MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3 Structured version   Visualization version   GIF version

Theorem yonedalem3 18350
Description: Lemma for yoneda 18353. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
Assertion
Ref Expression
yonedalem3 (𝜑𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸))
Distinct variable groups:   𝑓,𝑎,𝑥, 1   𝐶,𝑎,𝑓,𝑥   𝐸,𝑎,𝑓   𝐵,𝑎,𝑓,𝑥   𝑂,𝑎,𝑓,𝑥   𝑆,𝑎,𝑓,𝑥   𝑄,𝑎,𝑓,𝑥   𝑇,𝑓   𝜑,𝑎,𝑓,𝑥   𝑌,𝑎,𝑓,𝑥   𝑍,𝑎,𝑓,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑓,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑓,𝑎)   𝐸(𝑥)   𝐻(𝑥,𝑓,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑉(𝑥,𝑓,𝑎)   𝑊(𝑥,𝑓,𝑎)

Proof of Theorem yonedalem3
Dummy variables 𝑔 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.m . . . . 5 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
2 ovex 7481 . . . . . 6 (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ∈ V
32mptex 7260 . . . . 5 (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))) ∈ V
41, 3fnmpoi 8111 . . . 4 𝑀 Fn ((𝑂 Func 𝑆) × 𝐵)
54a1i 11 . . 3 (𝜑𝑀 Fn ((𝑂 Func 𝑆) × 𝐵))
6 yoneda.y . . . . . . . 8 𝑌 = (Yon‘𝐶)
7 yoneda.b . . . . . . . 8 𝐵 = (Base‘𝐶)
8 yoneda.1 . . . . . . . 8 1 = (Id‘𝐶)
9 yoneda.o . . . . . . . 8 𝑂 = (oppCat‘𝐶)
10 yoneda.s . . . . . . . 8 𝑆 = (SetCat‘𝑈)
11 yoneda.t . . . . . . . 8 𝑇 = (SetCat‘𝑉)
12 yoneda.q . . . . . . . 8 𝑄 = (𝑂 FuncCat 𝑆)
13 yoneda.h . . . . . . . 8 𝐻 = (HomF𝑄)
14 yoneda.r . . . . . . . 8 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
15 yoneda.e . . . . . . . 8 𝐸 = (𝑂 evalF 𝑆)
16 yoneda.z . . . . . . . 8 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17 yoneda.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
1817adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝐶 ∈ Cat)
19 yoneda.w . . . . . . . . 9 (𝜑𝑉𝑊)
2019adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑉𝑊)
21 yoneda.u . . . . . . . . 9 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2221adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → ran (Homf𝐶) ⊆ 𝑈)
23 yoneda.v . . . . . . . . 9 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2423adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
25 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑔 ∈ (𝑂 Func 𝑆))
26 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑦𝐵)
276, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 25, 26, 1yonedalem3a 18344 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → ((𝑔𝑀𝑦) = (𝑎 ∈ (((1st𝑌)‘𝑦)(𝑂 Nat 𝑆)𝑔) ↦ ((𝑎𝑦)‘( 1𝑦))) ∧ (𝑔𝑀𝑦):(𝑔(1st𝑍)𝑦)⟶(𝑔(1st𝐸)𝑦)))
2827simprd 495 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔𝑀𝑦):(𝑔(1st𝑍)𝑦)⟶(𝑔(1st𝐸)𝑦))
29 eqid 2740 . . . . . . 7 (Hom ‘𝑇) = (Hom ‘𝑇)
30 eqid 2740 . . . . . . . . . . 11 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
3112fucbas 18029 . . . . . . . . . . 11 (𝑂 Func 𝑆) = (Base‘𝑄)
329, 7oppcbas 17777 . . . . . . . . . . 11 𝐵 = (Base‘𝑂)
3330, 31, 32xpcbas 18247 . . . . . . . . . 10 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
34 eqid 2740 . . . . . . . . . 10 (Base‘𝑇) = (Base‘𝑇)
35 relfunc 17926 . . . . . . . . . . 11 Rel ((𝑄 ×c 𝑂) Func 𝑇)
366, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23yonedalem1 18342 . . . . . . . . . . . 12 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
3736simpld 494 . . . . . . . . . . 11 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
38 1st2ndbr 8083 . . . . . . . . . . 11 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
3935, 37, 38sylancr 586 . . . . . . . . . 10 (𝜑 → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
4033, 34, 39funcf1 17930 . . . . . . . . 9 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
4140fovcdmda 7621 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝑍)𝑦) ∈ (Base‘𝑇))
4211, 20setcbas 18145 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑉 = (Base‘𝑇))
4341, 42eleqtrrd 2847 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝑍)𝑦) ∈ 𝑉)
4436simprd 495 . . . . . . . . . . 11 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
45 1st2ndbr 8083 . . . . . . . . . . 11 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
4635, 44, 45sylancr 586 . . . . . . . . . 10 (𝜑 → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
4733, 34, 46funcf1 17930 . . . . . . . . 9 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
4847fovcdmda 7621 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝐸)𝑦) ∈ (Base‘𝑇))
4948, 42eleqtrrd 2847 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝐸)𝑦) ∈ 𝑉)
5011, 20, 29, 43, 49elsetchom 18148 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → ((𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)) ↔ (𝑔𝑀𝑦):(𝑔(1st𝑍)𝑦)⟶(𝑔(1st𝐸)𝑦)))
5128, 50mpbird 257 . . . . 5 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
5251ralrimivva 3208 . . . 4 (𝜑 → ∀𝑔 ∈ (𝑂 Func 𝑆)∀𝑦𝐵 (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
53 fveq2 6920 . . . . . . 7 (𝑧 = ⟨𝑔, 𝑦⟩ → (𝑀𝑧) = (𝑀‘⟨𝑔, 𝑦⟩))
54 df-ov 7451 . . . . . . 7 (𝑔𝑀𝑦) = (𝑀‘⟨𝑔, 𝑦⟩)
5553, 54eqtr4di 2798 . . . . . 6 (𝑧 = ⟨𝑔, 𝑦⟩ → (𝑀𝑧) = (𝑔𝑀𝑦))
56 fveq2 6920 . . . . . . . 8 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝑍)‘𝑧) = ((1st𝑍)‘⟨𝑔, 𝑦⟩))
57 df-ov 7451 . . . . . . . 8 (𝑔(1st𝑍)𝑦) = ((1st𝑍)‘⟨𝑔, 𝑦⟩)
5856, 57eqtr4di 2798 . . . . . . 7 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝑍)‘𝑧) = (𝑔(1st𝑍)𝑦))
59 fveq2 6920 . . . . . . . 8 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨𝑔, 𝑦⟩))
60 df-ov 7451 . . . . . . . 8 (𝑔(1st𝐸)𝑦) = ((1st𝐸)‘⟨𝑔, 𝑦⟩)
6159, 60eqtr4di 2798 . . . . . . 7 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝐸)‘𝑧) = (𝑔(1st𝐸)𝑦))
6258, 61oveq12d 7466 . . . . . 6 (𝑧 = ⟨𝑔, 𝑦⟩ → (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) = ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
6355, 62eleq12d 2838 . . . . 5 (𝑧 = ⟨𝑔, 𝑦⟩ → ((𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ↔ (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦))))
6463ralxp 5866 . . . 4 (∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ↔ ∀𝑔 ∈ (𝑂 Func 𝑆)∀𝑦𝐵 (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
6552, 64sylibr 234 . . 3 (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)))
66 ovex 7481 . . . . . 6 (𝑂 Func 𝑆) ∈ V
677fvexi 6934 . . . . . 6 𝐵 ∈ V
6866, 67mpoex 8120 . . . . 5 (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥)))) ∈ V
691, 68eqeltri 2840 . . . 4 𝑀 ∈ V
7069elixp 8962 . . 3 (𝑀X𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ↔ (𝑀 Fn ((𝑂 Func 𝑆) × 𝐵) ∧ ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧))))
715, 65, 70sylanbrc 582 . 2 (𝜑𝑀X𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)))
7217adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝐶 ∈ Cat)
7319adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑉𝑊)
7421adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ran (Homf𝐶) ⊆ 𝑈)
7523adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
76 simpr1 1194 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵))
77 xp1st 8062 . . . . . 6 (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) → (1st𝑧) ∈ (𝑂 Func 𝑆))
7876, 77syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (1st𝑧) ∈ (𝑂 Func 𝑆))
79 xp2nd 8063 . . . . . 6 (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) → (2nd𝑧) ∈ 𝐵)
8076, 79syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (2nd𝑧) ∈ 𝐵)
81 simpr2 1195 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵))
82 xp1st 8062 . . . . . 6 (𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) → (1st𝑤) ∈ (𝑂 Func 𝑆))
8381, 82syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (1st𝑤) ∈ (𝑂 Func 𝑆))
84 xp2nd 8063 . . . . . 6 (𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) → (2nd𝑤) ∈ 𝐵)
8581, 84syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (2nd𝑤) ∈ 𝐵)
86 simpr3 1196 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))
87 eqid 2740 . . . . . . . . . 10 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
8812, 87fuchom 18030 . . . . . . . . 9 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
89 eqid 2740 . . . . . . . . 9 (Hom ‘𝑂) = (Hom ‘𝑂)
90 eqid 2740 . . . . . . . . 9 (Hom ‘(𝑄 ×c 𝑂)) = (Hom ‘(𝑄 ×c 𝑂))
9130, 33, 88, 89, 90, 76, 81xpchom 18249 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤) = (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑧)(Hom ‘𝑂)(2nd𝑤))))
92 eqid 2740 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
9392, 9oppchom 17774 . . . . . . . . 9 ((2nd𝑧)(Hom ‘𝑂)(2nd𝑤)) = ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))
9493xpeq2i 5727 . . . . . . . 8 (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑧)(Hom ‘𝑂)(2nd𝑤))) = (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧)))
9591, 94eqtrdi 2796 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤) = (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))))
9686, 95eleqtrd 2846 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))))
97 xp1st 8062 . . . . . 6 (𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))) → (1st𝑔) ∈ ((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)))
9896, 97syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (1st𝑔) ∈ ((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)))
99 xp2nd 8063 . . . . . 6 (𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))) → (2nd𝑔) ∈ ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧)))
10096, 99syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (2nd𝑔) ∈ ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧)))
1016, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 72, 73, 74, 75, 78, 80, 83, 85, 98, 100, 1yonedalem3b 18349 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (((1st𝑤)𝑀(2nd𝑤))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))) = (((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑧)𝑀(2nd𝑧))))
102 1st2nd2 8069 . . . . . . . . . 10 (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
10376, 102syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
104103fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑧) = ((1st𝑍)‘⟨(1st𝑧), (2nd𝑧)⟩))
105 df-ov 7451 . . . . . . . 8 ((1st𝑧)(1st𝑍)(2nd𝑧)) = ((1st𝑍)‘⟨(1st𝑧), (2nd𝑧)⟩)
106104, 105eqtr4di 2798 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑧) = ((1st𝑧)(1st𝑍)(2nd𝑧)))
107 1st2nd2 8069 . . . . . . . . . 10 (𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
10881, 107syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
109108fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑤) = ((1st𝑍)‘⟨(1st𝑤), (2nd𝑤)⟩))
110 df-ov 7451 . . . . . . . 8 ((1st𝑤)(1st𝑍)(2nd𝑤)) = ((1st𝑍)‘⟨(1st𝑤), (2nd𝑤)⟩)
111109, 110eqtr4di 2798 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑤) = ((1st𝑤)(1st𝑍)(2nd𝑤)))
112106, 111opeq12d 4905 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩ = ⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩)
113108fveq2d 6924 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑤) = ((1st𝐸)‘⟨(1st𝑤), (2nd𝑤)⟩))
114 df-ov 7451 . . . . . . 7 ((1st𝑤)(1st𝐸)(2nd𝑤)) = ((1st𝐸)‘⟨(1st𝑤), (2nd𝑤)⟩)
115113, 114eqtr4di 2798 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑤) = ((1st𝑤)(1st𝐸)(2nd𝑤)))
116112, 115oveq12d 7466 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤)) = (⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤))))
117108fveq2d 6924 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑤) = (𝑀‘⟨(1st𝑤), (2nd𝑤)⟩))
118 df-ov 7451 . . . . . 6 ((1st𝑤)𝑀(2nd𝑤)) = (𝑀‘⟨(1st𝑤), (2nd𝑤)⟩)
119117, 118eqtr4di 2798 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑤) = ((1st𝑤)𝑀(2nd𝑤)))
120103, 108oveq12d 7466 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(2nd𝑍)𝑤) = (⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩))
121 1st2nd2 8069 . . . . . . . 8 (𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
12296, 121syl 17 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
123120, 122fveq12d 6927 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝑍)𝑤)‘𝑔) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
124 df-ov 7451 . . . . . 6 ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)
125123, 124eqtr4di 2798 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝑍)𝑤)‘𝑔) = ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)))
126116, 119, 125oveq123d 7469 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((1st𝑤)𝑀(2nd𝑤))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))))
127103fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))
128 df-ov 7451 . . . . . . . 8 ((1st𝑧)(1st𝐸)(2nd𝑧)) = ((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩)
129127, 128eqtr4di 2798 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑧) = ((1st𝑧)(1st𝐸)(2nd𝑧)))
130106, 129opeq12d 4905 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩ = ⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩)
131130, 115oveq12d 7466 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤)) = (⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤))))
132103, 108oveq12d 7466 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(2nd𝐸)𝑤) = (⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩))
133132, 122fveq12d 6927 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝐸)𝑤)‘𝑔) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
134 df-ov 7451 . . . . . 6 ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)
135133, 134eqtr4di 2798 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝐸)𝑤)‘𝑔) = ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)))
136103fveq2d 6924 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑧) = (𝑀‘⟨(1st𝑧), (2nd𝑧)⟩))
137 df-ov 7451 . . . . . 6 ((1st𝑧)𝑀(2nd𝑧)) = (𝑀‘⟨(1st𝑧), (2nd𝑧)⟩)
138136, 137eqtr4di 2798 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑧) = ((1st𝑧)𝑀(2nd𝑧)))
139131, 135, 138oveq123d 7469 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)) = (((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑧)𝑀(2nd𝑧))))
140101, 126, 1393eqtr4d 2790 . . 3 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)))
141140ralrimivvva 3211 . 2 (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤)((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)))
142 eqid 2740 . . 3 ((𝑄 ×c 𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇)
143 eqid 2740 . . 3 (comp‘𝑇) = (comp‘𝑇)
144142, 33, 90, 29, 143, 37, 44isnat2 18016 . 2 (𝜑 → (𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸) ↔ (𝑀X𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ∧ ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤)((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)))))
14571, 141, 144mpbir2and 712 1 (𝜑𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cun 3974  wss 3976  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  ran crn 5701  Rel wrel 5705   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  tpos ctpos 8266  Xcixp 8955  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  Homf chomf 17724  oppCatcoppc 17769   Func cfunc 17918  func ccofu 17920   Nat cnat 18009   FuncCat cfuc 18010  SetCatcsetc 18142   ×c cxpc 18237   1stF c1stf 18238   2ndF c2ndf 18239   ⟨,⟩F cprf 18240   evalF cevlf 18279  HomFchof 18318  Yoncyon 18319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-hom 17335  df-cco 17336  df-cat 17726  df-cid 17727  df-homf 17728  df-comf 17729  df-oppc 17770  df-ssc 17871  df-resc 17872  df-subc 17873  df-func 17922  df-cofu 17924  df-nat 18011  df-fuc 18012  df-setc 18143  df-xpc 18241  df-1stf 18242  df-2ndf 18243  df-prf 18244  df-evlf 18283  df-curf 18284  df-hof 18320  df-yon 18321
This theorem is referenced by:  yonedainv  18351
  Copyright terms: Public domain W3C validator