MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem9 Structured version   Visualization version   GIF version

Theorem divalglem9 16283
Description: Lemma for divalg 16285. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
divalglem9.5 𝑅 = inf(𝑆, ℝ, < )
Assertion
Ref Expression
divalglem9 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
Distinct variable groups:   𝐷,𝑟,𝑥   𝑁,𝑟,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑟)   𝑆(𝑟)

Proof of Theorem divalglem9
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divalglem9.5 . . . 4 𝑅 = inf(𝑆, ℝ, < )
2 divalglem8.1 . . . . 5 𝑁 ∈ ℤ
3 divalglem8.2 . . . . 5 𝐷 ∈ ℤ
4 divalglem8.3 . . . . 5 𝐷 ≠ 0
5 divalglem8.4 . . . . 5 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
62, 3, 4, 5divalglem2 16277 . . . 4 inf(𝑆, ℝ, < ) ∈ 𝑆
71, 6eqeltri 2834 . . 3 𝑅𝑆
82, 3, 4, 5, 1divalglem5 16279 . . . 4 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
98simpri 486 . . 3 𝑅 < (abs‘𝐷)
10 breq1 5108 . . . 4 (𝑥 = 𝑅 → (𝑥 < (abs‘𝐷) ↔ 𝑅 < (abs‘𝐷)))
1110rspcev 3581 . . 3 ((𝑅𝑆𝑅 < (abs‘𝐷)) → ∃𝑥𝑆 𝑥 < (abs‘𝐷))
127, 9, 11mp2an 690 . 2 𝑥𝑆 𝑥 < (abs‘𝐷)
13 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
1413breq2d 5117 . . . . . . . . . . . . . 14 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
1514, 5elrab2 3648 . . . . . . . . . . . . 13 (𝑥𝑆 ↔ (𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)))
1615simplbi 498 . . . . . . . . . . . 12 (𝑥𝑆𝑥 ∈ ℕ0)
1716nn0zd 12525 . . . . . . . . . . 11 (𝑥𝑆𝑥 ∈ ℤ)
18 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑟 = 𝑦 → (𝑁𝑟) = (𝑁𝑦))
1918breq2d 5117 . . . . . . . . . . . . . 14 (𝑟 = 𝑦 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑦)))
2019, 5elrab2 3648 . . . . . . . . . . . . 13 (𝑦𝑆 ↔ (𝑦 ∈ ℕ0𝐷 ∥ (𝑁𝑦)))
2120simplbi 498 . . . . . . . . . . . 12 (𝑦𝑆𝑦 ∈ ℕ0)
2221nn0zd 12525 . . . . . . . . . . 11 (𝑦𝑆𝑦 ∈ ℤ)
23 zsubcl 12545 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁𝑥) ∈ ℤ)
242, 23mpan 688 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑁𝑥) ∈ ℤ)
25 zsubcl 12545 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑁𝑦) ∈ ℤ)
262, 25mpan 688 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑁𝑦) ∈ ℤ)
2724, 26anim12i 613 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ))
2817, 22, 27syl2an 596 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → ((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ))
2915simprbi 497 . . . . . . . . . . 11 (𝑥𝑆𝐷 ∥ (𝑁𝑥))
3020simprbi 497 . . . . . . . . . . 11 (𝑦𝑆𝐷 ∥ (𝑁𝑦))
3129, 30anim12i 613 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)))
32 dvds2sub 16173 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ (𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦))))
333, 32mp3an1 1448 . . . . . . . . . 10 (((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦))))
3428, 31, 33sylc 65 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦)))
35 zcn 12504 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
36 zcn 12504 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
372zrei 12505 . . . . . . . . . . . . . . . . 17 𝑁 ∈ ℝ
3837recni 11169 . . . . . . . . . . . . . . . 16 𝑁 ∈ ℂ
3938subidi 11472 . . . . . . . . . . . . . . 15 (𝑁𝑁) = 0
4039oveq1i 7367 . . . . . . . . . . . . . 14 ((𝑁𝑁) − (𝑥𝑦)) = (0 − (𝑥𝑦))
41 0cn 11147 . . . . . . . . . . . . . . 15 0 ∈ ℂ
42 subsub2 11429 . . . . . . . . . . . . . . 15 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − (𝑥𝑦)) = (0 + (𝑦𝑥)))
4341, 42mp3an1 1448 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − (𝑥𝑦)) = (0 + (𝑦𝑥)))
4440, 43eqtrid 2788 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑁) − (𝑥𝑦)) = (0 + (𝑦𝑥)))
45 sub4 11446 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑁𝑁) − (𝑥𝑦)) = ((𝑁𝑥) − (𝑁𝑦)))
4638, 38, 45mpanl12 700 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑁) − (𝑥𝑦)) = ((𝑁𝑥) − (𝑁𝑦)))
47 subcl 11400 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
4847ancoms 459 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
4948addid2d 11356 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + (𝑦𝑥)) = (𝑦𝑥))
5044, 46, 493eqtr3d 2784 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5135, 36, 50syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5217, 22, 51syl2an 596 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5352breq2d 5117 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦)) ↔ 𝐷 ∥ (𝑦𝑥)))
5434, 53mpbid 231 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝐷 ∥ (𝑦𝑥))
55 zsubcl 12545 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥) ∈ ℤ)
5655ancoms 459 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦𝑥) ∈ ℤ)
57 absdvdsb 16157 . . . . . . . . . 10 ((𝐷 ∈ ℤ ∧ (𝑦𝑥) ∈ ℤ) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
583, 56, 57sylancr 587 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
5917, 22, 58syl2an 596 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
6054, 59mpbid 231 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → (abs‘𝐷) ∥ (𝑦𝑥))
61 nnabscl 15210 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
623, 4, 61mp2an 690 . . . . . . . . . 10 (abs‘𝐷) ∈ ℕ
6362nnzi 12527 . . . . . . . . 9 (abs‘𝐷) ∈ ℤ
64 divides 16138 . . . . . . . . 9 (((abs‘𝐷) ∈ ℤ ∧ (𝑦𝑥) ∈ ℤ) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6563, 56, 64sylancr 587 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6617, 22, 65syl2an 596 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6760, 66mpbid 231 . . . . . 6 ((𝑥𝑆𝑦𝑆) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥))
6867adantr 481 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥))
692, 3, 4, 5divalglem8 16282 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (𝑘 ∈ ℤ → ((𝑘 · (abs‘𝐷)) = (𝑦𝑥) → 𝑥 = 𝑦)))
7069rexlimdv 3150 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥) → 𝑥 = 𝑦))
7168, 70mpd 15 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → 𝑥 = 𝑦)
7271ex 413 . . 3 ((𝑥𝑆𝑦𝑆) → ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦))
7372rgen2 3194 . 2 𝑥𝑆𝑦𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)
74 breq1 5108 . . 3 (𝑥 = 𝑦 → (𝑥 < (abs‘𝐷) ↔ 𝑦 < (abs‘𝐷)))
7574reu4 3689 . 2 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ (∃𝑥𝑆 𝑥 < (abs‘𝐷) ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)))
7612, 73, 75mpbir2an 709 1 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  ∃!wreu 3351  {crab 3407   class class class wbr 5105  cfv 6496  (class class class)co 7357  infcinf 9377  cc 11049  cr 11050  0cc0 11051   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  cn 12153  0cn0 12413  cz 12499  abscabs 15119  cdvds 16136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137
This theorem is referenced by:  divalglem10  16284
  Copyright terms: Public domain W3C validator