| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divalglem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
| divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
| divalglem1.3 | ⊢ 𝐷 ≠ 0 |
| Ref | Expression |
|---|---|
| divalglem1 | ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.1 | . . . . 5 ⊢ 𝑁 ∈ ℤ | |
| 2 | 1 | zrei 12594 | . . . 4 ⊢ 𝑁 ∈ ℝ |
| 3 | 0re 11237 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | 2, 3 | letrii 11360 | . . 3 ⊢ (𝑁 ≤ 0 ∨ 0 ≤ 𝑁) |
| 5 | divalglem0.2 | . . . . . . . 8 ⊢ 𝐷 ∈ ℤ | |
| 6 | divalglem1.3 | . . . . . . . 8 ⊢ 𝐷 ≠ 0 | |
| 7 | nnabscl 15344 | . . . . . . . 8 ⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . 7 ⊢ (abs‘𝐷) ∈ ℕ |
| 9 | nnge1 12268 | . . . . . . 7 ⊢ ((abs‘𝐷) ∈ ℕ → 1 ≤ (abs‘𝐷)) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ (abs‘𝐷) |
| 11 | le0neg1 11745 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) | |
| 12 | 2, 11 | ax-mp 5 | . . . . . . 7 ⊢ (𝑁 ≤ 0 ↔ 0 ≤ -𝑁) |
| 13 | 2 | renegcli 11544 | . . . . . . . 8 ⊢ -𝑁 ∈ ℝ |
| 14 | 5 | zrei 12594 | . . . . . . . . . 10 ⊢ 𝐷 ∈ ℝ |
| 15 | 14 | recni 11249 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℂ |
| 16 | 15 | abscli 15414 | . . . . . . . 8 ⊢ (abs‘𝐷) ∈ ℝ |
| 17 | lemulge11 12104 | . . . . . . . 8 ⊢ (((-𝑁 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) ∧ (0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷))) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) | |
| 18 | 13, 16, 17 | mpanl12 702 | . . . . . . 7 ⊢ ((0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
| 19 | 12, 18 | sylanb 581 | . . . . . 6 ⊢ ((𝑁 ≤ 0 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
| 20 | 10, 19 | mpan2 691 | . . . . 5 ⊢ (𝑁 ≤ 0 → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
| 21 | 2 | recni 11249 | . . . . . . 7 ⊢ 𝑁 ∈ ℂ |
| 22 | 21, 15 | absmuli 15423 | . . . . . 6 ⊢ (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷)) |
| 23 | 2 | absnidi 15397 | . . . . . . 7 ⊢ (𝑁 ≤ 0 → (abs‘𝑁) = -𝑁) |
| 24 | 23 | oveq1d 7420 | . . . . . 6 ⊢ (𝑁 ≤ 0 → ((abs‘𝑁) · (abs‘𝐷)) = (-𝑁 · (abs‘𝐷))) |
| 25 | 22, 24 | eqtrid 2782 | . . . . 5 ⊢ (𝑁 ≤ 0 → (abs‘(𝑁 · 𝐷)) = (-𝑁 · (abs‘𝐷))) |
| 26 | 20, 25 | breqtrrd 5147 | . . . 4 ⊢ (𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
| 27 | le0neg2 11746 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → (0 ≤ 𝑁 ↔ -𝑁 ≤ 0)) | |
| 28 | 2, 27 | ax-mp 5 | . . . . 5 ⊢ (0 ≤ 𝑁 ↔ -𝑁 ≤ 0) |
| 29 | 2, 14 | remulcli 11251 | . . . . . . . 8 ⊢ (𝑁 · 𝐷) ∈ ℝ |
| 30 | 29 | recni 11249 | . . . . . . 7 ⊢ (𝑁 · 𝐷) ∈ ℂ |
| 31 | 30 | absge0i 15415 | . . . . . 6 ⊢ 0 ≤ (abs‘(𝑁 · 𝐷)) |
| 32 | 30 | abscli 15414 | . . . . . . 7 ⊢ (abs‘(𝑁 · 𝐷)) ∈ ℝ |
| 33 | 13, 3, 32 | letri 11364 | . . . . . 6 ⊢ ((-𝑁 ≤ 0 ∧ 0 ≤ (abs‘(𝑁 · 𝐷))) → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
| 34 | 31, 33 | mpan2 691 | . . . . 5 ⊢ (-𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
| 35 | 28, 34 | sylbi 217 | . . . 4 ⊢ (0 ≤ 𝑁 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
| 36 | 26, 35 | jaoi 857 | . . 3 ⊢ ((𝑁 ≤ 0 ∨ 0 ≤ 𝑁) → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
| 37 | 4, 36 | ax-mp 5 | . 2 ⊢ -𝑁 ≤ (abs‘(𝑁 · 𝐷)) |
| 38 | df-neg 11469 | . . . 4 ⊢ -𝑁 = (0 − 𝑁) | |
| 39 | 38 | breq1i 5126 | . . 3 ⊢ (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ (0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷))) |
| 40 | 3, 2, 32 | lesubadd2i 11797 | . . 3 ⊢ ((0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))) |
| 41 | 39, 40 | bitri 275 | . 2 ⊢ (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))) |
| 42 | 37, 41 | mpbi 230 | 1 ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 ≤ cle 11270 − cmin 11466 -cneg 11467 ℕcn 12240 ℤcz 12588 abscabs 15253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 |
| This theorem is referenced by: divalglem2 16414 |
| Copyright terms: Public domain | W3C validator |