MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdslelem Structured version   Visualization version   GIF version

Theorem dvdslelem 16286
Description: Lemma for dvdsle 16287. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvdslelem.1 𝑀 ∈ ℤ
dvdslelem.2 𝑁 ∈ ℕ
dvdslelem.3 𝐾 ∈ ℤ
Assertion
Ref Expression
dvdslelem (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁)

Proof of Theorem dvdslelem
StepHypRef Expression
1 dvdslelem.3 . . . . . 6 𝐾 ∈ ℤ
21zrei 12542 . . . . 5 𝐾 ∈ ℝ
3 0re 11183 . . . . 5 0 ∈ ℝ
4 lelttric 11288 . . . . 5 ((𝐾 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐾 ≤ 0 ∨ 0 < 𝐾))
52, 3, 4mp2an 692 . . . 4 (𝐾 ≤ 0 ∨ 0 < 𝐾)
6 zgt0ge1 12595 . . . . . 6 (𝐾 ∈ ℤ → (0 < 𝐾 ↔ 1 ≤ 𝐾))
71, 6ax-mp 5 . . . . 5 (0 < 𝐾 ↔ 1 ≤ 𝐾)
87orbi2i 912 . . . 4 ((𝐾 ≤ 0 ∨ 0 < 𝐾) ↔ (𝐾 ≤ 0 ∨ 1 ≤ 𝐾))
95, 8mpbi 230 . . 3 (𝐾 ≤ 0 ∨ 1 ≤ 𝐾)
10 le0neg1 11693 . . . . . . . . 9 (𝐾 ∈ ℝ → (𝐾 ≤ 0 ↔ 0 ≤ -𝐾))
112, 10ax-mp 5 . . . . . . . 8 (𝐾 ≤ 0 ↔ 0 ≤ -𝐾)
12 dvdslelem.2 . . . . . . . . . . . 12 𝑁 ∈ ℕ
1312nngt0i 12232 . . . . . . . . . . 11 0 < 𝑁
1412nnrei 12202 . . . . . . . . . . . 12 𝑁 ∈ ℝ
15 dvdslelem.1 . . . . . . . . . . . . 13 𝑀 ∈ ℤ
1615zrei 12542 . . . . . . . . . . . 12 𝑀 ∈ ℝ
173, 14, 16lttri 11307 . . . . . . . . . . 11 ((0 < 𝑁𝑁 < 𝑀) → 0 < 𝑀)
1813, 17mpan 690 . . . . . . . . . 10 (𝑁 < 𝑀 → 0 < 𝑀)
193, 16ltlei 11303 . . . . . . . . . 10 (0 < 𝑀 → 0 ≤ 𝑀)
2018, 19syl 17 . . . . . . . . 9 (𝑁 < 𝑀 → 0 ≤ 𝑀)
212renegcli 11490 . . . . . . . . . 10 -𝐾 ∈ ℝ
2221, 16mulge0i 11732 . . . . . . . . 9 ((0 ≤ -𝐾 ∧ 0 ≤ 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2320, 22sylan2 593 . . . . . . . 8 ((0 ≤ -𝐾𝑁 < 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2411, 23sylanb 581 . . . . . . 7 ((𝐾 ≤ 0 ∧ 𝑁 < 𝑀) → 0 ≤ (-𝐾 · 𝑀))
2524expcom 413 . . . . . 6 (𝑁 < 𝑀 → (𝐾 ≤ 0 → 0 ≤ (-𝐾 · 𝑀)))
262, 16remulcli 11197 . . . . . . . 8 (𝐾 · 𝑀) ∈ ℝ
27 le0neg1 11693 . . . . . . . 8 ((𝐾 · 𝑀) ∈ ℝ → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀)))
2826, 27ax-mp 5 . . . . . . 7 ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀))
292recni 11195 . . . . . . . . 9 𝐾 ∈ ℂ
3016recni 11195 . . . . . . . . 9 𝑀 ∈ ℂ
3129, 30mulneg1i 11631 . . . . . . . 8 (-𝐾 · 𝑀) = -(𝐾 · 𝑀)
3231breq2i 5118 . . . . . . 7 (0 ≤ (-𝐾 · 𝑀) ↔ 0 ≤ -(𝐾 · 𝑀))
3328, 32bitr4i 278 . . . . . 6 ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ (-𝐾 · 𝑀))
3425, 33imbitrrdi 252 . . . . 5 (𝑁 < 𝑀 → (𝐾 ≤ 0 → (𝐾 · 𝑀) ≤ 0))
3526, 3, 14lelttri 11308 . . . . . 6 (((𝐾 · 𝑀) ≤ 0 ∧ 0 < 𝑁) → (𝐾 · 𝑀) < 𝑁)
3613, 35mpan2 691 . . . . 5 ((𝐾 · 𝑀) ≤ 0 → (𝐾 · 𝑀) < 𝑁)
3734, 36syl6 35 . . . 4 (𝑁 < 𝑀 → (𝐾 ≤ 0 → (𝐾 · 𝑀) < 𝑁))
38 lemulge12 12053 . . . . . . . 8 (((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (0 ≤ 𝑀 ∧ 1 ≤ 𝐾)) → 𝑀 ≤ (𝐾 · 𝑀))
3916, 2, 38mpanl12 702 . . . . . . 7 ((0 ≤ 𝑀 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4020, 39sylan 580 . . . . . 6 ((𝑁 < 𝑀 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4140ex 412 . . . . 5 (𝑁 < 𝑀 → (1 ≤ 𝐾𝑀 ≤ (𝐾 · 𝑀)))
4214, 16, 26ltletri 11309 . . . . . 6 ((𝑁 < 𝑀𝑀 ≤ (𝐾 · 𝑀)) → 𝑁 < (𝐾 · 𝑀))
4342ex 412 . . . . 5 (𝑁 < 𝑀 → (𝑀 ≤ (𝐾 · 𝑀) → 𝑁 < (𝐾 · 𝑀)))
4441, 43syld 47 . . . 4 (𝑁 < 𝑀 → (1 ≤ 𝐾𝑁 < (𝐾 · 𝑀)))
4537, 44orim12d 966 . . 3 (𝑁 < 𝑀 → ((𝐾 ≤ 0 ∨ 1 ≤ 𝐾) → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
469, 45mpi 20 . 2 (𝑁 < 𝑀 → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
4726, 14lttri2i 11295 . 2 ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
4846, 47sylibr 234 1 (𝑁 < 𝑀 → (𝐾 · 𝑀) ≠ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216  -cneg 11413  cn 12193  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537
This theorem is referenced by:  dvdsle  16287
  Copyright terms: Public domain W3C validator