MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem7 Structured version   Visualization version   GIF version

Theorem aaliou3lem7 23821
Description: Lemma for aaliou3 23823. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem7 (𝐴 ∈ ℕ → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem7
StepHypRef Expression
1 peano2nn 10875 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
2 eqid 2605 . . . 4 (𝑐 ∈ (ℤ‘(𝐴 + 1)) ↦ ((2↑-(!‘(𝐴 + 1))) · ((1 / 2)↑(𝑐 − (𝐴 + 1))))) = (𝑐 ∈ (ℤ‘(𝐴 + 1)) ↦ ((2↑-(!‘(𝐴 + 1))) · ((1 / 2)↑(𝑐 − (𝐴 + 1)))))
3 aaliou3lem.c . . . 4 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
42, 3aaliou3lem3 23816 . . 3 ((𝐴 + 1) ∈ ℕ → (seq(𝐴 + 1)( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
5 3simpc 1052 . . 3 ((seq(𝐴 + 1)( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
61, 4, 53syl 18 . 2 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
7 nncn 10871 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
8 ax-1cn 9846 . . . . . . . . . . . 12 1 ∈ ℂ
9 pncan 10134 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
107, 8, 9sylancl 692 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴)
1110oveq2d 6539 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1...((𝐴 + 1) − 1)) = (1...𝐴))
1211sumeq1d 14221 . . . . . . . . 9 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
1312oveq1d 6538 . . . . . . . 8 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
14 nnuz 11551 . . . . . . . . 9 ℕ = (ℤ‘1)
15 eqid 2605 . . . . . . . . 9 (ℤ‘(𝐴 + 1)) = (ℤ‘(𝐴 + 1))
16 eqidd 2606 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝐹𝑏) = (𝐹𝑏))
17 fveq2 6084 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
1817negeqd 10122 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1918oveq2d 6539 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
20 ovex 6551 . . . . . . . . . . . 12 (2↑-(!‘𝑏)) ∈ V
2119, 3, 20fvmpt 6172 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
22 2rp 11665 . . . . . . . . . . . . 13 2 ∈ ℝ+
23 nnnn0 11142 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
24 faccl 12883 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ0 → (!‘𝑏) ∈ ℕ)
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℕ)
2625nnzd 11309 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℤ)
2726znegcld 11312 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → -(!‘𝑏) ∈ ℤ)
28 rpexpcl 12692 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
2922, 27, 28sylancr 693 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ+)
3029rpcnd 11702 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℂ)
3121, 30eqeltrd 2683 . . . . . . . . . 10 (𝑏 ∈ ℕ → (𝐹𝑏) ∈ ℂ)
3231adantl 480 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝐹𝑏) ∈ ℂ)
33 1nn 10874 . . . . . . . . . 10 1 ∈ ℕ
34 eqid 2605 . . . . . . . . . . . 12 (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1)))) = (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1))))
3534, 3aaliou3lem3 23816 . . . . . . . . . . 11 (1 ∈ ℕ → (seq1( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ≤ (2 · (2↑-(!‘1)))))
3635simp1d 1065 . . . . . . . . . 10 (1 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
3733, 36mp1i 13 . . . . . . . . 9 (𝐴 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
3814, 15, 1, 16, 32, 37isumsplit 14353 . . . . . . . 8 (𝐴 ∈ ℕ → Σ𝑏 ∈ ℕ (𝐹𝑏) = (Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
39 oveq2 6531 . . . . . . . . . . 11 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
4039sumeq1d 14221 . . . . . . . . . 10 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
41 aaliou3lem.e . . . . . . . . . 10 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
42 sumex 14208 . . . . . . . . . 10 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
4340, 41, 42fvmpt 6172 . . . . . . . . 9 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
4443oveq1d 6538 . . . . . . . 8 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
4513, 38, 443eqtr4rd 2650 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = Σ𝑏 ∈ ℕ (𝐹𝑏))
46 aaliou3lem.d . . . . . . 7 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
4745, 46syl6eqr 2657 . . . . . 6 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = 𝐿)
483, 46, 41aaliou3lem4 23818 . . . . . . . . 9 𝐿 ∈ ℝ
4948recni 9904 . . . . . . . 8 𝐿 ∈ ℂ
5049a1i 11 . . . . . . 7 (𝐴 ∈ ℕ → 𝐿 ∈ ℂ)
513, 46, 41aaliou3lem5 23819 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℝ)
5251recnd 9920 . . . . . . 7 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℂ)
534simp2d 1066 . . . . . . . . 9 ((𝐴 + 1) ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+)
541, 53syl 17 . . . . . . . 8 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+)
5554rpcnd 11702 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℂ)
5650, 52, 55subaddd 10257 . . . . . 6 (𝐴 ∈ ℕ → ((𝐿 − (𝐻𝐴)) = Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ↔ ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = 𝐿))
5747, 56mpbird 245 . . . . 5 (𝐴 ∈ ℕ → (𝐿 − (𝐻𝐴)) = Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏))
5857eqcomd 2611 . . . 4 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)))
59 eleq1 2671 . . . . 5 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
60 breq1 4576 . . . . 5 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
6159, 60anbi12d 742 . . . 4 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) ↔ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
6258, 61syl 17 . . 3 (𝐴 ∈ ℕ → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) ↔ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
6351adantr 479 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) ∈ ℝ)
64 simprl 789 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐿 − (𝐻𝐴)) ∈ ℝ+)
65 difrp 11696 . . . . . . . 8 (((𝐻𝐴) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐻𝐴) < 𝐿 ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
6663, 48, 65sylancl 692 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) < 𝐿 ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
6764, 66mpbird 245 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) < 𝐿)
6863, 67ltned 10020 . . . . 5 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) ≠ 𝐿)
69 nnnn0 11142 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ ℕ → (𝐴 + 1) ∈ ℕ0)
70 faccl 12883 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ ℕ0 → (!‘(𝐴 + 1)) ∈ ℕ)
711, 69, 703syl 18 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (!‘(𝐴 + 1)) ∈ ℕ)
7271nnzd 11309 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (!‘(𝐴 + 1)) ∈ ℤ)
7372znegcld 11312 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → -(!‘(𝐴 + 1)) ∈ ℤ)
74 rpexpcl 12692 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ -(!‘(𝐴 + 1)) ∈ ℤ) → (2↑-(!‘(𝐴 + 1))) ∈ ℝ+)
7522, 73, 74sylancr 693 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (2↑-(!‘(𝐴 + 1))) ∈ ℝ+)
76 rpmulcl 11683 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ (2↑-(!‘(𝐴 + 1))) ∈ ℝ+) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7722, 75, 76sylancr 693 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7877adantr 479 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7978rpred 11700 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ)
8063, 79resubcld 10305 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ∈ ℝ)
8148a1i 11 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → 𝐿 ∈ ℝ)
8263, 78ltsubrpd 11732 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) < (𝐻𝐴))
8380, 63, 81, 82, 67lttrd 10045 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) < 𝐿)
8480, 81, 83ltled 10032 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ≤ 𝐿)
85 simprr 791 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))
8681, 63, 79lesubadd2d 10471 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ 𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1)))))))
8785, 86mpbid 220 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → 𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1))))))
8881, 63, 79absdifled 13963 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ (((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ≤ 𝐿𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1))))))))
8984, 87, 88mpbir2and 958 . . . . 5 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))
9068, 89jca 552 . . . 4 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
9190ex 448 . . 3 (𝐴 ∈ ℕ → (((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
9262, 91sylbid 228 . 2 (𝐴 ∈ ℕ → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
936, 92mpd 15 1 (𝐴 ∈ ℕ → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2775   class class class wbr 4573  cmpt 4633  dom cdm 5024  cfv 5786  (class class class)co 6523  cc 9786  cr 9787  1c1 9789   + caddc 9791   · cmul 9793   < clt 9926  cle 9927  cmin 10113  -cneg 10114   / cdiv 10529  cn 10863  2c2 10913  0cn0 11135  cz 11206  cuz 11515  +crp 11660  ...cfz 12148  seqcseq 12614  cexp 12673  !cfa 12873  abscabs 13764  cli 14005  Σcsu 14206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-ioc 12003  df-ico 12004  df-fz 12149  df-fzo 12286  df-fl 12406  df-seq 12615  df-exp 12674  df-fac 12874  df-hash 12931  df-shft 13597  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-limsup 13992  df-clim 14009  df-rlim 14010  df-sum 14207
This theorem is referenced by:  aaliou3lem9  23822
  Copyright terms: Public domain W3C validator