MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrei Structured version   Visualization version   GIF version

Theorem zrei 12511
Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.)
Hypothesis
Ref Expression
zrei.1 𝐴 ∈ ℤ
Assertion
Ref Expression
zrei 𝐴 ∈ ℝ

Proof of Theorem zrei
StepHypRef Expression
1 zrei.1 . 2 𝐴 ∈ ℤ
2 zre 12509 . 2 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
31, 2ax-mp 5 1 𝐴 ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cr 11043  cz 12505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-neg 11384  df-z 12506
This theorem is referenced by:  dfuzi  12601  eluzaddiOLD  12801  eluzsubiOLD  12803  dvdslelem  16255  divalglem1  16340  divalglem6  16344  divalglem9  16347  gcdaddmlem  16470  basellem9  27032  axlowdimlem16  28937  poimirlem17  37624  poimirlem19  37626  poimirlem20  37627  fdc  37732  jm2.27dlem2  42992
  Copyright terms: Public domain W3C validator