| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrei | Structured version Visualization version GIF version | ||
| Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| zrei.1 | ⊢ 𝐴 ∈ ℤ |
| Ref | Expression |
|---|---|
| zrei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrei.1 | . 2 ⊢ 𝐴 ∈ ℤ | |
| 2 | zre 12472 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ℝcr 11005 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 |
| This theorem is referenced by: dfuzi 12564 eluzaddiOLD 12764 eluzsubiOLD 12766 dvdslelem 16220 divalglem1 16305 divalglem6 16309 divalglem9 16312 gcdaddmlem 16435 basellem9 27026 axlowdimlem16 28935 poimirlem17 37687 poimirlem19 37689 poimirlem20 37690 fdc 37795 jm2.27dlem2 43113 |
| Copyright terms: Public domain | W3C validator |