New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abbi2i | Unicode version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbiri.1 |
Ref | Expression |
---|---|
abbi2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2459 | . 2 | |
2 | abbiri.1 | . 2 | |
3 | 1, 2 | mpgbir 1550 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wceq 1642 wcel 1710 cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: abid2 2471 cbvralcsf 3199 cbvreucsf 3201 cbvrabcsf 3202 dfdif2 3223 rabbi2dva 3464 symdif2 3521 dfnul2 3553 dfpr2 3750 dftp2 3773 0iin 4025 dfaddc2 4382 dfnnc2 4396 nnc0suc 4413 nncaddccl 4420 nnsucelrlem1 4425 nndisjeq 4430 preaddccan2lem1 4455 ltfinex 4465 ltfintrilem1 4466 ssfin 4471 ncfinraiselem2 4481 ncfinlowerlem1 4483 evenfinex 4504 oddfinex 4505 evenoddnnnul 4515 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 vfinspss 4552 vfinspclt 4553 vfinncsp 4555 dfop2lem2 4575 dfop2 4576 dfproj12 4577 dfproj22 4578 phialllem1 4617 setconslem6 4737 dfima2 4746 dfdm2 4901 dfdm3 4902 dfrn2 4903 dmun 4913 fv3 5342 epprc 5828 funsex 5829 pw1fnf1o 5856 fvfullfunlem1 5862 clos1ex 5877 qsexg 5983 mapexi 6004 fnpm 6009 enpw1pw 6076 nenpw1pwlem1 6085 ovmuc 6131 df0c2 6138 1cnc 6140 ovcelem1 6172 ce0nn 6181 leconnnc 6219 nclennlem1 6249 nnltp1clem1 6262 addccan2nclem2 6265 nmembers1lem1 6269 nncdiv3lem2 6277 nnc3n3p1 6279 nchoicelem11 6300 nchoicelem16 6305 nchoicelem18 6307 fnfreclem1 6318 dmsnfn 6328 |
Copyright terms: Public domain | W3C validator |