Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zre | Structured version Visualization version GIF version |
Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
zre | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 12251 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
Copyright terms: Public domain | W3C validator |