5, 6, 7, 9 | prds1 20214 | . 2 β’ ((π β Ring β§ πΌ β π) β (1r β (πΌ Γ {π })) = (1rβ((Scalarβπ )Xs(πΌ Γ {π })))) |
11 | fn0g 18588 | . . . . . 6 β’ 0g Fn V | |
12 | fnmgp 20033 | . . . . . 6 β’ mulGrp Fn V | |
13 | ssv 3999 | . . . . . . 7 β’ ran mulGrp β V | |
14 | 13 | a1i 11 | . . . . . 6 β’ ((π β Ring β§ πΌ β π) β ran mulGrp β V) |
15 | fnco 6658 | . . . . . 6 β’ ((0g Fn V β§ mulGrp Fn V β§ ran mulGrp β V) β (0g β mulGrp) Fn V) | |
16 | 11, 12, 14, 15 | mp3an12i 1461 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β (0g β mulGrp) Fn V) |
17 | df-ur 20079 | . . . . . 6 β’ 1r = (0g β mulGrp) | |
18 | 17 | fneq1i 6637 | . . . . 5 β’ (1r Fn V β (0g β mulGrp) Fn V) |
19 | 16, 18 | sylibr 233 | . . . 4 β’ ((π β Ring β§ πΌ β π) β 1r Fn V) |
20 | elex 3485 | . . . . 5 β’ (π β Ring β π β V) | |
21 | 20 | adantr 480 | . . . 4 β’ ((π β Ring β§ πΌ β π) β π β V) |
22 | fcoconst 7125 | . . . 4 β’ ((1r Fn V β§ π β V) β (1r β (πΌ Γ {π })) = (πΌ Γ {(1rβπ )})) | |
23 | 19, 21, 22 | syl2anc 583 | . . 3 β’ ((π β Ring β§ πΌ β π) β (1r β (πΌ Γ {π })) = (πΌ Γ {(1rβπ )})) |
24 | pws1.o | . . . . 5 β’ 1 = (1rβπ ) | |
25 | 24 | sneqi 4632 | . . . 4 β’ { 1 } = {(1rβπ )} |
26 | 25 | xpeq2i 5694 | . . 3 β’ (πΌ Γ { 1 }) = (πΌ Γ {(1rβπ )}) |
27 | 23, 26 | eqtr4di 2782 | . 2 β’ ((π β Ring β§ πΌ β π) β (1r β (πΌ Γ {π })) = (πΌ Γ { 1 })) |
28 | 4, 10, 27 | 3eqtr2rd 2771 | 1 β’ ((π β Ring β§ πΌ β π) β (πΌ Γ { 1 }) = (1rβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3466 β wss 3941 {csn 4621 Γ cxp 5665 ran crn 5668 β ccom 5671 Fn wfn 6529 βΆwf 6530 βcfv 6534 (class class class)co 7402 Scalarcsca 17201 0gc0g 17386 Xscprds 17392 βs cpws 17393 mulGrpcmgp 20031 1rcur 20078 Ringcrg 20130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-z 12557 df-dec 12676 df-uz 12821 df-fz 13483 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-hom 17222 df-cco 17223 df-0g 17388 df-prds 17394 df-pws 17396 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mgp 20032 df-ur 20079 df-ring 20132 |
This theorem is referenced by: pwspjmhmmgpd 20219 evlsvvval 41628 |
Copyright terms: Public domain | W3C validator |