| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divalglem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for divalg 16314. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
| divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
| divalglem1.3 | ⊢ 𝐷 ≠ 0 |
| Ref | Expression |
|---|---|
| divalglem1 | ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.1 | . . . . 5 ⊢ 𝑁 ∈ ℤ | |
| 2 | 1 | zrei 12477 | . . . 4 ⊢ 𝑁 ∈ ℝ |
| 3 | 0re 11117 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | 2, 3 | letrii 11241 | . . 3 ⊢ (𝑁 ≤ 0 ∨ 0 ≤ 𝑁) |
| 5 | divalglem0.2 | . . . . . . . 8 ⊢ 𝐷 ∈ ℤ | |
| 6 | divalglem1.3 | . . . . . . . 8 ⊢ 𝐷 ≠ 0 | |
| 7 | nnabscl 15233 | . . . . . . . 8 ⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . 7 ⊢ (abs‘𝐷) ∈ ℕ |
| 9 | nnge1 12156 | . . . . . . 7 ⊢ ((abs‘𝐷) ∈ ℕ → 1 ≤ (abs‘𝐷)) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ (abs‘𝐷) |
| 11 | le0neg1 11628 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) | |
| 12 | 2, 11 | ax-mp 5 | . . . . . . 7 ⊢ (𝑁 ≤ 0 ↔ 0 ≤ -𝑁) |
| 13 | 2 | renegcli 11425 | . . . . . . . 8 ⊢ -𝑁 ∈ ℝ |
| 14 | 5 | zrei 12477 | . . . . . . . . . 10 ⊢ 𝐷 ∈ ℝ |
| 15 | 14 | recni 11129 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℂ |
| 16 | 15 | abscli 15303 | . . . . . . . 8 ⊢ (abs‘𝐷) ∈ ℝ |
| 17 | lemulge11 11987 | . . . . . . . 8 ⊢ (((-𝑁 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) ∧ (0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷))) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) | |
| 18 | 13, 16, 17 | mpanl12 702 | . . . . . . 7 ⊢ ((0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
| 19 | 12, 18 | sylanb 581 | . . . . . 6 ⊢ ((𝑁 ≤ 0 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
| 20 | 10, 19 | mpan2 691 | . . . . 5 ⊢ (𝑁 ≤ 0 → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
| 21 | 2 | recni 11129 | . . . . . . 7 ⊢ 𝑁 ∈ ℂ |
| 22 | 21, 15 | absmuli 15312 | . . . . . 6 ⊢ (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷)) |
| 23 | 2 | absnidi 15286 | . . . . . . 7 ⊢ (𝑁 ≤ 0 → (abs‘𝑁) = -𝑁) |
| 24 | 23 | oveq1d 7364 | . . . . . 6 ⊢ (𝑁 ≤ 0 → ((abs‘𝑁) · (abs‘𝐷)) = (-𝑁 · (abs‘𝐷))) |
| 25 | 22, 24 | eqtrid 2776 | . . . . 5 ⊢ (𝑁 ≤ 0 → (abs‘(𝑁 · 𝐷)) = (-𝑁 · (abs‘𝐷))) |
| 26 | 20, 25 | breqtrrd 5120 | . . . 4 ⊢ (𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
| 27 | le0neg2 11629 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → (0 ≤ 𝑁 ↔ -𝑁 ≤ 0)) | |
| 28 | 2, 27 | ax-mp 5 | . . . . 5 ⊢ (0 ≤ 𝑁 ↔ -𝑁 ≤ 0) |
| 29 | 2, 14 | remulcli 11131 | . . . . . . . 8 ⊢ (𝑁 · 𝐷) ∈ ℝ |
| 30 | 29 | recni 11129 | . . . . . . 7 ⊢ (𝑁 · 𝐷) ∈ ℂ |
| 31 | 30 | absge0i 15304 | . . . . . 6 ⊢ 0 ≤ (abs‘(𝑁 · 𝐷)) |
| 32 | 30 | abscli 15303 | . . . . . . 7 ⊢ (abs‘(𝑁 · 𝐷)) ∈ ℝ |
| 33 | 13, 3, 32 | letri 11245 | . . . . . 6 ⊢ ((-𝑁 ≤ 0 ∧ 0 ≤ (abs‘(𝑁 · 𝐷))) → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
| 34 | 31, 33 | mpan2 691 | . . . . 5 ⊢ (-𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
| 35 | 28, 34 | sylbi 217 | . . . 4 ⊢ (0 ≤ 𝑁 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
| 36 | 26, 35 | jaoi 857 | . . 3 ⊢ ((𝑁 ≤ 0 ∨ 0 ≤ 𝑁) → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
| 37 | 4, 36 | ax-mp 5 | . 2 ⊢ -𝑁 ≤ (abs‘(𝑁 · 𝐷)) |
| 38 | df-neg 11350 | . . . 4 ⊢ -𝑁 = (0 − 𝑁) | |
| 39 | 38 | breq1i 5099 | . . 3 ⊢ (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ (0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷))) |
| 40 | 3, 2, 32 | lesubadd2i 11680 | . . 3 ⊢ ((0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))) |
| 41 | 39, 40 | bitri 275 | . 2 ⊢ (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))) |
| 42 | 37, 41 | mpbi 230 | 1 ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 ≤ cle 11150 − cmin 11347 -cneg 11348 ℕcn 12128 ℤcz 12471 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: divalglem2 16306 |
| Copyright terms: Public domain | W3C validator |