Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem56 Structured version   Visualization version   GIF version

Theorem fourierdlem56 39686
Description: Derivative of the 𝐾 function on an interval non containing ' 0 '. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem56.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem56.a (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0}))
fourierdlem56.r4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
Assertion
Ref Expression
fourierdlem56 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem56
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem56.a . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0}))
21difss2d 3718 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
32sselda 3583 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
4 1ex 9979 . . . . . . . 8 1 ∈ V
5 ovex 6632 . . . . . . . 8 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
64, 5ifex 4128 . . . . . . 7 if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V
76a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V)
8 fourierdlem56.k . . . . . . 7 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
98fvmpt2 6248 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ V) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
103, 7, 9syl2anc 692 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
11 fourierdlem56.r4 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
1211neneqd 2795 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
1312iffalsed 4069 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
14 elioore 12147 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1514adantl 482 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1615recnd 10012 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
1716halfcld 11221 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
1817sincld 14785 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
19 2cnd 11037 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
20 fourierdlem44 39675 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
213, 11, 20syl2anc 692 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
22 2ne0 11057 . . . . . . . 8 2 ≠ 0
2322a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
2416, 18, 19, 21, 23divdiv1d 10776 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 / (sin‘(𝑠 / 2))) / 2) = (𝑠 / ((sin‘(𝑠 / 2)) · 2)))
2518, 19mulcomd 10005 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2)) · 2) = (2 · (sin‘(𝑠 / 2))))
2625oveq2d 6620 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / ((sin‘(𝑠 / 2)) · 2)) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
2724, 26eqtr2d 2656 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = ((𝑠 / (sin‘(𝑠 / 2))) / 2))
2810, 13, 273eqtrd 2659 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) = ((𝑠 / (sin‘(𝑠 / 2))) / 2))
2928mpteq2dva 4704 . . 3 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2)))
3029oveq2d 6620 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2))))
31 reelprrecn 9972 . . . 4 ℝ ∈ {ℝ, ℂ}
3231a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3316, 18, 21divcld 10745 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (sin‘(𝑠 / 2))) ∈ ℂ)
34 1red 9999 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
3515rehalfcld 11223 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3635resincld 14798 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3734, 36remulcld 10014 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 · (sin‘(𝑠 / 2))) ∈ ℝ)
3835recoscld 14799 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℝ)
3934rehalfcld 11223 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℝ)
4038, 39remulcld 10014 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · (1 / 2)) ∈ ℝ)
4140, 15remulcld 10014 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠) ∈ ℝ)
4237, 41resubcld 10402 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) ∈ ℝ)
4336resqcld 12975 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2))↑2) ∈ ℝ)
44 2z 11353 . . . . . 6 2 ∈ ℤ
4544a1i 11 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℤ)
4618, 21, 45expne0d 12954 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑠 / 2))↑2) ≠ 0)
4742, 43, 46redivcld 10797 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) ∈ ℝ)
48 1cnd 10000 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
49 recn 9970 . . . . . 6 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
5049adantl 482 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
51 1red 9999 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
5232dvmptid 23626 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
53 ioossre 12177 . . . . . 6 (𝐴(,)𝐵) ⊆ ℝ
5453a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
55 eqid 2621 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5655tgioo2 22514 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
57 iooretop 22479 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
5857a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
5932, 50, 51, 52, 54, 56, 55, 58dvmptres 23632 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
60 elsni 4165 . . . . . . 7 ((sin‘(𝑠 / 2)) ∈ {0} → (sin‘(𝑠 / 2)) = 0)
6160necon3ai 2815 . . . . . 6 ((sin‘(𝑠 / 2)) ≠ 0 → ¬ (sin‘(𝑠 / 2)) ∈ {0})
6221, 61syl 17 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ (sin‘(𝑠 / 2)) ∈ {0})
6318, 62eldifd 3566 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
6417coscld 14786 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
6548halfcld 11221 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℂ)
6664, 65mulcld 10004 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑠 / 2)) · (1 / 2)) ∈ ℂ)
67 cnelprrecn 9973 . . . . . 6 ℂ ∈ {ℝ, ℂ}
6867a1i 11 . . . . 5 (𝜑 → ℂ ∈ {ℝ, ℂ})
69 sinf 14779 . . . . . . 7 sin:ℂ⟶ℂ
7069a1i 11 . . . . . 6 (𝜑 → sin:ℂ⟶ℂ)
7170ffvelrnda 6315 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
72 cosf 14780 . . . . . . 7 cos:ℂ⟶ℂ
7372a1i 11 . . . . . 6 (𝜑 → cos:ℂ⟶ℂ)
7473ffvelrnda 6315 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
75 2cnd 11037 . . . . . 6 (𝜑 → 2 ∈ ℂ)
7622a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
7732, 16, 34, 59, 75, 76dvmptdivc 23634 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / 2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)))
78 ffn 6002 . . . . . . . . . . 11 (sin:ℂ⟶ℂ → sin Fn ℂ)
7969, 78ax-mp 5 . . . . . . . . . 10 sin Fn ℂ
80 dffn5 6198 . . . . . . . . . 10 (sin Fn ℂ ↔ sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
8179, 80mpbi 220 . . . . . . . . 9 sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))
8281eqcomi 2630 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (sin‘𝑥)) = sin
8382oveq2i 6615 . . . . . . 7 (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (ℂ D sin)
84 dvsin 23649 . . . . . . 7 (ℂ D sin) = cos
85 ffn 6002 . . . . . . . . 9 (cos:ℂ⟶ℂ → cos Fn ℂ)
8672, 85ax-mp 5 . . . . . . . 8 cos Fn ℂ
87 dffn5 6198 . . . . . . . 8 (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
8886, 87mpbi 220 . . . . . . 7 cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
8983, 84, 883eqtri 2647 . . . . . 6 (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
9089a1i 11 . . . . 5 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
91 fveq2 6148 . . . . 5 (𝑥 = (𝑠 / 2) → (sin‘𝑥) = (sin‘(𝑠 / 2)))
92 fveq2 6148 . . . . 5 (𝑥 = (𝑠 / 2) → (cos‘𝑥) = (cos‘(𝑠 / 2)))
9332, 68, 17, 39, 71, 74, 77, 90, 91, 92dvmptco 23641 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑠 / 2)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((cos‘(𝑠 / 2)) · (1 / 2))))
9432, 16, 48, 59, 63, 66, 93dvmptdiv 39438 . . 3 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2))))
9532, 33, 47, 94, 75, 76dvmptdivc 23634 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝑠 / (sin‘(𝑠 / 2))) / 2))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
9614recnd 10012 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ)
9796halfcld 11221 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ)
9897sincld 14785 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ)
9998mulid2d 10002 . . . . . . 7 (𝑠 ∈ (𝐴(,)𝐵) → (1 · (sin‘(𝑠 / 2))) = (sin‘(𝑠 / 2)))
10097coscld 14786 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
101 2cnd 11037 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ)
10222a1i 11 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 2 ≠ 0)
103100, 101, 102divrecd 10748 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → ((cos‘(𝑠 / 2)) / 2) = ((cos‘(𝑠 / 2)) · (1 / 2)))
104103eqcomd 2627 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → ((cos‘(𝑠 / 2)) · (1 / 2)) = ((cos‘(𝑠 / 2)) / 2))
105104oveq1d 6619 . . . . . . 7 (𝑠 ∈ (𝐴(,)𝐵) → (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠) = (((cos‘(𝑠 / 2)) / 2) · 𝑠))
10699, 105oveq12d 6622 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → ((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) = ((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)))
107106oveq1d 6619 . . . . 5 (𝑠 ∈ (𝐴(,)𝐵) → (((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) = (((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)))
108107oveq1d 6619 . . . 4 (𝑠 ∈ (𝐴(,)𝐵) → ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2) = ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))
109108mpteq2ia 4700 . . 3 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))
110109a1i 11 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((1 · (sin‘(𝑠 / 2))) − (((cos‘(𝑠 / 2)) · (1 / 2)) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
11130, 95, 1103eqtrd 2659 1 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  cdif 3552  wss 3555  ifcif 4058  {csn 4148  {cpr 4150  cmpt 4673  ran crn 5075   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   · cmul 9885  cmin 10210  -cneg 10211   / cdiv 10628  2c2 11014  cz 11321  (,)cioo 12117  [,]cicc 12120  cexp 12800  sincsin 14719  cosccos 14720  πcpi 14722  TopOpenctopn 16003  topGenctg 16019  fldccnfld 19665   D cdv 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-t1 21028  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator