![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrei | Structured version Visualization version GIF version |
Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
zrei.1 | ⊢ 𝐴 ∈ ℤ |
Ref | Expression |
---|---|
zrei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrei.1 | . 2 ⊢ 𝐴 ∈ ℤ | |
2 | zre 12643 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℝcr 11183 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 df-z 12640 |
This theorem is referenced by: dfuzi 12734 eluzaddiOLD 12935 eluzsubiOLD 12937 dvdslelem 16357 divalglem1 16442 divalglem6 16446 divalglem9 16449 gcdaddmlem 16570 basellem9 27150 axlowdimlem16 28990 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 fdc 37705 jm2.27dlem2 42967 |
Copyright terms: Public domain | W3C validator |