MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem1 Structured version   Visualization version   GIF version

Theorem divalglem1 15737
Description: Lemma for divalg 15746. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
Assertion
Ref Expression
divalglem1 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))

Proof of Theorem divalglem1
StepHypRef Expression
1 divalglem0.1 . . . . 5 𝑁 ∈ ℤ
21zrei 11979 . . . 4 𝑁 ∈ ℝ
3 0re 10635 . . . 4 0 ∈ ℝ
42, 3letrii 10757 . . 3 (𝑁 ≤ 0 ∨ 0 ≤ 𝑁)
5 divalglem0.2 . . . . . . . 8 𝐷 ∈ ℤ
6 divalglem1.3 . . . . . . . 8 𝐷 ≠ 0
7 nnabscl 14678 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
85, 6, 7mp2an 688 . . . . . . 7 (abs‘𝐷) ∈ ℕ
9 nnge1 11657 . . . . . . 7 ((abs‘𝐷) ∈ ℕ → 1 ≤ (abs‘𝐷))
108, 9ax-mp 5 . . . . . 6 1 ≤ (abs‘𝐷)
11 le0neg1 11140 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
122, 11ax-mp 5 . . . . . . 7 (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)
132renegcli 10939 . . . . . . . 8 -𝑁 ∈ ℝ
145zrei 11979 . . . . . . . . . 10 𝐷 ∈ ℝ
1514recni 10647 . . . . . . . . 9 𝐷 ∈ ℂ
1615abscli 14748 . . . . . . . 8 (abs‘𝐷) ∈ ℝ
17 lemulge11 11494 . . . . . . . 8 (((-𝑁 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) ∧ (0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷))) → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
1813, 16, 17mpanl12 698 . . . . . . 7 ((0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
1912, 18sylanb 581 . . . . . 6 ((𝑁 ≤ 0 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
2010, 19mpan2 687 . . . . 5 (𝑁 ≤ 0 → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
212recni 10647 . . . . . . 7 𝑁 ∈ ℂ
2221, 15absmuli 14757 . . . . . 6 (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷))
232absnidi 14731 . . . . . . 7 (𝑁 ≤ 0 → (abs‘𝑁) = -𝑁)
2423oveq1d 7166 . . . . . 6 (𝑁 ≤ 0 → ((abs‘𝑁) · (abs‘𝐷)) = (-𝑁 · (abs‘𝐷)))
2522, 24syl5eq 2872 . . . . 5 (𝑁 ≤ 0 → (abs‘(𝑁 · 𝐷)) = (-𝑁 · (abs‘𝐷)))
2620, 25breqtrrd 5090 . . . 4 (𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
27 le0neg2 11141 . . . . . 6 (𝑁 ∈ ℝ → (0 ≤ 𝑁 ↔ -𝑁 ≤ 0))
282, 27ax-mp 5 . . . . 5 (0 ≤ 𝑁 ↔ -𝑁 ≤ 0)
292, 14remulcli 10649 . . . . . . . 8 (𝑁 · 𝐷) ∈ ℝ
3029recni 10647 . . . . . . 7 (𝑁 · 𝐷) ∈ ℂ
3130absge0i 14749 . . . . . 6 0 ≤ (abs‘(𝑁 · 𝐷))
3230abscli 14748 . . . . . . 7 (abs‘(𝑁 · 𝐷)) ∈ ℝ
3313, 3, 32letri 10761 . . . . . 6 ((-𝑁 ≤ 0 ∧ 0 ≤ (abs‘(𝑁 · 𝐷))) → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
3431, 33mpan2 687 . . . . 5 (-𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
3528, 34sylbi 218 . . . 4 (0 ≤ 𝑁 → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
3626, 35jaoi 853 . . 3 ((𝑁 ≤ 0 ∨ 0 ≤ 𝑁) → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
374, 36ax-mp 5 . 2 -𝑁 ≤ (abs‘(𝑁 · 𝐷))
38 df-neg 10865 . . . 4 -𝑁 = (0 − 𝑁)
3938breq1i 5069 . . 3 (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ (0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)))
403, 2, 32lesubadd2i 11192 . . 3 ((0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))))
4139, 40bitri 276 . 2 (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))))
4237, 41mpbi 231 1 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  wo 843  wcel 2106  wne 3020   class class class wbr 5062  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cle 10668  cmin 10862  -cneg 10863  cn 11630  cz 11973  abscabs 14586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588
This theorem is referenced by:  divalglem2  15738
  Copyright terms: Public domain W3C validator