MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrei Structured version   Visualization version   GIF version

Theorem zrei 12325
Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.)
Hypothesis
Ref Expression
zrei.1 𝐴 ∈ ℤ
Assertion
Ref Expression
zrei 𝐴 ∈ ℝ

Proof of Theorem zrei
StepHypRef Expression
1 zrei.1 . 2 𝐴 ∈ ℤ
2 zre 12323 . 2 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
31, 2ax-mp 5 1 𝐴 ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  cr 10870  cz 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-neg 11208  df-z 12320
This theorem is referenced by:  dfuzi  12411  eluzaddi  12611  eluzsubi  12612  dvdslelem  16018  divalglem1  16103  divalglem6  16107  divalglem9  16110  gcdaddmlem  16231  basellem9  26238  axlowdimlem16  27325  poimirlem17  35794  poimirlem19  35796  poimirlem20  35797  fdc  35903  jm2.27dlem2  40832
  Copyright terms: Public domain W3C validator