![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzsubiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of eluzsubi 12871 as of 7-Feb-2025. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eluzsubi.1 | ⊢ 𝑀 ∈ ℤ |
eluzsubi.2 | ⊢ 𝐾 ∈ ℤ |
Ref | Expression |
---|---|
eluzsubiOLD | ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12848 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → 𝑁 ∈ ℤ) | |
2 | eluzsubi.2 | . . 3 ⊢ 𝐾 ∈ ℤ | |
3 | zsubcl 12620 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 − 𝐾) ∈ ℤ) | |
4 | 1, 2, 3 | sylancl 585 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ ℤ) |
5 | eluzsubi.1 | . . . . 5 ⊢ 𝑀 ∈ ℤ | |
6 | zaddcl 12618 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ) | |
7 | 5, 2, 6 | mp2an 691 | . . . 4 ⊢ (𝑀 + 𝐾) ∈ ℤ |
8 | 7 | eluz1i 12846 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁)) |
9 | 5 | zrei 12580 | . . . . 5 ⊢ 𝑀 ∈ ℝ |
10 | 2 | zrei 12580 | . . . . 5 ⊢ 𝐾 ∈ ℝ |
11 | zre 12578 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
12 | leaddsub 11706 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 𝐾))) | |
13 | 9, 10, 11, 12 | mp3an12i 1462 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑀 + 𝐾) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 𝐾))) |
14 | 13 | biimpa 476 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁) → 𝑀 ≤ (𝑁 − 𝐾)) |
15 | 8, 14 | sylbi 216 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → 𝑀 ≤ (𝑁 − 𝐾)) |
16 | 5 | eluz1i 12846 | . 2 ⊢ ((𝑁 − 𝐾) ∈ (ℤ≥‘𝑀) ↔ ((𝑁 − 𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 𝐾))) |
17 | 4, 15, 16 | sylanbrc 582 | 1 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℝcr 11123 + caddc 11127 ≤ cle 11265 − cmin 11460 ℤcz 12574 ℤ≥cuz 12838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |