Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zrei | Structured version Visualization version GIF version |
Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
zrei.1 | ⊢ 𝐴 ∈ ℤ |
Ref | Expression |
---|---|
zrei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrei.1 | . 2 ⊢ 𝐴 ∈ ℤ | |
2 | zre 12323 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ℝcr 10870 ℤcz 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-neg 11208 df-z 12320 |
This theorem is referenced by: dfuzi 12411 eluzaddi 12611 eluzsubi 12612 dvdslelem 16018 divalglem1 16103 divalglem6 16107 divalglem9 16110 gcdaddmlem 16231 basellem9 26238 axlowdimlem16 27325 poimirlem17 35794 poimirlem19 35796 poimirlem20 35797 fdc 35903 jm2.27dlem2 40832 |
Copyright terms: Public domain | W3C validator |