| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrei | Structured version Visualization version GIF version | ||
| Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| zrei.1 | ⊢ 𝐴 ∈ ℤ |
| Ref | Expression |
|---|---|
| zrei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrei.1 | . 2 ⊢ 𝐴 ∈ ℤ | |
| 2 | zre 12533 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℝcr 11067 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 |
| This theorem is referenced by: dfuzi 12625 eluzaddiOLD 12825 eluzsubiOLD 12827 dvdslelem 16279 divalglem1 16364 divalglem6 16368 divalglem9 16371 gcdaddmlem 16494 basellem9 26999 axlowdimlem16 28884 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 fdc 37739 jm2.27dlem2 42999 |
| Copyright terms: Public domain | W3C validator |