![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzaddiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of eluzaddi 12849 as of 7-Feb-2025. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eluzsubi.1 | ⊢ 𝑀 ∈ ℤ |
eluzsubi.2 | ⊢ 𝐾 ∈ ℤ |
Ref | Expression |
---|---|
eluzaddiOLD | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12828 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
2 | eluzsubi.2 | . . 3 ⊢ 𝐾 ∈ ℤ | |
3 | zaddcl 12598 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ) | |
4 | 1, 2, 3 | sylancl 586 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ ℤ) |
5 | eluzsubi.1 | . . . 4 ⊢ 𝑀 ∈ ℤ | |
6 | 5 | eluz1i 12826 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
7 | zre 12558 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | 5 | zrei 12560 | . . . . . 6 ⊢ 𝑀 ∈ ℝ |
9 | 2 | zrei 12560 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
10 | leadd1 11678 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) | |
11 | 8, 9, 10 | mp3an13 1452 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑀 ≤ 𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) |
12 | 7, 11 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀 ≤ 𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) |
13 | 12 | biimpa 477 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)) |
14 | 6, 13 | sylbi 216 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)) |
15 | zaddcl 12598 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ) | |
16 | 5, 2, 15 | mp2an 690 | . . 3 ⊢ (𝑀 + 𝐾) ∈ ℤ |
17 | 16 | eluz1i 12826 | . 2 ⊢ ((𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ ((𝑁 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) |
18 | 4, 14, 17 | sylanbrc 583 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 + caddc 11109 ≤ cle 11245 ℤcz 12554 ℤ≥cuz 12818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |