MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pws1 Structured version   Visualization version   GIF version

Theorem pws1 19369
Description: Value of the ring unit in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
pws1.y 𝑌 = (𝑅s 𝐼)
pws1.o 1 = (1r𝑅)
Assertion
Ref Expression
pws1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × { 1 }) = (1r𝑌))

Proof of Theorem pws1
StepHypRef Expression
1 pws1.y . . . 4 𝑌 = (𝑅s 𝐼)
2 eqid 2824 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
31, 2pwsval 16762 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
43fveq2d 6677 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r𝑌) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
5 eqid 2824 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
6 simpr 487 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐼𝑉)
7 fvexd 6688 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Scalar‘𝑅) ∈ V)
8 fconst6g 6571 . . . 4 (𝑅 ∈ Ring → (𝐼 × {𝑅}):𝐼⟶Ring)
98adantr 483 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {𝑅}):𝐼⟶Ring)
105, 6, 7, 9prds1 19367 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r ∘ (𝐼 × {𝑅})) = (1r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
11 fn0g 17876 . . . . . 6 0g Fn V
12 fnmgp 19244 . . . . . 6 mulGrp Fn V
13 ssv 3994 . . . . . . 7 ran mulGrp ⊆ V
1413a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran mulGrp ⊆ V)
15 fnco 6468 . . . . . 6 ((0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V) → (0g ∘ mulGrp) Fn V)
1611, 12, 14, 15mp3an12i 1461 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (0g ∘ mulGrp) Fn V)
17 df-ur 19255 . . . . . 6 1r = (0g ∘ mulGrp)
1817fneq1i 6453 . . . . 5 (1r Fn V ↔ (0g ∘ mulGrp) Fn V)
1916, 18sylibr 236 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 1r Fn V)
20 elex 3515 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ V)
2120adantr 483 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 ∈ V)
22 fcoconst 6899 . . . 4 ((1r Fn V ∧ 𝑅 ∈ V) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r𝑅)}))
2319, 21, 22syl2anc 586 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × {(1r𝑅)}))
24 pws1.o . . . . 5 1 = (1r𝑅)
2524sneqi 4581 . . . 4 { 1 } = {(1r𝑅)}
2625xpeq2i 5585 . . 3 (𝐼 × { 1 }) = (𝐼 × {(1r𝑅)})
2723, 26syl6eqr 2877 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (1r ∘ (𝐼 × {𝑅})) = (𝐼 × { 1 }))
284, 10, 273eqtr2rd 2866 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × { 1 }) = (1r𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  wss 3939  {csn 4570   × cxp 5556  ran crn 5559  ccom 5562   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  Scalarcsca 16571  0gc0g 16716  Xscprds 16722  s cpws 16723  mulGrpcmgp 19242  1rcur 19254  Ringcrg 19300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-0g 16718  df-prds 16724  df-pws 16726  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mgp 19243  df-ur 19255  df-ring 19302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator