MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrei Structured version   Visualization version   GIF version

Theorem zrei 12542
Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.)
Hypothesis
Ref Expression
zrei.1 𝐴 ∈ ℤ
Assertion
Ref Expression
zrei 𝐴 ∈ ℝ

Proof of Theorem zrei
StepHypRef Expression
1 zrei.1 . 2 𝐴 ∈ ℤ
2 zre 12540 . 2 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
31, 2ax-mp 5 1 𝐴 ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cr 11074  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-neg 11415  df-z 12537
This theorem is referenced by:  dfuzi  12632  eluzaddiOLD  12832  eluzsubiOLD  12834  dvdslelem  16286  divalglem1  16371  divalglem6  16375  divalglem9  16378  gcdaddmlem  16501  basellem9  27006  axlowdimlem16  28891  poimirlem17  37638  poimirlem19  37640  poimirlem20  37641  fdc  37746  jm2.27dlem2  43006
  Copyright terms: Public domain W3C validator