MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem9 Structured version   Visualization version   GIF version

Theorem divalglem9 15752
Description: Lemma for divalg 15754. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
divalglem9.5 𝑅 = inf(𝑆, ℝ, < )
Assertion
Ref Expression
divalglem9 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
Distinct variable groups:   𝐷,𝑟,𝑥   𝑁,𝑟,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑟)   𝑆(𝑟)

Proof of Theorem divalglem9
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divalglem9.5 . . . 4 𝑅 = inf(𝑆, ℝ, < )
2 divalglem8.1 . . . . 5 𝑁 ∈ ℤ
3 divalglem8.2 . . . . 5 𝐷 ∈ ℤ
4 divalglem8.3 . . . . 5 𝐷 ≠ 0
5 divalglem8.4 . . . . 5 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
62, 3, 4, 5divalglem2 15746 . . . 4 inf(𝑆, ℝ, < ) ∈ 𝑆
71, 6eqeltri 2912 . . 3 𝑅𝑆
82, 3, 4, 5, 1divalglem5 15748 . . . 4 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
98simpri 489 . . 3 𝑅 < (abs‘𝐷)
10 breq1 5056 . . . 4 (𝑥 = 𝑅 → (𝑥 < (abs‘𝐷) ↔ 𝑅 < (abs‘𝐷)))
1110rspcev 3609 . . 3 ((𝑅𝑆𝑅 < (abs‘𝐷)) → ∃𝑥𝑆 𝑥 < (abs‘𝐷))
127, 9, 11mp2an 691 . 2 𝑥𝑆 𝑥 < (abs‘𝐷)
13 oveq2 7159 . . . . . . . . . . . . . . 15 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
1413breq2d 5065 . . . . . . . . . . . . . 14 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
1514, 5elrab2 3669 . . . . . . . . . . . . 13 (𝑥𝑆 ↔ (𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)))
1615simplbi 501 . . . . . . . . . . . 12 (𝑥𝑆𝑥 ∈ ℕ0)
1716nn0zd 12084 . . . . . . . . . . 11 (𝑥𝑆𝑥 ∈ ℤ)
18 oveq2 7159 . . . . . . . . . . . . . . 15 (𝑟 = 𝑦 → (𝑁𝑟) = (𝑁𝑦))
1918breq2d 5065 . . . . . . . . . . . . . 14 (𝑟 = 𝑦 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑦)))
2019, 5elrab2 3669 . . . . . . . . . . . . 13 (𝑦𝑆 ↔ (𝑦 ∈ ℕ0𝐷 ∥ (𝑁𝑦)))
2120simplbi 501 . . . . . . . . . . . 12 (𝑦𝑆𝑦 ∈ ℕ0)
2221nn0zd 12084 . . . . . . . . . . 11 (𝑦𝑆𝑦 ∈ ℤ)
23 zsubcl 12023 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁𝑥) ∈ ℤ)
242, 23mpan 689 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑁𝑥) ∈ ℤ)
25 zsubcl 12023 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑁𝑦) ∈ ℤ)
262, 25mpan 689 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑁𝑦) ∈ ℤ)
2724, 26anim12i 615 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ))
2817, 22, 27syl2an 598 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → ((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ))
2915simprbi 500 . . . . . . . . . . 11 (𝑥𝑆𝐷 ∥ (𝑁𝑥))
3020simprbi 500 . . . . . . . . . . 11 (𝑦𝑆𝐷 ∥ (𝑁𝑦))
3129, 30anim12i 615 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)))
32 dvds2sub 15646 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ (𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦))))
333, 32mp3an1 1445 . . . . . . . . . 10 (((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦))))
3428, 31, 33sylc 65 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦)))
35 zcn 11985 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
36 zcn 11985 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
372zrei 11986 . . . . . . . . . . . . . . . . 17 𝑁 ∈ ℝ
3837recni 10655 . . . . . . . . . . . . . . . 16 𝑁 ∈ ℂ
3938subidi 10957 . . . . . . . . . . . . . . 15 (𝑁𝑁) = 0
4039oveq1i 7161 . . . . . . . . . . . . . 14 ((𝑁𝑁) − (𝑥𝑦)) = (0 − (𝑥𝑦))
41 0cn 10633 . . . . . . . . . . . . . . 15 0 ∈ ℂ
42 subsub2 10914 . . . . . . . . . . . . . . 15 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − (𝑥𝑦)) = (0 + (𝑦𝑥)))
4341, 42mp3an1 1445 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − (𝑥𝑦)) = (0 + (𝑦𝑥)))
4440, 43syl5eq 2871 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑁) − (𝑥𝑦)) = (0 + (𝑦𝑥)))
45 sub4 10931 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑁𝑁) − (𝑥𝑦)) = ((𝑁𝑥) − (𝑁𝑦)))
4638, 38, 45mpanl12 701 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑁) − (𝑥𝑦)) = ((𝑁𝑥) − (𝑁𝑦)))
47 subcl 10885 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
4847ancoms 462 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
4948addid2d 10841 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + (𝑦𝑥)) = (𝑦𝑥))
5044, 46, 493eqtr3d 2867 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5135, 36, 50syl2an 598 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5217, 22, 51syl2an 598 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5352breq2d 5065 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦)) ↔ 𝐷 ∥ (𝑦𝑥)))
5434, 53mpbid 235 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝐷 ∥ (𝑦𝑥))
55 zsubcl 12023 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥) ∈ ℤ)
5655ancoms 462 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦𝑥) ∈ ℤ)
57 absdvdsb 15630 . . . . . . . . . 10 ((𝐷 ∈ ℤ ∧ (𝑦𝑥) ∈ ℤ) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
583, 56, 57sylancr 590 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
5917, 22, 58syl2an 598 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
6054, 59mpbid 235 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → (abs‘𝐷) ∥ (𝑦𝑥))
61 nnabscl 14687 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
623, 4, 61mp2an 691 . . . . . . . . . 10 (abs‘𝐷) ∈ ℕ
6362nnzi 12005 . . . . . . . . 9 (abs‘𝐷) ∈ ℤ
64 divides 15611 . . . . . . . . 9 (((abs‘𝐷) ∈ ℤ ∧ (𝑦𝑥) ∈ ℤ) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6563, 56, 64sylancr 590 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6617, 22, 65syl2an 598 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6760, 66mpbid 235 . . . . . 6 ((𝑥𝑆𝑦𝑆) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥))
6867adantr 484 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥))
692, 3, 4, 5divalglem8 15751 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (𝑘 ∈ ℤ → ((𝑘 · (abs‘𝐷)) = (𝑦𝑥) → 𝑥 = 𝑦)))
7069rexlimdv 3275 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥) → 𝑥 = 𝑦))
7168, 70mpd 15 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → 𝑥 = 𝑦)
7271ex 416 . . 3 ((𝑥𝑆𝑦𝑆) → ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦))
7372rgen2 3198 . 2 𝑥𝑆𝑦𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)
74 breq1 5056 . . 3 (𝑥 = 𝑦 → (𝑥 < (abs‘𝐷) ↔ 𝑦 < (abs‘𝐷)))
7574reu4 3708 . 2 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ (∃𝑥𝑆 𝑥 < (abs‘𝐷) ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)))
7612, 73, 75mpbir2an 710 1 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  ∃!wreu 3135  {crab 3137   class class class wbr 5053  cfv 6345  (class class class)co 7151  infcinf 8904  cc 10535  cr 10536  0cc0 10537   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  cn 11636  0cn0 11896  cz 11980  abscabs 14595  cdvds 15609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-sup 8905  df-inf 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12897  df-seq 13376  df-exp 13437  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610
This theorem is referenced by:  divalglem10  15753
  Copyright terms: Public domain W3C validator