MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem9 Structured version   Visualization version   GIF version

Theorem divalglem9 16347
Description: Lemma for divalg 16349. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
divalglem9.5 𝑅 = inf(𝑆, ℝ, < )
Assertion
Ref Expression
divalglem9 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
Distinct variable groups:   𝐷,𝑟,𝑥   𝑁,𝑟,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑟)   𝑆(𝑟)

Proof of Theorem divalglem9
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divalglem9.5 . . . 4 𝑅 = inf(𝑆, ℝ, < )
2 divalglem8.1 . . . . 5 𝑁 ∈ ℤ
3 divalglem8.2 . . . . 5 𝐷 ∈ ℤ
4 divalglem8.3 . . . . 5 𝐷 ≠ 0
5 divalglem8.4 . . . . 5 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
62, 3, 4, 5divalglem2 16341 . . . 4 inf(𝑆, ℝ, < ) ∈ 𝑆
71, 6eqeltri 2824 . . 3 𝑅𝑆
82, 3, 4, 5, 1divalglem5 16343 . . . 4 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
98simpri 485 . . 3 𝑅 < (abs‘𝐷)
10 breq1 5105 . . . 4 (𝑥 = 𝑅 → (𝑥 < (abs‘𝐷) ↔ 𝑅 < (abs‘𝐷)))
1110rspcev 3585 . . 3 ((𝑅𝑆𝑅 < (abs‘𝐷)) → ∃𝑥𝑆 𝑥 < (abs‘𝐷))
127, 9, 11mp2an 692 . 2 𝑥𝑆 𝑥 < (abs‘𝐷)
13 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
1413breq2d 5114 . . . . . . . . . . . . . 14 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
1514, 5elrab2 3659 . . . . . . . . . . . . 13 (𝑥𝑆 ↔ (𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)))
1615simplbi 497 . . . . . . . . . . . 12 (𝑥𝑆𝑥 ∈ ℕ0)
1716nn0zd 12531 . . . . . . . . . . 11 (𝑥𝑆𝑥 ∈ ℤ)
18 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑟 = 𝑦 → (𝑁𝑟) = (𝑁𝑦))
1918breq2d 5114 . . . . . . . . . . . . . 14 (𝑟 = 𝑦 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑦)))
2019, 5elrab2 3659 . . . . . . . . . . . . 13 (𝑦𝑆 ↔ (𝑦 ∈ ℕ0𝐷 ∥ (𝑁𝑦)))
2120simplbi 497 . . . . . . . . . . . 12 (𝑦𝑆𝑦 ∈ ℕ0)
2221nn0zd 12531 . . . . . . . . . . 11 (𝑦𝑆𝑦 ∈ ℤ)
23 zsubcl 12551 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁𝑥) ∈ ℤ)
242, 23mpan 690 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑁𝑥) ∈ ℤ)
25 zsubcl 12551 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑁𝑦) ∈ ℤ)
262, 25mpan 690 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑁𝑦) ∈ ℤ)
2724, 26anim12i 613 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ))
2817, 22, 27syl2an 596 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → ((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ))
2915simprbi 496 . . . . . . . . . . 11 (𝑥𝑆𝐷 ∥ (𝑁𝑥))
3020simprbi 496 . . . . . . . . . . 11 (𝑦𝑆𝐷 ∥ (𝑁𝑦))
3129, 30anim12i 613 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)))
32 dvds2sub 16237 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ (𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦))))
333, 32mp3an1 1450 . . . . . . . . . 10 (((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦))))
3428, 31, 33sylc 65 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦)))
35 zcn 12510 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
36 zcn 12510 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
372zrei 12511 . . . . . . . . . . . . . . . . 17 𝑁 ∈ ℝ
3837recni 11164 . . . . . . . . . . . . . . . 16 𝑁 ∈ ℂ
3938subidi 11469 . . . . . . . . . . . . . . 15 (𝑁𝑁) = 0
4039oveq1i 7379 . . . . . . . . . . . . . 14 ((𝑁𝑁) − (𝑥𝑦)) = (0 − (𝑥𝑦))
41 0cn 11142 . . . . . . . . . . . . . . 15 0 ∈ ℂ
42 subsub2 11426 . . . . . . . . . . . . . . 15 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − (𝑥𝑦)) = (0 + (𝑦𝑥)))
4341, 42mp3an1 1450 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − (𝑥𝑦)) = (0 + (𝑦𝑥)))
4440, 43eqtrid 2776 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑁) − (𝑥𝑦)) = (0 + (𝑦𝑥)))
45 sub4 11443 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑁𝑁) − (𝑥𝑦)) = ((𝑁𝑥) − (𝑁𝑦)))
4638, 38, 45mpanl12 702 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑁) − (𝑥𝑦)) = ((𝑁𝑥) − (𝑁𝑦)))
47 subcl 11396 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
4847ancoms 458 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
4948addlidd 11351 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + (𝑦𝑥)) = (𝑦𝑥))
5044, 46, 493eqtr3d 2772 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5135, 36, 50syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5217, 22, 51syl2an 596 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5352breq2d 5114 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦)) ↔ 𝐷 ∥ (𝑦𝑥)))
5434, 53mpbid 232 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝐷 ∥ (𝑦𝑥))
55 zsubcl 12551 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥) ∈ ℤ)
5655ancoms 458 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦𝑥) ∈ ℤ)
57 absdvdsb 16220 . . . . . . . . . 10 ((𝐷 ∈ ℤ ∧ (𝑦𝑥) ∈ ℤ) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
583, 56, 57sylancr 587 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
5917, 22, 58syl2an 596 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
6054, 59mpbid 232 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → (abs‘𝐷) ∥ (𝑦𝑥))
61 nnabscl 15268 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
623, 4, 61mp2an 692 . . . . . . . . . 10 (abs‘𝐷) ∈ ℕ
6362nnzi 12533 . . . . . . . . 9 (abs‘𝐷) ∈ ℤ
64 divides 16200 . . . . . . . . 9 (((abs‘𝐷) ∈ ℤ ∧ (𝑦𝑥) ∈ ℤ) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6563, 56, 64sylancr 587 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6617, 22, 65syl2an 596 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6760, 66mpbid 232 . . . . . 6 ((𝑥𝑆𝑦𝑆) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥))
6867adantr 480 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥))
692, 3, 4, 5divalglem8 16346 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (𝑘 ∈ ℤ → ((𝑘 · (abs‘𝐷)) = (𝑦𝑥) → 𝑥 = 𝑦)))
7069rexlimdv 3132 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥) → 𝑥 = 𝑦))
7168, 70mpd 15 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → 𝑥 = 𝑦)
7271ex 412 . . 3 ((𝑥𝑆𝑦𝑆) → ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦))
7372rgen2 3175 . 2 𝑥𝑆𝑦𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)
74 breq1 5105 . . 3 (𝑥 = 𝑦 → (𝑥 < (abs‘𝐷) ↔ 𝑦 < (abs‘𝐷)))
7574reu4 3699 . 2 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ (∃𝑥𝑆 𝑥 < (abs‘𝐷) ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)))
7612, 73, 75mpbir2an 711 1 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3349  {crab 3402   class class class wbr 5102  cfv 6499  (class class class)co 7369  infcinf 9368  cc 11042  cr 11043  0cc0 11044   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  cn 12162  0cn0 12418  cz 12505  abscabs 15176  cdvds 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199
This theorem is referenced by:  divalglem10  16348
  Copyright terms: Public domain W3C validator