MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3 Structured version   Visualization version   GIF version

Theorem yonedalem3 17914
Description: Lemma for yoneda 17917. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
Assertion
Ref Expression
yonedalem3 (𝜑𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸))
Distinct variable groups:   𝑓,𝑎,𝑥, 1   𝐶,𝑎,𝑓,𝑥   𝐸,𝑎,𝑓   𝐵,𝑎,𝑓,𝑥   𝑂,𝑎,𝑓,𝑥   𝑆,𝑎,𝑓,𝑥   𝑄,𝑎,𝑓,𝑥   𝑇,𝑓   𝜑,𝑎,𝑓,𝑥   𝑌,𝑎,𝑓,𝑥   𝑍,𝑎,𝑓,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑓,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑓,𝑎)   𝐸(𝑥)   𝐻(𝑥,𝑓,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑉(𝑥,𝑓,𝑎)   𝑊(𝑥,𝑓,𝑎)

Proof of Theorem yonedalem3
Dummy variables 𝑔 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.m . . . . 5 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
2 ovex 7288 . . . . . 6 (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ∈ V
32mptex 7081 . . . . 5 (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))) ∈ V
41, 3fnmpoi 7883 . . . 4 𝑀 Fn ((𝑂 Func 𝑆) × 𝐵)
54a1i 11 . . 3 (𝜑𝑀 Fn ((𝑂 Func 𝑆) × 𝐵))
6 yoneda.y . . . . . . . 8 𝑌 = (Yon‘𝐶)
7 yoneda.b . . . . . . . 8 𝐵 = (Base‘𝐶)
8 yoneda.1 . . . . . . . 8 1 = (Id‘𝐶)
9 yoneda.o . . . . . . . 8 𝑂 = (oppCat‘𝐶)
10 yoneda.s . . . . . . . 8 𝑆 = (SetCat‘𝑈)
11 yoneda.t . . . . . . . 8 𝑇 = (SetCat‘𝑉)
12 yoneda.q . . . . . . . 8 𝑄 = (𝑂 FuncCat 𝑆)
13 yoneda.h . . . . . . . 8 𝐻 = (HomF𝑄)
14 yoneda.r . . . . . . . 8 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
15 yoneda.e . . . . . . . 8 𝐸 = (𝑂 evalF 𝑆)
16 yoneda.z . . . . . . . 8 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17 yoneda.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
1817adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝐶 ∈ Cat)
19 yoneda.w . . . . . . . . 9 (𝜑𝑉𝑊)
2019adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑉𝑊)
21 yoneda.u . . . . . . . . 9 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2221adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → ran (Homf𝐶) ⊆ 𝑈)
23 yoneda.v . . . . . . . . 9 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2423adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
25 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑔 ∈ (𝑂 Func 𝑆))
26 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑦𝐵)
276, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 25, 26, 1yonedalem3a 17908 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → ((𝑔𝑀𝑦) = (𝑎 ∈ (((1st𝑌)‘𝑦)(𝑂 Nat 𝑆)𝑔) ↦ ((𝑎𝑦)‘( 1𝑦))) ∧ (𝑔𝑀𝑦):(𝑔(1st𝑍)𝑦)⟶(𝑔(1st𝐸)𝑦)))
2827simprd 495 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔𝑀𝑦):(𝑔(1st𝑍)𝑦)⟶(𝑔(1st𝐸)𝑦))
29 eqid 2738 . . . . . . 7 (Hom ‘𝑇) = (Hom ‘𝑇)
30 eqid 2738 . . . . . . . . . . 11 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
3112fucbas 17593 . . . . . . . . . . 11 (𝑂 Func 𝑆) = (Base‘𝑄)
329, 7oppcbas 17345 . . . . . . . . . . 11 𝐵 = (Base‘𝑂)
3330, 31, 32xpcbas 17811 . . . . . . . . . 10 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
34 eqid 2738 . . . . . . . . . 10 (Base‘𝑇) = (Base‘𝑇)
35 relfunc 17493 . . . . . . . . . . 11 Rel ((𝑄 ×c 𝑂) Func 𝑇)
366, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23yonedalem1 17906 . . . . . . . . . . . 12 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
3736simpld 494 . . . . . . . . . . 11 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
38 1st2ndbr 7856 . . . . . . . . . . 11 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
3935, 37, 38sylancr 586 . . . . . . . . . 10 (𝜑 → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
4033, 34, 39funcf1 17497 . . . . . . . . 9 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
4140fovrnda 7421 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝑍)𝑦) ∈ (Base‘𝑇))
4211, 20setcbas 17709 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑉 = (Base‘𝑇))
4341, 42eleqtrrd 2842 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝑍)𝑦) ∈ 𝑉)
4436simprd 495 . . . . . . . . . . 11 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
45 1st2ndbr 7856 . . . . . . . . . . 11 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
4635, 44, 45sylancr 586 . . . . . . . . . 10 (𝜑 → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
4733, 34, 46funcf1 17497 . . . . . . . . 9 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
4847fovrnda 7421 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝐸)𝑦) ∈ (Base‘𝑇))
4948, 42eleqtrrd 2842 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝐸)𝑦) ∈ 𝑉)
5011, 20, 29, 43, 49elsetchom 17712 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → ((𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)) ↔ (𝑔𝑀𝑦):(𝑔(1st𝑍)𝑦)⟶(𝑔(1st𝐸)𝑦)))
5128, 50mpbird 256 . . . . 5 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
5251ralrimivva 3114 . . . 4 (𝜑 → ∀𝑔 ∈ (𝑂 Func 𝑆)∀𝑦𝐵 (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
53 fveq2 6756 . . . . . . 7 (𝑧 = ⟨𝑔, 𝑦⟩ → (𝑀𝑧) = (𝑀‘⟨𝑔, 𝑦⟩))
54 df-ov 7258 . . . . . . 7 (𝑔𝑀𝑦) = (𝑀‘⟨𝑔, 𝑦⟩)
5553, 54eqtr4di 2797 . . . . . 6 (𝑧 = ⟨𝑔, 𝑦⟩ → (𝑀𝑧) = (𝑔𝑀𝑦))
56 fveq2 6756 . . . . . . . 8 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝑍)‘𝑧) = ((1st𝑍)‘⟨𝑔, 𝑦⟩))
57 df-ov 7258 . . . . . . . 8 (𝑔(1st𝑍)𝑦) = ((1st𝑍)‘⟨𝑔, 𝑦⟩)
5856, 57eqtr4di 2797 . . . . . . 7 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝑍)‘𝑧) = (𝑔(1st𝑍)𝑦))
59 fveq2 6756 . . . . . . . 8 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨𝑔, 𝑦⟩))
60 df-ov 7258 . . . . . . . 8 (𝑔(1st𝐸)𝑦) = ((1st𝐸)‘⟨𝑔, 𝑦⟩)
6159, 60eqtr4di 2797 . . . . . . 7 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝐸)‘𝑧) = (𝑔(1st𝐸)𝑦))
6258, 61oveq12d 7273 . . . . . 6 (𝑧 = ⟨𝑔, 𝑦⟩ → (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) = ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
6355, 62eleq12d 2833 . . . . 5 (𝑧 = ⟨𝑔, 𝑦⟩ → ((𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ↔ (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦))))
6463ralxp 5739 . . . 4 (∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ↔ ∀𝑔 ∈ (𝑂 Func 𝑆)∀𝑦𝐵 (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
6552, 64sylibr 233 . . 3 (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)))
66 ovex 7288 . . . . . 6 (𝑂 Func 𝑆) ∈ V
677fvexi 6770 . . . . . 6 𝐵 ∈ V
6866, 67mpoex 7893 . . . . 5 (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥)))) ∈ V
691, 68eqeltri 2835 . . . 4 𝑀 ∈ V
7069elixp 8650 . . 3 (𝑀X𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ↔ (𝑀 Fn ((𝑂 Func 𝑆) × 𝐵) ∧ ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧))))
715, 65, 70sylanbrc 582 . 2 (𝜑𝑀X𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)))
7217adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝐶 ∈ Cat)
7319adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑉𝑊)
7421adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ran (Homf𝐶) ⊆ 𝑈)
7523adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
76 simpr1 1192 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵))
77 xp1st 7836 . . . . . 6 (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) → (1st𝑧) ∈ (𝑂 Func 𝑆))
7876, 77syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (1st𝑧) ∈ (𝑂 Func 𝑆))
79 xp2nd 7837 . . . . . 6 (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) → (2nd𝑧) ∈ 𝐵)
8076, 79syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (2nd𝑧) ∈ 𝐵)
81 simpr2 1193 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵))
82 xp1st 7836 . . . . . 6 (𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) → (1st𝑤) ∈ (𝑂 Func 𝑆))
8381, 82syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (1st𝑤) ∈ (𝑂 Func 𝑆))
84 xp2nd 7837 . . . . . 6 (𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) → (2nd𝑤) ∈ 𝐵)
8581, 84syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (2nd𝑤) ∈ 𝐵)
86 simpr3 1194 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))
87 eqid 2738 . . . . . . . . . 10 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
8812, 87fuchom 17594 . . . . . . . . 9 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
89 eqid 2738 . . . . . . . . 9 (Hom ‘𝑂) = (Hom ‘𝑂)
90 eqid 2738 . . . . . . . . 9 (Hom ‘(𝑄 ×c 𝑂)) = (Hom ‘(𝑄 ×c 𝑂))
9130, 33, 88, 89, 90, 76, 81xpchom 17813 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤) = (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑧)(Hom ‘𝑂)(2nd𝑤))))
92 eqid 2738 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
9392, 9oppchom 17342 . . . . . . . . 9 ((2nd𝑧)(Hom ‘𝑂)(2nd𝑤)) = ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))
9493xpeq2i 5607 . . . . . . . 8 (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑧)(Hom ‘𝑂)(2nd𝑤))) = (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧)))
9591, 94eqtrdi 2795 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤) = (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))))
9686, 95eleqtrd 2841 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))))
97 xp1st 7836 . . . . . 6 (𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))) → (1st𝑔) ∈ ((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)))
9896, 97syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (1st𝑔) ∈ ((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)))
99 xp2nd 7837 . . . . . 6 (𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))) → (2nd𝑔) ∈ ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧)))
10096, 99syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (2nd𝑔) ∈ ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧)))
1016, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 72, 73, 74, 75, 78, 80, 83, 85, 98, 100, 1yonedalem3b 17913 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (((1st𝑤)𝑀(2nd𝑤))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))) = (((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑧)𝑀(2nd𝑧))))
102 1st2nd2 7843 . . . . . . . . . 10 (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
10376, 102syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
104103fveq2d 6760 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑧) = ((1st𝑍)‘⟨(1st𝑧), (2nd𝑧)⟩))
105 df-ov 7258 . . . . . . . 8 ((1st𝑧)(1st𝑍)(2nd𝑧)) = ((1st𝑍)‘⟨(1st𝑧), (2nd𝑧)⟩)
106104, 105eqtr4di 2797 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑧) = ((1st𝑧)(1st𝑍)(2nd𝑧)))
107 1st2nd2 7843 . . . . . . . . . 10 (𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
10881, 107syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
109108fveq2d 6760 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑤) = ((1st𝑍)‘⟨(1st𝑤), (2nd𝑤)⟩))
110 df-ov 7258 . . . . . . . 8 ((1st𝑤)(1st𝑍)(2nd𝑤)) = ((1st𝑍)‘⟨(1st𝑤), (2nd𝑤)⟩)
111109, 110eqtr4di 2797 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑤) = ((1st𝑤)(1st𝑍)(2nd𝑤)))
112106, 111opeq12d 4809 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩ = ⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩)
113108fveq2d 6760 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑤) = ((1st𝐸)‘⟨(1st𝑤), (2nd𝑤)⟩))
114 df-ov 7258 . . . . . . 7 ((1st𝑤)(1st𝐸)(2nd𝑤)) = ((1st𝐸)‘⟨(1st𝑤), (2nd𝑤)⟩)
115113, 114eqtr4di 2797 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑤) = ((1st𝑤)(1st𝐸)(2nd𝑤)))
116112, 115oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤)) = (⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤))))
117108fveq2d 6760 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑤) = (𝑀‘⟨(1st𝑤), (2nd𝑤)⟩))
118 df-ov 7258 . . . . . 6 ((1st𝑤)𝑀(2nd𝑤)) = (𝑀‘⟨(1st𝑤), (2nd𝑤)⟩)
119117, 118eqtr4di 2797 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑤) = ((1st𝑤)𝑀(2nd𝑤)))
120103, 108oveq12d 7273 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(2nd𝑍)𝑤) = (⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩))
121 1st2nd2 7843 . . . . . . . 8 (𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
12296, 121syl 17 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
123120, 122fveq12d 6763 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝑍)𝑤)‘𝑔) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
124 df-ov 7258 . . . . . 6 ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)
125123, 124eqtr4di 2797 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝑍)𝑤)‘𝑔) = ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)))
126116, 119, 125oveq123d 7276 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((1st𝑤)𝑀(2nd𝑤))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))))
127103fveq2d 6760 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))
128 df-ov 7258 . . . . . . . 8 ((1st𝑧)(1st𝐸)(2nd𝑧)) = ((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩)
129127, 128eqtr4di 2797 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑧) = ((1st𝑧)(1st𝐸)(2nd𝑧)))
130106, 129opeq12d 4809 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩ = ⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩)
131130, 115oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤)) = (⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤))))
132103, 108oveq12d 7273 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(2nd𝐸)𝑤) = (⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩))
133132, 122fveq12d 6763 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝐸)𝑤)‘𝑔) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
134 df-ov 7258 . . . . . 6 ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)
135133, 134eqtr4di 2797 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝐸)𝑤)‘𝑔) = ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)))
136103fveq2d 6760 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑧) = (𝑀‘⟨(1st𝑧), (2nd𝑧)⟩))
137 df-ov 7258 . . . . . 6 ((1st𝑧)𝑀(2nd𝑧)) = (𝑀‘⟨(1st𝑧), (2nd𝑧)⟩)
138136, 137eqtr4di 2797 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑧) = ((1st𝑧)𝑀(2nd𝑧)))
139131, 135, 138oveq123d 7276 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)) = (((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑧)𝑀(2nd𝑧))))
140101, 126, 1393eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)))
141140ralrimivvva 3115 . 2 (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤)((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)))
142 eqid 2738 . . 3 ((𝑄 ×c 𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇)
143 eqid 2738 . . 3 (comp‘𝑇) = (comp‘𝑇)
144142, 33, 90, 29, 143, 37, 44isnat2 17580 . 2 (𝜑 → (𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸) ↔ (𝑀X𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ∧ ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤)((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)))))
14571, 141, 144mpbir2and 709 1 (𝜑𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cun 3881  wss 3883  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  Rel wrel 5585   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  tpos ctpos 8012  Xcixp 8643  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291  Homf chomf 17292  oppCatcoppc 17337   Func cfunc 17485  func ccofu 17487   Nat cnat 17573   FuncCat cfuc 17574  SetCatcsetc 17706   ×c cxpc 17801   1stF c1stf 17802   2ndF c2ndf 17803   ⟨,⟩F cprf 17804   evalF cevlf 17843  HomFchof 17882  Yoncyon 17883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-homf 17296  df-comf 17297  df-oppc 17338  df-ssc 17439  df-resc 17440  df-subc 17441  df-func 17489  df-cofu 17491  df-nat 17575  df-fuc 17576  df-setc 17707  df-xpc 17805  df-1stf 17806  df-2ndf 17807  df-prf 17808  df-evlf 17847  df-curf 17848  df-hof 17884  df-yon 17885
This theorem is referenced by:  yonedainv  17915
  Copyright terms: Public domain W3C validator