Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zrei | Structured version Visualization version GIF version |
Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
zrei.1 | ⊢ 𝐴 ∈ ℤ |
Ref | Expression |
---|---|
zrei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrei.1 | . 2 ⊢ 𝐴 ∈ ℤ | |
2 | zre 12037 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 ℝcr 10587 ℤcz 12033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 df-ov 7159 df-neg 10924 df-z 12034 |
This theorem is referenced by: dfuzi 12125 eluzaddi 12324 eluzsubi 12325 dvdslelem 15723 divalglem1 15808 divalglem6 15812 divalglem9 15815 gcdaddmlem 15936 basellem9 25787 axlowdimlem16 26864 poimirlem17 35389 poimirlem19 35391 poimirlem20 35392 fdc 35498 jm2.27dlem2 40369 |
Copyright terms: Public domain | W3C validator |