![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divalglem1 | Structured version Visualization version GIF version |
Description: Lemma for divalg 15533. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
divalglem1.3 | ⊢ 𝐷 ≠ 0 |
Ref | Expression |
---|---|
divalglem1 | ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglem0.1 | . . . . 5 ⊢ 𝑁 ∈ ℤ | |
2 | 1 | zrei 11734 | . . . 4 ⊢ 𝑁 ∈ ℝ |
3 | 0re 10378 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | 2, 3 | letrii 10501 | . . 3 ⊢ (𝑁 ≤ 0 ∨ 0 ≤ 𝑁) |
5 | divalglem0.2 | . . . . . . . 8 ⊢ 𝐷 ∈ ℤ | |
6 | divalglem1.3 | . . . . . . . 8 ⊢ 𝐷 ≠ 0 | |
7 | nnabscl 14472 | . . . . . . . 8 ⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ) | |
8 | 5, 6, 7 | mp2an 682 | . . . . . . 7 ⊢ (abs‘𝐷) ∈ ℕ |
9 | nnge1 11404 | . . . . . . 7 ⊢ ((abs‘𝐷) ∈ ℕ → 1 ≤ (abs‘𝐷)) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ 1 ≤ (abs‘𝐷) |
11 | le0neg1 10883 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) | |
12 | 2, 11 | ax-mp 5 | . . . . . . 7 ⊢ (𝑁 ≤ 0 ↔ 0 ≤ -𝑁) |
13 | 2 | renegcli 10684 | . . . . . . . 8 ⊢ -𝑁 ∈ ℝ |
14 | 5 | zrei 11734 | . . . . . . . . . 10 ⊢ 𝐷 ∈ ℝ |
15 | 14 | recni 10391 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℂ |
16 | 15 | abscli 14542 | . . . . . . . 8 ⊢ (abs‘𝐷) ∈ ℝ |
17 | lemulge11 11239 | . . . . . . . 8 ⊢ (((-𝑁 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) ∧ (0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷))) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) | |
18 | 13, 16, 17 | mpanl12 692 | . . . . . . 7 ⊢ ((0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
19 | 12, 18 | sylanb 576 | . . . . . 6 ⊢ ((𝑁 ≤ 0 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
20 | 10, 19 | mpan2 681 | . . . . 5 ⊢ (𝑁 ≤ 0 → -𝑁 ≤ (-𝑁 · (abs‘𝐷))) |
21 | 2 | recni 10391 | . . . . . . 7 ⊢ 𝑁 ∈ ℂ |
22 | 21, 15 | absmuli 14551 | . . . . . 6 ⊢ (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷)) |
23 | 2 | absnidi 14525 | . . . . . . 7 ⊢ (𝑁 ≤ 0 → (abs‘𝑁) = -𝑁) |
24 | 23 | oveq1d 6937 | . . . . . 6 ⊢ (𝑁 ≤ 0 → ((abs‘𝑁) · (abs‘𝐷)) = (-𝑁 · (abs‘𝐷))) |
25 | 22, 24 | syl5eq 2825 | . . . . 5 ⊢ (𝑁 ≤ 0 → (abs‘(𝑁 · 𝐷)) = (-𝑁 · (abs‘𝐷))) |
26 | 20, 25 | breqtrrd 4914 | . . . 4 ⊢ (𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
27 | le0neg2 10884 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → (0 ≤ 𝑁 ↔ -𝑁 ≤ 0)) | |
28 | 2, 27 | ax-mp 5 | . . . . 5 ⊢ (0 ≤ 𝑁 ↔ -𝑁 ≤ 0) |
29 | 2, 14 | remulcli 10393 | . . . . . . . 8 ⊢ (𝑁 · 𝐷) ∈ ℝ |
30 | 29 | recni 10391 | . . . . . . 7 ⊢ (𝑁 · 𝐷) ∈ ℂ |
31 | 30 | absge0i 14543 | . . . . . 6 ⊢ 0 ≤ (abs‘(𝑁 · 𝐷)) |
32 | 30 | abscli 14542 | . . . . . . 7 ⊢ (abs‘(𝑁 · 𝐷)) ∈ ℝ |
33 | 13, 3, 32 | letri 10505 | . . . . . 6 ⊢ ((-𝑁 ≤ 0 ∧ 0 ≤ (abs‘(𝑁 · 𝐷))) → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
34 | 31, 33 | mpan2 681 | . . . . 5 ⊢ (-𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
35 | 28, 34 | sylbi 209 | . . . 4 ⊢ (0 ≤ 𝑁 → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
36 | 26, 35 | jaoi 846 | . . 3 ⊢ ((𝑁 ≤ 0 ∨ 0 ≤ 𝑁) → -𝑁 ≤ (abs‘(𝑁 · 𝐷))) |
37 | 4, 36 | ax-mp 5 | . 2 ⊢ -𝑁 ≤ (abs‘(𝑁 · 𝐷)) |
38 | df-neg 10609 | . . . 4 ⊢ -𝑁 = (0 − 𝑁) | |
39 | 38 | breq1i 4893 | . . 3 ⊢ (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ (0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷))) |
40 | 3, 2, 32 | lesubadd2i 10935 | . . 3 ⊢ ((0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))) |
41 | 39, 40 | bitri 267 | . 2 ⊢ (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))) |
42 | 37, 41 | mpbi 222 | 1 ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∨ wo 836 ∈ wcel 2106 ≠ wne 2968 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ℝcr 10271 0cc0 10272 1c1 10273 + caddc 10275 · cmul 10277 ≤ cle 10412 − cmin 10606 -cneg 10607 ℕcn 11374 ℤcz 11728 abscabs 14381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 |
This theorem is referenced by: divalglem2 15525 |
Copyright terms: Public domain | W3C validator |