MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdslelem Structured version   Visualization version   GIF version

Theorem dvdslelem 16222
Description: Lemma for dvdsle 16223. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvdslelem.1 𝑀 ∈ ℤ
dvdslelem.2 𝑁 ∈ ℕ
dvdslelem.3 𝐾 ∈ ℤ
Assertion
Ref Expression
dvdslelem (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁)

Proof of Theorem dvdslelem
StepHypRef Expression
1 dvdslelem.3 . . . . . 6 𝐾 ∈ ℤ
21zrei 12481 . . . . 5 𝐾 ∈ ℝ
3 0re 11121 . . . . 5 0 ∈ ℝ
4 lelttric 11227 . . . . 5 ((𝐾 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐾 ≤ 0 ∨ 0 < 𝐾))
52, 3, 4mp2an 692 . . . 4 (𝐾 ≤ 0 ∨ 0 < 𝐾)
6 zgt0ge1 12533 . . . . . 6 (𝐾 ∈ ℤ → (0 < 𝐾 ↔ 1 ≤ 𝐾))
71, 6ax-mp 5 . . . . 5 (0 < 𝐾 ↔ 1 ≤ 𝐾)
87orbi2i 912 . . . 4 ((𝐾 ≤ 0 ∨ 0 < 𝐾) ↔ (𝐾 ≤ 0 ∨ 1 ≤ 𝐾))
95, 8mpbi 230 . . 3 (𝐾 ≤ 0 ∨ 1 ≤ 𝐾)
10 le0neg1 11632 . . . . . . . . 9 (𝐾 ∈ ℝ → (𝐾 ≤ 0 ↔ 0 ≤ -𝐾))
112, 10ax-mp 5 . . . . . . . 8 (𝐾 ≤ 0 ↔ 0 ≤ -𝐾)
12 dvdslelem.2 . . . . . . . . . . . 12 𝑁 ∈ ℕ
1312nngt0i 12171 . . . . . . . . . . 11 0 < 𝑁
1412nnrei 12141 . . . . . . . . . . . 12 𝑁 ∈ ℝ
15 dvdslelem.1 . . . . . . . . . . . . 13 𝑀 ∈ ℤ
1615zrei 12481 . . . . . . . . . . . 12 𝑀 ∈ ℝ
173, 14, 16lttri 11246 . . . . . . . . . . 11 ((0 < 𝑁𝑁 < 𝑀) → 0 < 𝑀)
1813, 17mpan 690 . . . . . . . . . 10 (𝑁 < 𝑀 → 0 < 𝑀)
193, 16ltlei 11242 . . . . . . . . . 10 (0 < 𝑀 → 0 ≤ 𝑀)
2018, 19syl 17 . . . . . . . . 9 (𝑁 < 𝑀 → 0 ≤ 𝑀)
212renegcli 11429 . . . . . . . . . 10 -𝐾 ∈ ℝ
2221, 16mulge0i 11671 . . . . . . . . 9 ((0 ≤ -𝐾 ∧ 0 ≤ 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2320, 22sylan2 593 . . . . . . . 8 ((0 ≤ -𝐾𝑁 < 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2411, 23sylanb 581 . . . . . . 7 ((𝐾 ≤ 0 ∧ 𝑁 < 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2524expcom 413 . . . . . 6 (𝑁 < 𝑀 → (𝐾 ≤ 0 → 0 ≤ (-𝐾 · 𝑀)))
262, 16remulcli 11135 . . . . . . . 8 (𝐾 · 𝑀) ∈ ℝ
27 le0neg1 11632 . . . . . . . 8 ((𝐾 · 𝑀) ∈ ℝ → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀)))
2826, 27ax-mp 5 . . . . . . 7 ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀))
292recni 11133 . . . . . . . . 9 𝐾 ∈ ℂ
3016recni 11133 . . . . . . . . 9 𝑀 ∈ ℂ
3129, 30mulneg1i 11570 . . . . . . . 8 (-𝐾 · 𝑀) = -(𝐾 · 𝑀)
3231breq2i 5101 . . . . . . 7 (0 ≤ (-𝐾 · 𝑀) ↔ 0 ≤ -(𝐾 · 𝑀))
3328, 32bitr4i 278 . . . . . 6 ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ (-𝐾 · 𝑀))
3425, 33imbitrrdi 252 . . . . 5 (𝑁 < 𝑀 → (𝐾 ≤ 0 → (𝐾 · 𝑀) ≤ 0))
3526, 3, 14lelttri 11247 . . . . . 6 (((𝐾 · 𝑀) ≤ 0 ∧ 0 < 𝑁) → (𝐾 · 𝑀) < 𝑁)
3613, 35mpan2 691 . . . . 5 ((𝐾 · 𝑀) ≤ 0 → (𝐾 · 𝑀) < 𝑁)
3734, 36syl6 35 . . . 4 (𝑁 < 𝑀 → (𝐾 ≤ 0 → (𝐾 · 𝑀) < 𝑁))
38 lemulge12 11992 . . . . . . . 8 (((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (0 ≤ 𝑀 ∧ 1 ≤ 𝐾)) → 𝑀 ≤ (𝐾 · 𝑀))
3916, 2, 38mpanl12 702 . . . . . . 7 ((0 ≤ 𝑀 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4020, 39sylan 580 . . . . . 6 ((𝑁 < 𝑀 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4140ex 412 . . . . 5 (𝑁 < 𝑀 → (1 ≤ 𝐾𝑀 ≤ (𝐾 · 𝑀)))
4214, 16, 26ltletri 11248 . . . . . 6 ((𝑁 < 𝑀𝑀 ≤ (𝐾 · 𝑀)) → 𝑁 < (𝐾 · 𝑀))
4342ex 412 . . . . 5 (𝑁 < 𝑀 → (𝑀 ≤ (𝐾 · 𝑀) → 𝑁 < (𝐾 · 𝑀)))
4441, 43syld 47 . . . 4 (𝑁 < 𝑀 → (1 ≤ 𝐾𝑁 < (𝐾 · 𝑀)))
4537, 44orim12d 966 . . 3 (𝑁 < 𝑀 → ((𝐾 ≤ 0 ∨ 1 ≤ 𝐾) → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
469, 45mpi 20 . 2 (𝑁 < 𝑀 → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
4726, 14lttri2i 11234 . 2 ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
4846, 47sylibr 234 1 (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wcel 2113  wne 2929   class class class wbr 5093  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014   · cmul 11018   < clt 11153  cle 11154  -cneg 11352  cn 12132  cz 12475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476
This theorem is referenced by:  dvdsle  16223
  Copyright terms: Public domain W3C validator