MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzaddiOLD Structured version   Visualization version   GIF version

Theorem eluzaddiOLD 12897
Description: Obsolete version of eluzaddi 12896 as of 7-Feb-2025. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eluzsubi.1 𝑀 ∈ ℤ
eluzsubi.2 𝐾 ∈ ℤ
Assertion
Ref Expression
eluzaddiOLD (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))

Proof of Theorem eluzaddiOLD
StepHypRef Expression
1 eluzelz 12875 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2 eluzsubi.2 . . 3 𝐾 ∈ ℤ
3 zaddcl 12645 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
41, 2, 3sylancl 584 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ ℤ)
5 eluzsubi.1 . . . 4 𝑀 ∈ ℤ
65eluz1i 12873 . . 3 (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
7 zre 12605 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
85zrei 12607 . . . . . 6 𝑀 ∈ ℝ
92zrei 12607 . . . . . 6 𝐾 ∈ ℝ
10 leadd1 11720 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)))
118, 9, 10mp3an13 1449 . . . . 5 (𝑁 ∈ ℝ → (𝑀𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)))
127, 11syl 17 . . . 4 (𝑁 ∈ ℤ → (𝑀𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)))
1312biimpa 475 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))
146, 13sylbi 216 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))
15 zaddcl 12645 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
165, 2, 15mp2an 690 . . 3 (𝑀 + 𝐾) ∈ ℤ
1716eluz1i 12873 . 2 ((𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)) ↔ ((𝑁 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)))
184, 14, 17sylanbrc 581 1 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099   class class class wbr 5143  cfv 6543  (class class class)co 7413  cr 11145   + caddc 11149  cle 11287  cz 12601  cuz 12865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-n0 12516  df-z 12602  df-uz 12866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator