Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divalglem1 | Structured version Visualization version GIF version |
Description: Lemma for divalg 16040. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
divalglem1.3 | ⊢ 𝐷 ≠ 0 |
Ref | Expression |
---|---|
divalglem1 | ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglem0.1 | . . . . 5 ⊢ 𝑁 ∈ ℤ | |
2 | 1 | zrei 12255 | . . . 4 ⊢ 𝑁 ∈ ℝ |
3 | 0re 10908 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | 2, 3 | letrii 11030 | . . 3 ⊢ (𝑁 ≤ 0 ∨ 0 ≤ 𝑁) |
5 | divalglem0.2 | . . . . . . . 8 ⊢ 𝐷 ∈ ℤ | |
6 | divalglem1.3 | . . . . . . . 8 ⊢ 𝐷 ≠ 0 | |
7 | nnabscl 14965 | . . . . . . . 8 ⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ) | |
8 | 5, 6, 7 | mp2an 688 | . . . . . . 7 ⊢ (abs‘𝐷) ∈ ℕ |
9 | nnge1 11931 | . . . . . . 7 ⊢ ((abs‘𝐷) ∈ ℕ → 1 ≤ (abs‘𝐷)) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ (abs‘𝐷) |
11 | le0neg1 11413 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) | |
12 | 2, 11 | ax-mp 5 | . . . . . . 7 ⊢ (𝑁 ≤ 0 ↔ 0 ≤ -𝑁) |
13 | 2 | renegcli 11212 | . . . . . . . 8 ⊢ -𝑁 ∈ ℝ |
14 | 5 | zrei 12255 | . . . . . . . . . 10 ⊢ 𝐷 ∈ ℝ |
15 | 14 | recni 10920 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℂ |
16 | 15 | abscli 15035 | . . . . . . . 8 ⊢ (abs‘𝐷) ∈ ℝ |
17 | lemulge11 11767 | . . . . . . . 8 ⊢ (((-𝑁 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) ∧ (0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷))) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) | |
18 | 13, 16, 17 | mpanl12 698 | . . . . . . 7 ⊢ ((0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
19 | 12, 18 | sylanb 580 | . . . . . 6 ⊢ ((𝑁 ≤ 0 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
20 | 10, 19 | mpan2 687 | . . . . 5 ⊢ (𝑁 ≤ 0 → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
21 | 2 | recni 10920 | . . . . . . 7 ⊢ 𝑁 ∈ ℂ |
22 | 21, 15 | absmuli 15044 | . . . . . 6 ⊢ (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷)) |
23 | 2 | absnidi 15018 | . . . . . . 7 ⊢ (𝑁 ≤ 0 → (abs‘𝑁) = -𝑁) |
24 | 23 | oveq1d 7270 | . . . . . 6 ⊢ (𝑁 ≤ 0 → ((abs‘𝑁) · (abs‘𝐷)) = (-𝑁 · (abs‘𝐷))) |
25 | 22, 24 | eqtrid 2790 | . . . . 5 ⊢ (𝑁 ≤ 0 → (abs‘(𝑁 · 𝐷)) = (-𝑁 · (abs‘𝐷))) |
26 | 20, 25 | breqtrrd 5098 | . . . 4 ⊢ (𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
27 | le0neg2 11414 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → (0 ≤ 𝑁 ↔ -𝑁 ≤ 0)) | |
28 | 2, 27 | ax-mp 5 | . . . . 5 ⊢ (0 ≤ 𝑁 ↔ -𝑁 ≤ 0) |
29 | 2, 14 | remulcli 10922 | . . . . . . . 8 ⊢ (𝑁 · 𝐷) ∈ ℝ |
30 | 29 | recni 10920 | . . . . . . 7 ⊢ (𝑁 · 𝐷) ∈ ℂ |
31 | 30 | absge0i 15036 | . . . . . 6 ⊢ 0 ≤ (abs‘(𝑁 · 𝐷)) |
32 | 30 | abscli 15035 | . . . . . . 7 ⊢ (abs‘(𝑁 · 𝐷)) ∈ ℝ |
33 | 13, 3, 32 | letri 11034 | . . . . . 6 ⊢ ((-𝑁 ≤ 0 ∧ 0 ≤ (abs‘(𝑁 · 𝐷))) → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
34 | 31, 33 | mpan2 687 | . . . . 5 ⊢ (-𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
35 | 28, 34 | sylbi 216 | . . . 4 ⊢ (0 ≤ 𝑁 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
36 | 26, 35 | jaoi 853 | . . 3 ⊢ ((𝑁 ≤ 0 ∨ 0 ≤ 𝑁) → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
37 | 4, 36 | ax-mp 5 | . 2 ⊢ -𝑁 ≤ (abs‘(𝑁 · 𝐷)) |
38 | df-neg 11138 | . . . 4 ⊢ -𝑁 = (0 − 𝑁) | |
39 | 38 | breq1i 5077 | . . 3 ⊢ (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ (0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷))) |
40 | 3, 2, 32 | lesubadd2i 11465 | . . 3 ⊢ ((0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))) |
41 | 39, 40 | bitri 274 | . 2 ⊢ (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))) |
42 | 37, 41 | mpbi 229 | 1 ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ≤ cle 10941 − cmin 11135 -cneg 11136 ℕcn 11903 ℤcz 12249 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: divalglem2 16032 |
Copyright terms: Public domain | W3C validator |