New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abbi2i | Unicode version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbiri.1 |
Ref | Expression |
---|---|
abbi2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2458 | . 2 | |
2 | abbiri.1 | . 2 | |
3 | 1, 2 | mpgbir 1550 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wceq 1642 wcel 1710 cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: abid2 2470 cbvralcsf 3198 cbvreucsf 3200 cbvrabcsf 3201 dfdif2 3222 rabbi2dva 3463 symdif2 3520 dfnul2 3552 dfpr2 3749 dftp2 3772 0iin 4024 dfaddc2 4381 dfnnc2 4395 nnc0suc 4412 nncaddccl 4419 nnsucelrlem1 4424 nndisjeq 4429 preaddccan2lem1 4454 ltfinex 4464 ltfintrilem1 4465 ssfin 4470 ncfinraiselem2 4480 ncfinlowerlem1 4482 evenfinex 4503 oddfinex 4504 evenoddnnnul 4514 evenodddisjlem1 4515 nnadjoinlem1 4519 nnpweqlem1 4522 sfintfinlem1 4531 tfinnnlem1 4533 spfinex 4537 vfinspss 4551 vfinspclt 4552 vfinncsp 4554 dfop2lem2 4574 dfop2 4575 dfproj12 4576 dfproj22 4577 phialllem1 4616 setconslem6 4736 dfima2 4745 dfdm2 4900 dfdm3 4901 dfrn2 4902 dmun 4912 fv3 5341 epprc 5827 funsex 5828 pw1fnf1o 5855 fvfullfunlem1 5861 clos1ex 5876 qsexg 5982 mapexi 6003 fnpm 6008 enpw1pw 6075 nenpw1pwlem1 6084 ovmuc 6130 df0c2 6137 1cnc 6139 ovcelem1 6171 ce0nn 6180 leconnnc 6218 nclennlem1 6248 nnltp1clem1 6261 addccan2nclem2 6264 nmembers1lem1 6268 nncdiv3lem2 6276 nnc3n3p1 6278 nchoicelem11 6299 nchoicelem16 6304 nchoicelem18 6306 fnfreclem1 6317 dmsnfn 6327 |
Copyright terms: Public domain | W3C validator |