MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem1 Structured version   Visualization version   GIF version

Theorem divalglem1 16364
Description: Lemma for divalg 16373. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
Assertion
Ref Expression
divalglem1 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))

Proof of Theorem divalglem1
StepHypRef Expression
1 divalglem0.1 . . . . 5 𝑁 ∈ ℤ
21zrei 12535 . . . 4 𝑁 ∈ ℝ
3 0re 11176 . . . 4 0 ∈ ℝ
42, 3letrii 11299 . . 3 (𝑁 ≤ 0 ∨ 0 ≤ 𝑁)
5 divalglem0.2 . . . . . . . 8 𝐷 ∈ ℤ
6 divalglem1.3 . . . . . . . 8 𝐷 ≠ 0
7 nnabscl 15292 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
85, 6, 7mp2an 692 . . . . . . 7 (abs‘𝐷) ∈ ℕ
9 nnge1 12214 . . . . . . 7 ((abs‘𝐷) ∈ ℕ → 1 ≤ (abs‘𝐷))
108, 9ax-mp 5 . . . . . 6 1 ≤ (abs‘𝐷)
11 le0neg1 11686 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
122, 11ax-mp 5 . . . . . . 7 (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)
132renegcli 11483 . . . . . . . 8 -𝑁 ∈ ℝ
145zrei 12535 . . . . . . . . . 10 𝐷 ∈ ℝ
1514recni 11188 . . . . . . . . 9 𝐷 ∈ ℂ
1615abscli 15362 . . . . . . . 8 (abs‘𝐷) ∈ ℝ
17 lemulge11 12045 . . . . . . . 8 (((-𝑁 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) ∧ (0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷))) → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
1813, 16, 17mpanl12 702 . . . . . . 7 ((0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
1912, 18sylanb 581 . . . . . 6 ((𝑁 ≤ 0 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
2010, 19mpan2 691 . . . . 5 (𝑁 ≤ 0 → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
212recni 11188 . . . . . . 7 𝑁 ∈ ℂ
2221, 15absmuli 15371 . . . . . 6 (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷))
232absnidi 15345 . . . . . . 7 (𝑁 ≤ 0 → (abs‘𝑁) = -𝑁)
2423oveq1d 7402 . . . . . 6 (𝑁 ≤ 0 → ((abs‘𝑁) · (abs‘𝐷)) = (-𝑁 · (abs‘𝐷)))
2522, 24eqtrid 2776 . . . . 5 (𝑁 ≤ 0 → (abs‘(𝑁 · 𝐷)) = (-𝑁 · (abs‘𝐷)))
2620, 25breqtrrd 5135 . . . 4 (𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
27 le0neg2 11687 . . . . . 6 (𝑁 ∈ ℝ → (0 ≤ 𝑁 ↔ -𝑁 ≤ 0))
282, 27ax-mp 5 . . . . 5 (0 ≤ 𝑁 ↔ -𝑁 ≤ 0)
292, 14remulcli 11190 . . . . . . . 8 (𝑁 · 𝐷) ∈ ℝ
3029recni 11188 . . . . . . 7 (𝑁 · 𝐷) ∈ ℂ
3130absge0i 15363 . . . . . 6 0 ≤ (abs‘(𝑁 · 𝐷))
3230abscli 15362 . . . . . . 7 (abs‘(𝑁 · 𝐷)) ∈ ℝ
3313, 3, 32letri 11303 . . . . . 6 ((-𝑁 ≤ 0 ∧ 0 ≤ (abs‘(𝑁 · 𝐷))) → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
3431, 33mpan2 691 . . . . 5 (-𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
3528, 34sylbi 217 . . . 4 (0 ≤ 𝑁 → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
3626, 35jaoi 857 . . 3 ((𝑁 ≤ 0 ∨ 0 ≤ 𝑁) → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
374, 36ax-mp 5 . 2 -𝑁 ≤ (abs‘(𝑁 · 𝐷))
38 df-neg 11408 . . . 4 -𝑁 = (0 − 𝑁)
3938breq1i 5114 . . 3 (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ (0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)))
403, 2, 32lesubadd2i 11738 . . 3 ((0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))))
4139, 40bitri 275 . 2 (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))))
4237, 41mpbi 230 1 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  cmin 11405  -cneg 11406  cn 12186  cz 12529  abscabs 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202
This theorem is referenced by:  divalglem2  16365
  Copyright terms: Public domain W3C validator