Step | Hyp | Ref
| Expression |
1 | | divalglem9.5 |
. . . 4
⊢ 𝑅 = inf(𝑆, ℝ, < ) |
2 | | divalglem8.1 |
. . . . 5
⊢ 𝑁 ∈ ℤ |
3 | | divalglem8.2 |
. . . . 5
⊢ 𝐷 ∈ ℤ |
4 | | divalglem8.3 |
. . . . 5
⊢ 𝐷 ≠ 0 |
5 | | divalglem8.4 |
. . . . 5
⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} |
6 | 2, 3, 4, 5 | divalglem2 16085 |
. . . 4
⊢ inf(𝑆, ℝ, < ) ∈ 𝑆 |
7 | 1, 6 | eqeltri 2836 |
. . 3
⊢ 𝑅 ∈ 𝑆 |
8 | 2, 3, 4, 5, 1 | divalglem5 16087 |
. . . 4
⊢ (0 ≤
𝑅 ∧ 𝑅 < (abs‘𝐷)) |
9 | 8 | simpri 485 |
. . 3
⊢ 𝑅 < (abs‘𝐷) |
10 | | breq1 5081 |
. . . 4
⊢ (𝑥 = 𝑅 → (𝑥 < (abs‘𝐷) ↔ 𝑅 < (abs‘𝐷))) |
11 | 10 | rspcev 3560 |
. . 3
⊢ ((𝑅 ∈ 𝑆 ∧ 𝑅 < (abs‘𝐷)) → ∃𝑥 ∈ 𝑆 𝑥 < (abs‘𝐷)) |
12 | 7, 9, 11 | mp2an 688 |
. 2
⊢
∃𝑥 ∈
𝑆 𝑥 < (abs‘𝐷) |
13 | | oveq2 7276 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑥 → (𝑁 − 𝑟) = (𝑁 − 𝑥)) |
14 | 13 | breq2d 5090 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑥 → (𝐷 ∥ (𝑁 − 𝑟) ↔ 𝐷 ∥ (𝑁 − 𝑥))) |
15 | 14, 5 | elrab2 3628 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑥))) |
16 | 15 | simplbi 497 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ ℕ0) |
17 | 16 | nn0zd 12406 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ ℤ) |
18 | | oveq2 7276 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑦 → (𝑁 − 𝑟) = (𝑁 − 𝑦)) |
19 | 18 | breq2d 5090 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑦 → (𝐷 ∥ (𝑁 − 𝑟) ↔ 𝐷 ∥ (𝑁 − 𝑦))) |
20 | 19, 5 | elrab2 3628 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℕ0 ∧ 𝐷 ∥ (𝑁 − 𝑦))) |
21 | 20 | simplbi 497 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑆 → 𝑦 ∈ ℕ0) |
22 | 21 | nn0zd 12406 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑆 → 𝑦 ∈ ℤ) |
23 | | zsubcl 12345 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 − 𝑥) ∈ ℤ) |
24 | 2, 23 | mpan 686 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → (𝑁 − 𝑥) ∈ ℤ) |
25 | | zsubcl 12345 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑁 − 𝑦) ∈ ℤ) |
26 | 2, 25 | mpan 686 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℤ → (𝑁 − 𝑦) ∈ ℤ) |
27 | 24, 26 | anim12i 612 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁 − 𝑥) ∈ ℤ ∧ (𝑁 − 𝑦) ∈ ℤ)) |
28 | 17, 22, 27 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑁 − 𝑥) ∈ ℤ ∧ (𝑁 − 𝑦) ∈ ℤ)) |
29 | 15 | simprbi 496 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑆 → 𝐷 ∥ (𝑁 − 𝑥)) |
30 | 20 | simprbi 496 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑆 → 𝐷 ∥ (𝑁 − 𝑦)) |
31 | 29, 30 | anim12i 612 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝐷 ∥ (𝑁 − 𝑥) ∧ 𝐷 ∥ (𝑁 − 𝑦))) |
32 | | dvds2sub 15981 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑥) ∈ ℤ ∧ (𝑁 − 𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁 − 𝑥) ∧ 𝐷 ∥ (𝑁 − 𝑦)) → 𝐷 ∥ ((𝑁 − 𝑥) − (𝑁 − 𝑦)))) |
33 | 3, 32 | mp3an1 1446 |
. . . . . . . . . 10
⊢ (((𝑁 − 𝑥) ∈ ℤ ∧ (𝑁 − 𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁 − 𝑥) ∧ 𝐷 ∥ (𝑁 − 𝑦)) → 𝐷 ∥ ((𝑁 − 𝑥) − (𝑁 − 𝑦)))) |
34 | 28, 31, 33 | sylc 65 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝐷 ∥ ((𝑁 − 𝑥) − (𝑁 − 𝑦))) |
35 | | zcn 12307 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
36 | | zcn 12307 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) |
37 | 2 | zrei 12308 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑁 ∈ ℝ |
38 | 37 | recni 10973 |
. . . . . . . . . . . . . . . 16
⊢ 𝑁 ∈ ℂ |
39 | 38 | subidi 11275 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 − 𝑁) = 0 |
40 | 39 | oveq1i 7278 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 − 𝑁) − (𝑥 − 𝑦)) = (0 − (𝑥 − 𝑦)) |
41 | | 0cn 10951 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℂ |
42 | | subsub2 11232 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℂ ∧ 𝑥
∈ ℂ ∧ 𝑦
∈ ℂ) → (0 − (𝑥 − 𝑦)) = (0 + (𝑦 − 𝑥))) |
43 | 41, 42 | mp3an1 1446 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0
− (𝑥 − 𝑦)) = (0 + (𝑦 − 𝑥))) |
44 | 40, 43 | eqtrid 2791 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁 − 𝑁) − (𝑥 − 𝑦)) = (0 + (𝑦 − 𝑥))) |
45 | | sub4 11249 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑁 − 𝑁) − (𝑥 − 𝑦)) = ((𝑁 − 𝑥) − (𝑁 − 𝑦))) |
46 | 38, 38, 45 | mpanl12 698 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁 − 𝑁) − (𝑥 − 𝑦)) = ((𝑁 − 𝑥) − (𝑁 − 𝑦))) |
47 | | subcl 11203 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 − 𝑥) ∈ ℂ) |
48 | 47 | ancoms 458 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 − 𝑥) ∈ ℂ) |
49 | 48 | addid2d 11159 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 +
(𝑦 − 𝑥)) = (𝑦 − 𝑥)) |
50 | 44, 46, 49 | 3eqtr3d 2787 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁 − 𝑥) − (𝑁 − 𝑦)) = (𝑦 − 𝑥)) |
51 | 35, 36, 50 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁 − 𝑥) − (𝑁 − 𝑦)) = (𝑦 − 𝑥)) |
52 | 17, 22, 51 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑁 − 𝑥) − (𝑁 − 𝑦)) = (𝑦 − 𝑥)) |
53 | 52 | breq2d 5090 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝐷 ∥ ((𝑁 − 𝑥) − (𝑁 − 𝑦)) ↔ 𝐷 ∥ (𝑦 − 𝑥))) |
54 | 34, 53 | mpbid 231 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝐷 ∥ (𝑦 − 𝑥)) |
55 | | zsubcl 12345 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 − 𝑥) ∈ ℤ) |
56 | 55 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦 − 𝑥) ∈ ℤ) |
57 | | absdvdsb 15965 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ ℤ ∧ (𝑦 − 𝑥) ∈ ℤ) → (𝐷 ∥ (𝑦 − 𝑥) ↔ (abs‘𝐷) ∥ (𝑦 − 𝑥))) |
58 | 3, 56, 57 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐷 ∥ (𝑦 − 𝑥) ↔ (abs‘𝐷) ∥ (𝑦 − 𝑥))) |
59 | 17, 22, 58 | syl2an 595 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝐷 ∥ (𝑦 − 𝑥) ↔ (abs‘𝐷) ∥ (𝑦 − 𝑥))) |
60 | 54, 59 | mpbid 231 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (abs‘𝐷) ∥ (𝑦 − 𝑥)) |
61 | | nnabscl 15018 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈
ℕ) |
62 | 3, 4, 61 | mp2an 688 |
. . . . . . . . . 10
⊢
(abs‘𝐷) ∈
ℕ |
63 | 62 | nnzi 12327 |
. . . . . . . . 9
⊢
(abs‘𝐷) ∈
ℤ |
64 | | divides 15946 |
. . . . . . . . 9
⊢
(((abs‘𝐷)
∈ ℤ ∧ (𝑦
− 𝑥) ∈ ℤ)
→ ((abs‘𝐷)
∥ (𝑦 − 𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦 − 𝑥))) |
65 | 63, 56, 64 | sylancr 586 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) →
((abs‘𝐷) ∥
(𝑦 − 𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦 − 𝑥))) |
66 | 17, 22, 65 | syl2an 595 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((abs‘𝐷) ∥ (𝑦 − 𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦 − 𝑥))) |
67 | 60, 66 | mpbid 231 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦 − 𝑥)) |
68 | 67 | adantr 480 |
. . . . 5
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦 − 𝑥)) |
69 | 2, 3, 4, 5 | divalglem8 16090 |
. . . . . 6
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (𝑘 ∈ ℤ → ((𝑘 · (abs‘𝐷)) = (𝑦 − 𝑥) → 𝑥 = 𝑦))) |
70 | 69 | rexlimdv 3213 |
. . . . 5
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦 − 𝑥) → 𝑥 = 𝑦)) |
71 | 68, 70 | mpd 15 |
. . . 4
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → 𝑥 = 𝑦) |
72 | 71 | ex 412 |
. . 3
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)) |
73 | 72 | rgen2 3128 |
. 2
⊢
∀𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦) |
74 | | breq1 5081 |
. . 3
⊢ (𝑥 = 𝑦 → (𝑥 < (abs‘𝐷) ↔ 𝑦 < (abs‘𝐷))) |
75 | 74 | reu4 3669 |
. 2
⊢
(∃!𝑥 ∈
𝑆 𝑥 < (abs‘𝐷) ↔ (∃𝑥 ∈ 𝑆 𝑥 < (abs‘𝐷) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦))) |
76 | 12, 73, 75 | mpbir2an 707 |
1
⊢
∃!𝑥 ∈
𝑆 𝑥 < (abs‘𝐷) |