MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem1 Structured version   Visualization version   GIF version

Theorem divalglem1 16305
Description: Lemma for divalg 16314. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
Assertion
Ref Expression
divalglem1 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))

Proof of Theorem divalglem1
StepHypRef Expression
1 divalglem0.1 . . . . 5 𝑁 ∈ ℤ
21zrei 12477 . . . 4 𝑁 ∈ ℝ
3 0re 11117 . . . 4 0 ∈ ℝ
42, 3letrii 11241 . . 3 (𝑁 ≤ 0 ∨ 0 ≤ 𝑁)
5 divalglem0.2 . . . . . . . 8 𝐷 ∈ ℤ
6 divalglem1.3 . . . . . . . 8 𝐷 ≠ 0
7 nnabscl 15233 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
85, 6, 7mp2an 692 . . . . . . 7 (abs‘𝐷) ∈ ℕ
9 nnge1 12156 . . . . . . 7 ((abs‘𝐷) ∈ ℕ → 1 ≤ (abs‘𝐷))
108, 9ax-mp 5 . . . . . 6 1 ≤ (abs‘𝐷)
11 le0neg1 11628 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
122, 11ax-mp 5 . . . . . . 7 (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)
132renegcli 11425 . . . . . . . 8 -𝑁 ∈ ℝ
145zrei 12477 . . . . . . . . . 10 𝐷 ∈ ℝ
1514recni 11129 . . . . . . . . 9 𝐷 ∈ ℂ
1615abscli 15303 . . . . . . . 8 (abs‘𝐷) ∈ ℝ
17 lemulge11 11987 . . . . . . . 8 (((-𝑁 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) ∧ (0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷))) → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
1813, 16, 17mpanl12 702 . . . . . . 7 ((0 ≤ -𝑁 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
1912, 18sylanb 581 . . . . . 6 ((𝑁 ≤ 0 ∧ 1 ≤ (abs‘𝐷)) → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
2010, 19mpan2 691 . . . . 5 (𝑁 ≤ 0 → -𝑁 ≤ (-𝑁 · (abs‘𝐷)))
212recni 11129 . . . . . . 7 𝑁 ∈ ℂ
2221, 15absmuli 15312 . . . . . 6 (abs‘(𝑁 · 𝐷)) = ((abs‘𝑁) · (abs‘𝐷))
232absnidi 15286 . . . . . . 7 (𝑁 ≤ 0 → (abs‘𝑁) = -𝑁)
2423oveq1d 7364 . . . . . 6 (𝑁 ≤ 0 → ((abs‘𝑁) · (abs‘𝐷)) = (-𝑁 · (abs‘𝐷)))
2522, 24eqtrid 2776 . . . . 5 (𝑁 ≤ 0 → (abs‘(𝑁 · 𝐷)) = (-𝑁 · (abs‘𝐷)))
2620, 25breqtrrd 5120 . . . 4 (𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
27 le0neg2 11629 . . . . . 6 (𝑁 ∈ ℝ → (0 ≤ 𝑁 ↔ -𝑁 ≤ 0))
282, 27ax-mp 5 . . . . 5 (0 ≤ 𝑁 ↔ -𝑁 ≤ 0)
292, 14remulcli 11131 . . . . . . . 8 (𝑁 · 𝐷) ∈ ℝ
3029recni 11129 . . . . . . 7 (𝑁 · 𝐷) ∈ ℂ
3130absge0i 15304 . . . . . 6 0 ≤ (abs‘(𝑁 · 𝐷))
3230abscli 15303 . . . . . . 7 (abs‘(𝑁 · 𝐷)) ∈ ℝ
3313, 3, 32letri 11245 . . . . . 6 ((-𝑁 ≤ 0 ∧ 0 ≤ (abs‘(𝑁 · 𝐷))) → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
3431, 33mpan2 691 . . . . 5 (-𝑁 ≤ 0 → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
3528, 34sylbi 217 . . . 4 (0 ≤ 𝑁 → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
3626, 35jaoi 857 . . 3 ((𝑁 ≤ 0 ∨ 0 ≤ 𝑁) → -𝑁 ≤ (abs‘(𝑁 · 𝐷)))
374, 36ax-mp 5 . 2 -𝑁 ≤ (abs‘(𝑁 · 𝐷))
38 df-neg 11350 . . . 4 -𝑁 = (0 − 𝑁)
3938breq1i 5099 . . 3 (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ (0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)))
403, 2, 32lesubadd2i 11680 . . 3 ((0 − 𝑁) ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))))
4139, 40bitri 275 . 2 (-𝑁 ≤ (abs‘(𝑁 · 𝐷)) ↔ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))))
4237, 41mpbi 230 1 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cle 11150  cmin 11347  -cneg 11348  cn 12128  cz 12471  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by:  divalglem2  16306
  Copyright terms: Public domain W3C validator