![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divalglem1 | Structured version Visualization version GIF version |
Description: Lemma for divalg 16436. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
divalglem1.3 | ⊢ 𝐷 ≠ 0 |
Ref | Expression |
---|---|
divalglem1 | ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglem0.1 | . . . . 5 ⊢ 𝑁 ∈ ℤ | |
2 | 1 | zrei 12616 | . . . 4 ⊢ 𝑁 ∈ ℝ |
3 | 0re 11260 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | 2, 3 | letrii 11383 | . . 3 ⊢ (𝑁 ≤ 0 ∨ 0 ≤ 𝑁) |
5 | divalglem0.2 | . . . . . . . 8 ⊢ 𝐷 ∈ ℤ | |
6 | divalglem1.3 | . . . . . . . 8 ⊢ 𝐷 ≠ 0 | |
7 | nnabscl 15360 | . . . . . . . 8 ⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ) | |
8 | 5, 6, 7 | mp2an 692 | . . . . . . 7 ⊢ (abs‘𝐷) ∈ ℕ |
9 | nnge1 12291 | . . . . . . 7 ⊢ ((abs‘𝐷) ∈ ℕ → 1 ≤ (abs‘𝐷)) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ (abs‘𝐷) |
11 | le0neg1 11768 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) | |
12 | 2, 11 | ax-mp 5 | . . . . . . 7 ⊢ (𝑁 ≤ 0 ↔ 0 ≤ -𝑁) |
13 | 2 | renegcli 11567 | . . . . . . . 8 ⊢ -𝑁 ∈ ℝ |
14 | 5 | zrei 12616 | . . . . . . . . . 10 ⊢ 𝐷 ∈ ℝ |
15 | 14 | recni 11272 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℂ |
16 | 15 | abscli 15430 | . . . . . . . 8 ⊢ (abs‘𝐷) ∈ ℝ |
17 | lemulge11 12127 | . . . . . . . 8 ⊢ (((-𝑁 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) ∧ (0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷))) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) | |
18 | 13, 16, 17 | mpanl12 702 | . . . . . . 7 ⊢ ((0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
19 | 12, 18 | sylanb 581 | . . . . . 6 ⊢ ((𝑁 ≤ 0 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
20 | 10, 19 | mpan2 691 | . . . . 5 ⊢ (𝑁 ≤ 0 → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
21 | 2 | recni 11272 | . . . . . . 7 ⊢ 𝑁 ∈ ℂ |
22 | 21, 15 | absmuli 15439 | . . . . . 6 ⊢ (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷)) |
23 | 2 | absnidi 15413 | . . . . . . 7 ⊢ (𝑁 ≤ 0 → (abs‘𝑁) = -𝑁) |
24 | 23 | oveq1d 7445 | . . . . . 6 ⊢ (𝑁 ≤ 0 → ((abs‘𝑁) · (abs‘𝐷)) = (-𝑁 · (abs‘𝐷))) |
25 | 22, 24 | eqtrid 2786 | . . . . 5 ⊢ (𝑁 ≤ 0 → (abs‘(𝑁 · 𝐷)) = (-𝑁 · (abs‘𝐷))) |
26 | 20, 25 | breqtrrd 5175 | . . . 4 ⊢ (𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
27 | le0neg2 11769 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → (0 ≤ 𝑁 ↔ -𝑁 ≤ 0)) | |
28 | 2, 27 | ax-mp 5 | . . . . 5 ⊢ (0 ≤ 𝑁 ↔ -𝑁 ≤ 0) |
29 | 2, 14 | remulcli 11274 | . . . . . . . 8 ⊢ (𝑁 · 𝐷) ∈ ℝ |
30 | 29 | recni 11272 | . . . . . . 7 ⊢ (𝑁 · 𝐷) ∈ ℂ |
31 | 30 | absge0i 15431 | . . . . . 6 ⊢ 0 ≤ (abs‘(𝑁 · 𝐷)) |
32 | 30 | abscli 15430 | . . . . . . 7 ⊢ (abs‘(𝑁 · 𝐷)) ∈ ℝ |
33 | 13, 3, 32 | letri 11387 | . . . . . 6 ⊢ ((-𝑁 ≤ 0 ∧ 0 ≤ (abs‘(𝑁 · 𝐷))) → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
34 | 31, 33 | mpan2 691 | . . . . 5 ⊢ (-𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
35 | 28, 34 | sylbi 217 | . . . 4 ⊢ (0 ≤ 𝑁 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
36 | 26, 35 | jaoi 857 | . . 3 ⊢ ((𝑁 ≤ 0 ∨ 0 ≤ 𝑁) → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
37 | 4, 36 | ax-mp 5 | . 2 ⊢ -𝑁 ≤ (abs‘(𝑁 · 𝐷)) |
38 | df-neg 11492 | . . . 4 ⊢ -𝑁 = (0 − 𝑁) | |
39 | 38 | breq1i 5154 | . . 3 ⊢ (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ (0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷))) |
40 | 3, 2, 32 | lesubadd2i 11820 | . . 3 ⊢ ((0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))) |
41 | 39, 40 | bitri 275 | . 2 ⊢ (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))) |
42 | 37, 41 | mpbi 230 | 1 ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2105 ≠ wne 2937 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 0cc0 11152 1c1 11153 + caddc 11155 · cmul 11157 ≤ cle 11293 − cmin 11489 -cneg 11490 ℕcn 12263 ℤcz 12610 abscabs 15269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 |
This theorem is referenced by: divalglem2 16428 |
Copyright terms: Public domain | W3C validator |