MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdslelem Structured version   Visualization version   GIF version

Theorem dvdslelem 16328
Description: Lemma for dvdsle 16329. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvdslelem.1 𝑀 ∈ ℤ
dvdslelem.2 𝑁 ∈ ℕ
dvdslelem.3 𝐾 ∈ ℤ
Assertion
Ref Expression
dvdslelem (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁)

Proof of Theorem dvdslelem
StepHypRef Expression
1 dvdslelem.3 . . . . . 6 𝐾 ∈ ℤ
21zrei 12594 . . . . 5 𝐾 ∈ ℝ
3 0re 11237 . . . . 5 0 ∈ ℝ
4 lelttric 11342 . . . . 5 ((𝐾 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐾 ≤ 0 ∨ 0 < 𝐾))
52, 3, 4mp2an 692 . . . 4 (𝐾 ≤ 0 ∨ 0 < 𝐾)
6 zgt0ge1 12647 . . . . . 6 (𝐾 ∈ ℤ → (0 < 𝐾 ↔ 1 ≤ 𝐾))
71, 6ax-mp 5 . . . . 5 (0 < 𝐾 ↔ 1 ≤ 𝐾)
87orbi2i 912 . . . 4 ((𝐾 ≤ 0 ∨ 0 < 𝐾) ↔ (𝐾 ≤ 0 ∨ 1 ≤ 𝐾))
95, 8mpbi 230 . . 3 (𝐾 ≤ 0 ∨ 1 ≤ 𝐾)
10 le0neg1 11745 . . . . . . . . 9 (𝐾 ∈ ℝ → (𝐾 ≤ 0 ↔ 0 ≤ -𝐾))
112, 10ax-mp 5 . . . . . . . 8 (𝐾 ≤ 0 ↔ 0 ≤ -𝐾)
12 dvdslelem.2 . . . . . . . . . . . 12 𝑁 ∈ ℕ
1312nngt0i 12279 . . . . . . . . . . 11 0 < 𝑁
1412nnrei 12249 . . . . . . . . . . . 12 𝑁 ∈ ℝ
15 dvdslelem.1 . . . . . . . . . . . . 13 𝑀 ∈ ℤ
1615zrei 12594 . . . . . . . . . . . 12 𝑀 ∈ ℝ
173, 14, 16lttri 11361 . . . . . . . . . . 11 ((0 < 𝑁𝑁 < 𝑀) → 0 < 𝑀)
1813, 17mpan 690 . . . . . . . . . 10 (𝑁 < 𝑀 → 0 < 𝑀)
193, 16ltlei 11357 . . . . . . . . . 10 (0 < 𝑀 → 0 ≤ 𝑀)
2018, 19syl 17 . . . . . . . . 9 (𝑁 < 𝑀 → 0 ≤ 𝑀)
212renegcli 11544 . . . . . . . . . 10 -𝐾 ∈ ℝ
2221, 16mulge0i 11784 . . . . . . . . 9 ((0 ≤ -𝐾 ∧ 0 ≤ 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2320, 22sylan2 593 . . . . . . . 8 ((0 ≤ -𝐾𝑁 < 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2411, 23sylanb 581 . . . . . . 7 ((𝐾 ≤ 0 ∧ 𝑁 < 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2524expcom 413 . . . . . 6 (𝑁 < 𝑀 → (𝐾 ≤ 0 → 0 ≤ (-𝐾 · 𝑀)))
262, 16remulcli 11251 . . . . . . . 8 (𝐾 · 𝑀) ∈ ℝ
27 le0neg1 11745 . . . . . . . 8 ((𝐾 · 𝑀) ∈ ℝ → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀)))
2826, 27ax-mp 5 . . . . . . 7 ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀))
292recni 11249 . . . . . . . . 9 𝐾 ∈ ℂ
3016recni 11249 . . . . . . . . 9 𝑀 ∈ ℂ
3129, 30mulneg1i 11683 . . . . . . . 8 (-𝐾 · 𝑀) = -(𝐾 · 𝑀)
3231breq2i 5127 . . . . . . 7 (0 ≤ (-𝐾 · 𝑀) ↔ 0 ≤ -(𝐾 · 𝑀))
3328, 32bitr4i 278 . . . . . 6 ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ (-𝐾 · 𝑀))
3425, 33imbitrrdi 252 . . . . 5 (𝑁 < 𝑀 → (𝐾 ≤ 0 → (𝐾 · 𝑀) ≤ 0))
3526, 3, 14lelttri 11362 . . . . . 6 (((𝐾 · 𝑀) ≤ 0 ∧ 0 < 𝑁) → (𝐾 · 𝑀) < 𝑁)
3613, 35mpan2 691 . . . . 5 ((𝐾 · 𝑀) ≤ 0 → (𝐾 · 𝑀) < 𝑁)
3734, 36syl6 35 . . . 4 (𝑁 < 𝑀 → (𝐾 ≤ 0 → (𝐾 · 𝑀) < 𝑁))
38 lemulge12 12105 . . . . . . . 8 (((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (0 ≤ 𝑀 ∧ 1 ≤ 𝐾)) → 𝑀 ≤ (𝐾 · 𝑀))
3916, 2, 38mpanl12 702 . . . . . . 7 ((0 ≤ 𝑀 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4020, 39sylan 580 . . . . . 6 ((𝑁 < 𝑀 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4140ex 412 . . . . 5 (𝑁 < 𝑀 → (1 ≤ 𝐾𝑀 ≤ (𝐾 · 𝑀)))
4214, 16, 26ltletri 11363 . . . . . 6 ((𝑁 < 𝑀𝑀 ≤ (𝐾 · 𝑀)) → 𝑁 < (𝐾 · 𝑀))
4342ex 412 . . . . 5 (𝑁 < 𝑀 → (𝑀 ≤ (𝐾 · 𝑀) → 𝑁 < (𝐾 · 𝑀)))
4441, 43syld 47 . . . 4 (𝑁 < 𝑀 → (1 ≤ 𝐾𝑁 < (𝐾 · 𝑀)))
4537, 44orim12d 966 . . 3 (𝑁 < 𝑀 → ((𝐾 ≤ 0 ∨ 1 ≤ 𝐾) → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
469, 45mpi 20 . 2 (𝑁 < 𝑀 → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
4726, 14lttri2i 11349 . 2 ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
4846, 47sylibr 234 1 (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wcel 2108  wne 2932   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270  -cneg 11467  cn 12240  cz 12588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589
This theorem is referenced by:  dvdsle  16329
  Copyright terms: Public domain W3C validator