| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zre | Structured version Visualization version GIF version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 12599 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Copyright terms: Public domain | W3C validator |