MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fparlem3 Structured version   Visualization version   GIF version

Theorem fparlem3 7999
Description: Lemma for fpar 8001. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fparlem3 (𝐹 Fn 𝐴 → ((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) = 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem fparlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coiun 6181 . 2 ((1st ↾ (V × V)) ∘ 𝑥𝐴 (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))) = 𝑥𝐴 ((1st ↾ (V × V)) ∘ (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥})))
2 inss1 4173 . . . . 5 (dom 𝐹 ∩ ran (1st ↾ (V × V))) ⊆ dom 𝐹
3 fndm 6574 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
42, 3sseqtrid 3983 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹 ∩ ran (1st ↾ (V × V))) ⊆ 𝐴)
5 dfco2a 6171 . . . 4 ((dom 𝐹 ∩ ran (1st ↾ (V × V))) ⊆ 𝐴 → (𝐹 ∘ (1st ↾ (V × V))) = 𝑥𝐴 (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥})))
64, 5syl 17 . . 3 (𝐹 Fn 𝐴 → (𝐹 ∘ (1st ↾ (V × V))) = 𝑥𝐴 (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥})))
76coeq2d 5791 . 2 (𝐹 Fn 𝐴 → ((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) = ((1st ↾ (V × V)) ∘ 𝑥𝐴 (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))))
8 inss1 4173 . . . . . . . . 9 (dom ({(𝐹𝑥)} × ({𝑥} × V)) ∩ ran (1st ↾ (V × V))) ⊆ dom ({(𝐹𝑥)} × ({𝑥} × V))
9 dmxpss 6096 . . . . . . . . 9 dom ({(𝐹𝑥)} × ({𝑥} × V)) ⊆ {(𝐹𝑥)}
108, 9sstri 3940 . . . . . . . 8 (dom ({(𝐹𝑥)} × ({𝑥} × V)) ∩ ran (1st ↾ (V × V))) ⊆ {(𝐹𝑥)}
11 dfco2a 6171 . . . . . . . 8 ((dom ({(𝐹𝑥)} × ({𝑥} × V)) ∩ ran (1st ↾ (V × V))) ⊆ {(𝐹𝑥)} → (({(𝐹𝑥)} × ({𝑥} × V)) ∘ (1st ↾ (V × V))) = 𝑦 ∈ {(𝐹𝑥)} (((1st ↾ (V × V)) “ {𝑦}) × (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦})))
1210, 11ax-mp 5 . . . . . . 7 (({(𝐹𝑥)} × ({𝑥} × V)) ∘ (1st ↾ (V × V))) = 𝑦 ∈ {(𝐹𝑥)} (((1st ↾ (V × V)) “ {𝑦}) × (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦}))
13 fvex 6824 . . . . . . . 8 (𝐹𝑥) ∈ V
14 fparlem1 7997 . . . . . . . . . 10 ((1st ↾ (V × V)) “ {𝑦}) = ({𝑦} × V)
15 sneq 4581 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) → {𝑦} = {(𝐹𝑥)})
1615xpeq1d 5636 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → ({𝑦} × V) = ({(𝐹𝑥)} × V))
1714, 16eqtrid 2789 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((1st ↾ (V × V)) “ {𝑦}) = ({(𝐹𝑥)} × V))
1815imaeq2d 5986 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦}) = (({(𝐹𝑥)} × ({𝑥} × V)) “ {(𝐹𝑥)}))
19 df-ima 5620 . . . . . . . . . . 11 (({(𝐹𝑥)} × ({𝑥} × V)) “ {(𝐹𝑥)}) = ran (({(𝐹𝑥)} × ({𝑥} × V)) ↾ {(𝐹𝑥)})
20 ssid 3953 . . . . . . . . . . . . . 14 {(𝐹𝑥)} ⊆ {(𝐹𝑥)}
21 xpssres 5947 . . . . . . . . . . . . . 14 ({(𝐹𝑥)} ⊆ {(𝐹𝑥)} → (({(𝐹𝑥)} × ({𝑥} × V)) ↾ {(𝐹𝑥)}) = ({(𝐹𝑥)} × ({𝑥} × V)))
2220, 21ax-mp 5 . . . . . . . . . . . . 13 (({(𝐹𝑥)} × ({𝑥} × V)) ↾ {(𝐹𝑥)}) = ({(𝐹𝑥)} × ({𝑥} × V))
2322rneqi 5865 . . . . . . . . . . . 12 ran (({(𝐹𝑥)} × ({𝑥} × V)) ↾ {(𝐹𝑥)}) = ran ({(𝐹𝑥)} × ({𝑥} × V))
2413snnz 4722 . . . . . . . . . . . . 13 {(𝐹𝑥)} ≠ ∅
25 rnxp 6095 . . . . . . . . . . . . 13 ({(𝐹𝑥)} ≠ ∅ → ran ({(𝐹𝑥)} × ({𝑥} × V)) = ({𝑥} × V))
2624, 25ax-mp 5 . . . . . . . . . . . 12 ran ({(𝐹𝑥)} × ({𝑥} × V)) = ({𝑥} × V)
2723, 26eqtri 2765 . . . . . . . . . . 11 ran (({(𝐹𝑥)} × ({𝑥} × V)) ↾ {(𝐹𝑥)}) = ({𝑥} × V)
2819, 27eqtri 2765 . . . . . . . . . 10 (({(𝐹𝑥)} × ({𝑥} × V)) “ {(𝐹𝑥)}) = ({𝑥} × V)
2918, 28eqtrdi 2793 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦}) = ({𝑥} × V))
3017, 29xpeq12d 5638 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (((1st ↾ (V × V)) “ {𝑦}) × (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦})) = (({(𝐹𝑥)} × V) × ({𝑥} × V)))
3113, 30iunxsn 5033 . . . . . . 7 𝑦 ∈ {(𝐹𝑥)} (((1st ↾ (V × V)) “ {𝑦}) × (({(𝐹𝑥)} × ({𝑥} × V)) “ {𝑦})) = (({(𝐹𝑥)} × V) × ({𝑥} × V))
3212, 31eqtri 2765 . . . . . 6 (({(𝐹𝑥)} × ({𝑥} × V)) ∘ (1st ↾ (V × V))) = (({(𝐹𝑥)} × V) × ({𝑥} × V))
3332cnveqi 5803 . . . . 5 (({(𝐹𝑥)} × ({𝑥} × V)) ∘ (1st ↾ (V × V))) = (({(𝐹𝑥)} × V) × ({𝑥} × V))
34 cnvco 5814 . . . . 5 (({(𝐹𝑥)} × ({𝑥} × V)) ∘ (1st ↾ (V × V))) = ((1st ↾ (V × V)) ∘ ({(𝐹𝑥)} × ({𝑥} × V)))
35 cnvxp 6082 . . . . 5 (({(𝐹𝑥)} × V) × ({𝑥} × V)) = (({𝑥} × V) × ({(𝐹𝑥)} × V))
3633, 34, 353eqtr3i 2773 . . . 4 ((1st ↾ (V × V)) ∘ ({(𝐹𝑥)} × ({𝑥} × V))) = (({𝑥} × V) × ({(𝐹𝑥)} × V))
37 fparlem1 7997 . . . . . . . . 9 ((1st ↾ (V × V)) “ {𝑥}) = ({𝑥} × V)
3837xpeq2i 5634 . . . . . . . 8 ({(𝐹𝑥)} × ((1st ↾ (V × V)) “ {𝑥})) = ({(𝐹𝑥)} × ({𝑥} × V))
39 fnsnfv 6886 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
4039xpeq1d 5636 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ({(𝐹𝑥)} × ((1st ↾ (V × V)) “ {𝑥})) = ((𝐹 “ {𝑥}) × ((1st ↾ (V × V)) “ {𝑥})))
4138, 40eqtr3id 2791 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ({(𝐹𝑥)} × ({𝑥} × V)) = ((𝐹 “ {𝑥}) × ((1st ↾ (V × V)) “ {𝑥})))
4241cnveqd 5804 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → ({(𝐹𝑥)} × ({𝑥} × V)) = ((𝐹 “ {𝑥}) × ((1st ↾ (V × V)) “ {𝑥})))
43 cnvxp 6082 . . . . . 6 ((𝐹 “ {𝑥}) × ((1st ↾ (V × V)) “ {𝑥})) = (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))
4442, 43eqtrdi 2793 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → ({(𝐹𝑥)} × ({𝑥} × V)) = (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥})))
4544coeq2d 5791 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → ((1st ↾ (V × V)) ∘ ({(𝐹𝑥)} × ({𝑥} × V))) = ((1st ↾ (V × V)) ∘ (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))))
4636, 45eqtr3id 2791 . . 3 ((𝐹 Fn 𝐴𝑥𝐴) → (({𝑥} × V) × ({(𝐹𝑥)} × V)) = ((1st ↾ (V × V)) ∘ (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))))
4746iuneq2dv 4961 . 2 (𝐹 Fn 𝐴 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)) = 𝑥𝐴 ((1st ↾ (V × V)) ∘ (((1st ↾ (V × V)) “ {𝑥}) × (𝐹 “ {𝑥}))))
481, 7, 473eqtr4a 2803 1 (𝐹 Fn 𝐴 → ((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) = 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2941  Vcvv 3441  cin 3896  wss 3897  c0 4267  {csn 4571   ciun 4937   × cxp 5605  ccnv 5606  dom cdm 5607  ran crn 5608  cres 5609  cima 5610  ccom 5611   Fn wfn 6460  cfv 6465  1st c1st 7874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-fv 6473  df-1st 7876  df-2nd 7877
This theorem is referenced by:  fpar  8001
  Copyright terms: Public domain W3C validator