 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3 Structured version   Visualization version   GIF version

Theorem yonedalem3 17235
 Description: Lemma for yoneda 17238. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
Assertion
Ref Expression
yonedalem3 (𝜑𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸))
Distinct variable groups:   𝑓,𝑎,𝑥, 1   𝐶,𝑎,𝑓,𝑥   𝐸,𝑎,𝑓   𝐵,𝑎,𝑓,𝑥   𝑂,𝑎,𝑓,𝑥   𝑆,𝑎,𝑓,𝑥   𝑄,𝑎,𝑓,𝑥   𝑇,𝑓   𝜑,𝑎,𝑓,𝑥   𝑌,𝑎,𝑓,𝑥   𝑍,𝑎,𝑓,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑓,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑓,𝑎)   𝐸(𝑥)   𝐻(𝑥,𝑓,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑉(𝑥,𝑓,𝑎)   𝑊(𝑥,𝑓,𝑎)

Proof of Theorem yonedalem3
Dummy variables 𝑔 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.m . . . . 5 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
2 ovex 6910 . . . . . 6 (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ∈ V
32mptex 6715 . . . . 5 (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))) ∈ V
41, 3fnmpt2i 7475 . . . 4 𝑀 Fn ((𝑂 Func 𝑆) × 𝐵)
54a1i 11 . . 3 (𝜑𝑀 Fn ((𝑂 Func 𝑆) × 𝐵))
6 yoneda.y . . . . . . . 8 𝑌 = (Yon‘𝐶)
7 yoneda.b . . . . . . . 8 𝐵 = (Base‘𝐶)
8 yoneda.1 . . . . . . . 8 1 = (Id‘𝐶)
9 yoneda.o . . . . . . . 8 𝑂 = (oppCat‘𝐶)
10 yoneda.s . . . . . . . 8 𝑆 = (SetCat‘𝑈)
11 yoneda.t . . . . . . . 8 𝑇 = (SetCat‘𝑉)
12 yoneda.q . . . . . . . 8 𝑄 = (𝑂 FuncCat 𝑆)
13 yoneda.h . . . . . . . 8 𝐻 = (HomF𝑄)
14 yoneda.r . . . . . . . 8 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
15 yoneda.e . . . . . . . 8 𝐸 = (𝑂 evalF 𝑆)
16 yoneda.z . . . . . . . 8 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17 yoneda.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
1817adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝐶 ∈ Cat)
19 yoneda.w . . . . . . . . 9 (𝜑𝑉𝑊)
2019adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑉𝑊)
21 yoneda.u . . . . . . . . 9 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2221adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → ran (Homf𝐶) ⊆ 𝑈)
23 yoneda.v . . . . . . . . 9 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2423adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
25 simprl 788 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑔 ∈ (𝑂 Func 𝑆))
26 simprr 790 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑦𝐵)
276, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 25, 26, 1yonedalem3a 17229 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → ((𝑔𝑀𝑦) = (𝑎 ∈ (((1st𝑌)‘𝑦)(𝑂 Nat 𝑆)𝑔) ↦ ((𝑎𝑦)‘( 1𝑦))) ∧ (𝑔𝑀𝑦):(𝑔(1st𝑍)𝑦)⟶(𝑔(1st𝐸)𝑦)))
2827simprd 490 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔𝑀𝑦):(𝑔(1st𝑍)𝑦)⟶(𝑔(1st𝐸)𝑦))
29 eqid 2799 . . . . . . 7 (Hom ‘𝑇) = (Hom ‘𝑇)
30 eqid 2799 . . . . . . . . . . 11 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
3112fucbas 16934 . . . . . . . . . . 11 (𝑂 Func 𝑆) = (Base‘𝑄)
329, 7oppcbas 16692 . . . . . . . . . . 11 𝐵 = (Base‘𝑂)
3330, 31, 32xpcbas 17133 . . . . . . . . . 10 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
34 eqid 2799 . . . . . . . . . 10 (Base‘𝑇) = (Base‘𝑇)
35 relfunc 16836 . . . . . . . . . . 11 Rel ((𝑄 ×c 𝑂) Func 𝑇)
366, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23yonedalem1 17227 . . . . . . . . . . . 12 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
3736simpld 489 . . . . . . . . . . 11 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
38 1st2ndbr 7452 . . . . . . . . . . 11 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
3935, 37, 38sylancr 582 . . . . . . . . . 10 (𝜑 → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
4033, 34, 39funcf1 16840 . . . . . . . . 9 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
4140fovrnda 7039 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝑍)𝑦) ∈ (Base‘𝑇))
4211, 20setcbas 17042 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → 𝑉 = (Base‘𝑇))
4341, 42eleqtrrd 2881 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝑍)𝑦) ∈ 𝑉)
4436simprd 490 . . . . . . . . . . 11 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
45 1st2ndbr 7452 . . . . . . . . . . 11 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
4635, 44, 45sylancr 582 . . . . . . . . . 10 (𝜑 → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
4733, 34, 46funcf1 16840 . . . . . . . . 9 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
4847fovrnda 7039 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝐸)𝑦) ∈ (Base‘𝑇))
4948, 42eleqtrrd 2881 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔(1st𝐸)𝑦) ∈ 𝑉)
5011, 20, 29, 43, 49elsetchom 17045 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → ((𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)) ↔ (𝑔𝑀𝑦):(𝑔(1st𝑍)𝑦)⟶(𝑔(1st𝐸)𝑦)))
5128, 50mpbird 249 . . . . 5 ((𝜑 ∧ (𝑔 ∈ (𝑂 Func 𝑆) ∧ 𝑦𝐵)) → (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
5251ralrimivva 3152 . . . 4 (𝜑 → ∀𝑔 ∈ (𝑂 Func 𝑆)∀𝑦𝐵 (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
53 fveq2 6411 . . . . . . 7 (𝑧 = ⟨𝑔, 𝑦⟩ → (𝑀𝑧) = (𝑀‘⟨𝑔, 𝑦⟩))
54 df-ov 6881 . . . . . . 7 (𝑔𝑀𝑦) = (𝑀‘⟨𝑔, 𝑦⟩)
5553, 54syl6eqr 2851 . . . . . 6 (𝑧 = ⟨𝑔, 𝑦⟩ → (𝑀𝑧) = (𝑔𝑀𝑦))
56 fveq2 6411 . . . . . . . 8 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝑍)‘𝑧) = ((1st𝑍)‘⟨𝑔, 𝑦⟩))
57 df-ov 6881 . . . . . . . 8 (𝑔(1st𝑍)𝑦) = ((1st𝑍)‘⟨𝑔, 𝑦⟩)
5856, 57syl6eqr 2851 . . . . . . 7 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝑍)‘𝑧) = (𝑔(1st𝑍)𝑦))
59 fveq2 6411 . . . . . . . 8 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨𝑔, 𝑦⟩))
60 df-ov 6881 . . . . . . . 8 (𝑔(1st𝐸)𝑦) = ((1st𝐸)‘⟨𝑔, 𝑦⟩)
6159, 60syl6eqr 2851 . . . . . . 7 (𝑧 = ⟨𝑔, 𝑦⟩ → ((1st𝐸)‘𝑧) = (𝑔(1st𝐸)𝑦))
6258, 61oveq12d 6896 . . . . . 6 (𝑧 = ⟨𝑔, 𝑦⟩ → (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) = ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
6355, 62eleq12d 2872 . . . . 5 (𝑧 = ⟨𝑔, 𝑦⟩ → ((𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ↔ (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦))))
6463ralxp 5467 . . . 4 (∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ↔ ∀𝑔 ∈ (𝑂 Func 𝑆)∀𝑦𝐵 (𝑔𝑀𝑦) ∈ ((𝑔(1st𝑍)𝑦)(Hom ‘𝑇)(𝑔(1st𝐸)𝑦)))
6552, 64sylibr 226 . . 3 (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)))
66 ovex 6910 . . . . . 6 (𝑂 Func 𝑆) ∈ V
677fvexi 6425 . . . . . 6 𝐵 ∈ V
6866, 67mpt2ex 7483 . . . . 5 (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥)))) ∈ V
691, 68eqeltri 2874 . . . 4 𝑀 ∈ V
7069elixp 8155 . . 3 (𝑀X𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ↔ (𝑀 Fn ((𝑂 Func 𝑆) × 𝐵) ∧ ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧) ∈ (((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧))))
715, 65, 70sylanbrc 579 . 2 (𝜑𝑀X𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)))
7217adantr 473 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝐶 ∈ Cat)
7319adantr 473 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑉𝑊)
7421adantr 473 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ran (Homf𝐶) ⊆ 𝑈)
7523adantr 473 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
76 simpr1 1249 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵))
77 xp1st 7433 . . . . . 6 (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) → (1st𝑧) ∈ (𝑂 Func 𝑆))
7876, 77syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (1st𝑧) ∈ (𝑂 Func 𝑆))
79 xp2nd 7434 . . . . . 6 (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) → (2nd𝑧) ∈ 𝐵)
8076, 79syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (2nd𝑧) ∈ 𝐵)
81 simpr2 1251 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵))
82 xp1st 7433 . . . . . 6 (𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) → (1st𝑤) ∈ (𝑂 Func 𝑆))
8381, 82syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (1st𝑤) ∈ (𝑂 Func 𝑆))
84 xp2nd 7434 . . . . . 6 (𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) → (2nd𝑤) ∈ 𝐵)
8581, 84syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (2nd𝑤) ∈ 𝐵)
86 simpr3 1253 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))
87 eqid 2799 . . . . . . . . . 10 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
8812, 87fuchom 16935 . . . . . . . . 9 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
89 eqid 2799 . . . . . . . . 9 (Hom ‘𝑂) = (Hom ‘𝑂)
90 eqid 2799 . . . . . . . . 9 (Hom ‘(𝑄 ×c 𝑂)) = (Hom ‘(𝑄 ×c 𝑂))
9130, 33, 88, 89, 90, 76, 81xpchom 17135 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤) = (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑧)(Hom ‘𝑂)(2nd𝑤))))
92 eqid 2799 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
9392, 9oppchom 16689 . . . . . . . . 9 ((2nd𝑧)(Hom ‘𝑂)(2nd𝑤)) = ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))
9493xpeq2i 5339 . . . . . . . 8 (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑧)(Hom ‘𝑂)(2nd𝑤))) = (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧)))
9591, 94syl6eq 2849 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤) = (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))))
9686, 95eleqtrd 2880 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))))
97 xp1st 7433 . . . . . 6 (𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))) → (1st𝑔) ∈ ((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)))
9896, 97syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (1st𝑔) ∈ ((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)))
99 xp2nd 7434 . . . . . 6 (𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))) → (2nd𝑔) ∈ ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧)))
10096, 99syl 17 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (2nd𝑔) ∈ ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧)))
1016, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 72, 73, 74, 75, 78, 80, 83, 85, 98, 100, 1yonedalem3b 17234 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (((1st𝑤)𝑀(2nd𝑤))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))) = (((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑧)𝑀(2nd𝑧))))
102 1st2nd2 7440 . . . . . . . . . 10 (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
10376, 102syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
104103fveq2d 6415 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑧) = ((1st𝑍)‘⟨(1st𝑧), (2nd𝑧)⟩))
105 df-ov 6881 . . . . . . . 8 ((1st𝑧)(1st𝑍)(2nd𝑧)) = ((1st𝑍)‘⟨(1st𝑧), (2nd𝑧)⟩)
106104, 105syl6eqr 2851 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑧) = ((1st𝑧)(1st𝑍)(2nd𝑧)))
107 1st2nd2 7440 . . . . . . . . . 10 (𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
10881, 107syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
109108fveq2d 6415 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑤) = ((1st𝑍)‘⟨(1st𝑤), (2nd𝑤)⟩))
110 df-ov 6881 . . . . . . . 8 ((1st𝑤)(1st𝑍)(2nd𝑤)) = ((1st𝑍)‘⟨(1st𝑤), (2nd𝑤)⟩)
111109, 110syl6eqr 2851 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝑍)‘𝑤) = ((1st𝑤)(1st𝑍)(2nd𝑤)))
112106, 111opeq12d 4601 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩ = ⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩)
113108fveq2d 6415 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑤) = ((1st𝐸)‘⟨(1st𝑤), (2nd𝑤)⟩))
114 df-ov 6881 . . . . . . 7 ((1st𝑤)(1st𝐸)(2nd𝑤)) = ((1st𝐸)‘⟨(1st𝑤), (2nd𝑤)⟩)
115113, 114syl6eqr 2851 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑤) = ((1st𝑤)(1st𝐸)(2nd𝑤)))
116112, 115oveq12d 6896 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤)) = (⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤))))
117108fveq2d 6415 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑤) = (𝑀‘⟨(1st𝑤), (2nd𝑤)⟩))
118 df-ov 6881 . . . . . 6 ((1st𝑤)𝑀(2nd𝑤)) = (𝑀‘⟨(1st𝑤), (2nd𝑤)⟩)
119117, 118syl6eqr 2851 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑤) = ((1st𝑤)𝑀(2nd𝑤)))
120103, 108oveq12d 6896 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(2nd𝑍)𝑤) = (⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩))
121 1st2nd2 7440 . . . . . . . 8 (𝑔 ∈ (((1st𝑧)(𝑂 Nat 𝑆)(1st𝑤)) × ((2nd𝑤)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
12296, 121syl 17 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
123120, 122fveq12d 6418 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝑍)𝑤)‘𝑔) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
124 df-ov 6881 . . . . . 6 ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)
125123, 124syl6eqr 2851 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝑍)𝑤)‘𝑔) = ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)))
126116, 119, 125oveq123d 6899 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((1st𝑤)𝑀(2nd𝑤))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑤)(1st𝑍)(2nd𝑤))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝑍)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))))
127103fveq2d 6415 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))
128 df-ov 6881 . . . . . . . 8 ((1st𝑧)(1st𝐸)(2nd𝑧)) = ((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩)
129127, 128syl6eqr 2851 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((1st𝐸)‘𝑧) = ((1st𝑧)(1st𝐸)(2nd𝑧)))
130106, 129opeq12d 4601 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩ = ⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩)
131130, 115oveq12d 6896 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤)) = (⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤))))
132103, 108oveq12d 6896 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑧(2nd𝐸)𝑤) = (⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩))
133132, 122fveq12d 6418 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝐸)𝑤)‘𝑔) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
134 df-ov 6881 . . . . . 6 ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)) = ((⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)
135133, 134syl6eqr 2851 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑧(2nd𝐸)𝑤)‘𝑔) = ((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔)))
136103fveq2d 6415 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑧) = (𝑀‘⟨(1st𝑧), (2nd𝑧)⟩))
137 df-ov 6881 . . . . . 6 ((1st𝑧)𝑀(2nd𝑧)) = (𝑀‘⟨(1st𝑧), (2nd𝑧)⟩)
138136, 137syl6eqr 2851 . . . . 5 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (𝑀𝑧) = ((1st𝑧)𝑀(2nd𝑧)))
139131, 135, 138oveq123d 6899 . . . 4 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)) = (((1st𝑔)(⟨(1st𝑧), (2nd𝑧)⟩(2nd𝐸)⟨(1st𝑤), (2nd𝑤)⟩)(2nd𝑔))(⟨((1st𝑧)(1st𝑍)(2nd𝑧)), ((1st𝑧)(1st𝐸)(2nd𝑧))⟩(comp‘𝑇)((1st𝑤)(1st𝐸)(2nd𝑤)))((1st𝑧)𝑀(2nd𝑧))))
140101, 126, 1393eqtr4d 2843 . . 3 ((𝜑 ∧ (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤))) → ((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)))
141140ralrimivvva 3153 . 2 (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤)((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)))
142 eqid 2799 . . 3 ((𝑄 ×c 𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇)
143 eqid 2799 . . 3 (comp‘𝑇) = (comp‘𝑇)
144142, 33, 90, 29, 143, 37, 44isnat2 16922 . 2 (𝜑 → (𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸) ↔ (𝑀X𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(((1st𝑍)‘𝑧)(Hom ‘𝑇)((1st𝐸)‘𝑧)) ∧ ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑤 ∈ ((𝑂 Func 𝑆) × 𝐵)∀𝑔 ∈ (𝑧(Hom ‘(𝑄 ×c 𝑂))𝑤)((𝑀𝑤)(⟨((1st𝑍)‘𝑧), ((1st𝑍)‘𝑤)⟩(comp‘𝑇)((1st𝐸)‘𝑤))((𝑧(2nd𝑍)𝑤)‘𝑔)) = (((𝑧(2nd𝐸)𝑤)‘𝑔)(⟨((1st𝑍)‘𝑧), ((1st𝐸)‘𝑧)⟩(comp‘𝑇)((1st𝐸)‘𝑤))(𝑀𝑧)))))
14571, 141, 144mpbir2and 705 1 (𝜑𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 385   ∧ w3a 1108   = wceq 1653   ∈ wcel 2157  ∀wral 3089  Vcvv 3385   ∪ cun 3767   ⊆ wss 3769  ⟨cop 4374   class class class wbr 4843   ↦ cmpt 4922   × cxp 5310  ran crn 5313  Rel wrel 5317   Fn wfn 6096  ⟶wf 6097  ‘cfv 6101  (class class class)co 6878   ↦ cmpt2 6880  1st c1st 7399  2nd c2nd 7400  tpos ctpos 7589  Xcixp 8148  Basecbs 16184  Hom chom 16278  compcco 16279  Catccat 16639  Idccid 16640  Homf chomf 16641  oppCatcoppc 16685   Func cfunc 16828   ∘func ccofu 16830   Nat cnat 16915   FuncCat cfuc 16916  SetCatcsetc 17039   ×c cxpc 17123   1stF c1stf 17124   2ndF c2ndf 17125   ⟨,⟩F cprf 17126   evalF cevlf 17164  HomFchof 17203  Yoncyon 17204 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-hom 16291  df-cco 16292  df-cat 16643  df-cid 16644  df-homf 16645  df-comf 16646  df-oppc 16686  df-ssc 16784  df-resc 16785  df-subc 16786  df-func 16832  df-cofu 16834  df-nat 16917  df-fuc 16918  df-setc 17040  df-xpc 17127  df-1stf 17128  df-2ndf 17129  df-prf 17130  df-evlf 17168  df-curf 17169  df-hof 17205  df-yon 17206 This theorem is referenced by:  yonedainv  17236
 Copyright terms: Public domain W3C validator