MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdslelem Structured version   Visualization version   GIF version

Theorem dvdslelem 16346
Description: Lemma for dvdsle 16347. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvdslelem.1 𝑀 ∈ ℤ
dvdslelem.2 𝑁 ∈ ℕ
dvdslelem.3 𝐾 ∈ ℤ
Assertion
Ref Expression
dvdslelem (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁)

Proof of Theorem dvdslelem
StepHypRef Expression
1 dvdslelem.3 . . . . . 6 𝐾 ∈ ℤ
21zrei 12619 . . . . 5 𝐾 ∈ ℝ
3 0re 11263 . . . . 5 0 ∈ ℝ
4 lelttric 11368 . . . . 5 ((𝐾 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐾 ≤ 0 ∨ 0 < 𝐾))
52, 3, 4mp2an 692 . . . 4 (𝐾 ≤ 0 ∨ 0 < 𝐾)
6 zgt0ge1 12672 . . . . . 6 (𝐾 ∈ ℤ → (0 < 𝐾 ↔ 1 ≤ 𝐾))
71, 6ax-mp 5 . . . . 5 (0 < 𝐾 ↔ 1 ≤ 𝐾)
87orbi2i 913 . . . 4 ((𝐾 ≤ 0 ∨ 0 < 𝐾) ↔ (𝐾 ≤ 0 ∨ 1 ≤ 𝐾))
95, 8mpbi 230 . . 3 (𝐾 ≤ 0 ∨ 1 ≤ 𝐾)
10 le0neg1 11771 . . . . . . . . 9 (𝐾 ∈ ℝ → (𝐾 ≤ 0 ↔ 0 ≤ -𝐾))
112, 10ax-mp 5 . . . . . . . 8 (𝐾 ≤ 0 ↔ 0 ≤ -𝐾)
12 dvdslelem.2 . . . . . . . . . . . 12 𝑁 ∈ ℕ
1312nngt0i 12305 . . . . . . . . . . 11 0 < 𝑁
1412nnrei 12275 . . . . . . . . . . . 12 𝑁 ∈ ℝ
15 dvdslelem.1 . . . . . . . . . . . . 13 𝑀 ∈ ℤ
1615zrei 12619 . . . . . . . . . . . 12 𝑀 ∈ ℝ
173, 14, 16lttri 11387 . . . . . . . . . . 11 ((0 < 𝑁𝑁 < 𝑀) → 0 < 𝑀)
1813, 17mpan 690 . . . . . . . . . 10 (𝑁 < 𝑀 → 0 < 𝑀)
193, 16ltlei 11383 . . . . . . . . . 10 (0 < 𝑀 → 0 ≤ 𝑀)
2018, 19syl 17 . . . . . . . . 9 (𝑁 < 𝑀 → 0 ≤ 𝑀)
212renegcli 11570 . . . . . . . . . 10 -𝐾 ∈ ℝ
2221, 16mulge0i 11810 . . . . . . . . 9 ((0 ≤ -𝐾 ∧ 0 ≤ 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2320, 22sylan2 593 . . . . . . . 8 ((0 ≤ -𝐾𝑁 < 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2411, 23sylanb 581 . . . . . . 7 ((𝐾 ≤ 0 ∧ 𝑁 < 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2524expcom 413 . . . . . 6 (𝑁 < 𝑀 → (𝐾 ≤ 0 → 0 ≤ (-𝐾 · 𝑀)))
262, 16remulcli 11277 . . . . . . . 8 (𝐾 · 𝑀) ∈ ℝ
27 le0neg1 11771 . . . . . . . 8 ((𝐾 · 𝑀) ∈ ℝ → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀)))
2826, 27ax-mp 5 . . . . . . 7 ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀))
292recni 11275 . . . . . . . . 9 𝐾 ∈ ℂ
3016recni 11275 . . . . . . . . 9 𝑀 ∈ ℂ
3129, 30mulneg1i 11709 . . . . . . . 8 (-𝐾 · 𝑀) = -(𝐾 · 𝑀)
3231breq2i 5151 . . . . . . 7 (0 ≤ (-𝐾 · 𝑀) ↔ 0 ≤ -(𝐾 · 𝑀))
3328, 32bitr4i 278 . . . . . 6 ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ (-𝐾 · 𝑀))
3425, 33imbitrrdi 252 . . . . 5 (𝑁 < 𝑀 → (𝐾 ≤ 0 → (𝐾 · 𝑀) ≤ 0))
3526, 3, 14lelttri 11388 . . . . . 6 (((𝐾 · 𝑀) ≤ 0 ∧ 0 < 𝑁) → (𝐾 · 𝑀) < 𝑁)
3613, 35mpan2 691 . . . . 5 ((𝐾 · 𝑀) ≤ 0 → (𝐾 · 𝑀) < 𝑁)
3734, 36syl6 35 . . . 4 (𝑁 < 𝑀 → (𝐾 ≤ 0 → (𝐾 · 𝑀) < 𝑁))
38 lemulge12 12131 . . . . . . . 8 (((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (0 ≤ 𝑀 ∧ 1 ≤ 𝐾)) → 𝑀 ≤ (𝐾 · 𝑀))
3916, 2, 38mpanl12 702 . . . . . . 7 ((0 ≤ 𝑀 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4020, 39sylan 580 . . . . . 6 ((𝑁 < 𝑀 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4140ex 412 . . . . 5 (𝑁 < 𝑀 → (1 ≤ 𝐾𝑀 ≤ (𝐾 · 𝑀)))
4214, 16, 26ltletri 11389 . . . . . 6 ((𝑁 < 𝑀𝑀 ≤ (𝐾 · 𝑀)) → 𝑁 < (𝐾 · 𝑀))
4342ex 412 . . . . 5 (𝑁 < 𝑀 → (𝑀 ≤ (𝐾 · 𝑀) → 𝑁 < (𝐾 · 𝑀)))
4441, 43syld 47 . . . 4 (𝑁 < 𝑀 → (1 ≤ 𝐾𝑁 < (𝐾 · 𝑀)))
4537, 44orim12d 967 . . 3 (𝑁 < 𝑀 → ((𝐾 ≤ 0 ∨ 1 ≤ 𝐾) → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
469, 45mpi 20 . 2 (𝑁 < 𝑀 → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
4726, 14lttri2i 11375 . 2 ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
4846, 47sylibr 234 1 (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296  -cneg 11493  cn 12266  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614
This theorem is referenced by:  dvdsle  16347
  Copyright terms: Public domain W3C validator