Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliunnfl Structured version   Visualization version   GIF version

Theorem voliunnfl 33120
Description: voliun 23245 is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017.)
Hypotheses
Ref Expression
voliunnfl.1 𝑆 = seq1( + , 𝐺)
voliunnfl.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))
voliunnfl.3 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ))
Assertion
Ref Expression
voliunnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑓,𝑛,𝑥,𝐴
Allowed substitution hints:   𝑆(𝑥,𝑓,𝑛)   𝐺(𝑥,𝑓,𝑛)

Proof of Theorem voliunnfl
Dummy variables 𝑔 𝑚 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4415 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 4436 . . . . . . . . 9 ∅ = ∅
31, 2syl6eq 2671 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
43fveq2d 6157 . . . . . . 7 (𝐴 = ∅ → (vol‘ 𝐴) = (vol‘∅))
5 0mbl 23230 . . . . . . . . 9 ∅ ∈ dom vol
6 mblvol 23221 . . . . . . . . 9 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
75, 6ax-mp 5 . . . . . . . 8 (vol‘∅) = (vol*‘∅)
8 ovol0 23184 . . . . . . . 8 (vol*‘∅) = 0
97, 8eqtri 2643 . . . . . . 7 (vol‘∅) = 0
104, 9syl6req 2672 . . . . . 6 (𝐴 = ∅ → 0 = (vol‘ 𝐴))
1110a1d 25 . . . . 5 (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
12 reldom 7913 . . . . . . . . . . 11 Rel ≼
1312brrelexi 5123 . . . . . . . . . 10 (𝐴 ≼ ℕ → 𝐴 ∈ V)
14 0sdomg 8041 . . . . . . . . . 10 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1513, 14syl 17 . . . . . . . . 9 (𝐴 ≼ ℕ → (∅ ≺ 𝐴𝐴 ≠ ∅))
1615biimparc 504 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅ ≺ 𝐴)
17 fodomr 8063 . . . . . . . 8 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
1816, 17sylancom 700 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
19 unissb 4440 . . . . . . . . . . . . 13 ( 𝐴 ⊆ ℝ ↔ ∀𝑥𝐴 𝑥 ⊆ ℝ)
2019anbi1i 730 . . . . . . . . . . . 12 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
21 r19.26 3058 . . . . . . . . . . . 12 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
2220, 21bitr4i 267 . . . . . . . . . . 11 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ))
23 ovolctb2 23183 . . . . . . . . . . . . . 14 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (vol*‘𝑥) = 0)
2423ex 450 . . . . . . . . . . . . 13 (𝑥 ⊆ ℝ → (𝑥 ≼ ℕ → (vol*‘𝑥) = 0))
2524imdistani 725 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2625ralimi 2947 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2722, 26sylbi 207 . . . . . . . . . 10 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2827ancoms 469 . . . . . . . . 9 ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
29 foima 6082 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → (𝑔 “ ℕ) = 𝐴)
3029raleqdv 3136 . . . . . . . . . . 11 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)))
31 fofn 6079 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
32 ssid 3608 . . . . . . . . . . . 12 ℕ ⊆ ℕ
33 sseq1 3610 . . . . . . . . . . . . . 14 (𝑥 = (𝑔𝑚) → (𝑥 ⊆ ℝ ↔ (𝑔𝑚) ⊆ ℝ))
34 fveq2 6153 . . . . . . . . . . . . . . 15 (𝑥 = (𝑔𝑚) → (vol*‘𝑥) = (vol*‘(𝑔𝑚)))
3534eqeq1d 2623 . . . . . . . . . . . . . 14 (𝑥 = (𝑔𝑚) → ((vol*‘𝑥) = 0 ↔ (vol*‘(𝑔𝑚)) = 0))
3633, 35anbi12d 746 . . . . . . . . . . . . 13 (𝑥 = (𝑔𝑚) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3736ralima 6458 . . . . . . . . . . . 12 ((𝑔 Fn ℕ ∧ ℕ ⊆ ℕ) → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3831, 32, 37sylancl 693 . . . . . . . . . . 11 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3930, 38bitr3d 270 . . . . . . . . . 10 (𝑔:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
40 difss 3720 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ (𝑔𝑚)
41 ovolssnul 23178 . . . . . . . . . . . . . . . . . 18 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ (𝑔𝑚) ∧ (𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
4240, 41mp3an1 1408 . . . . . . . . . . . . . . . . 17 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
43 ssdifss 3724 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑚) ⊆ ℝ → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ)
44 nulmbl 23226 . . . . . . . . . . . . . . . . . . 19 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol)
45 mblvol 23221 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))))
4645eqeq1d 2623 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → ((vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 ↔ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0))
4746biimpar 502 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
48 0re 9992 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ
4947, 48syl6eqel 2706 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)
5049expcom 451 . . . . . . . . . . . . . . . . . . . . 21 ((vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5150ancld 575 . . . . . . . . . . . . . . . . . . . 20 ((vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
5251adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
5344, 52mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5443, 53sylan 488 . . . . . . . . . . . . . . . . 17 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5542, 54syldan 487 . . . . . . . . . . . . . . . 16 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5655ralimi 2947 . . . . . . . . . . . . . . 15 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
57 fveq2 6153 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
58 oveq2 6618 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (1..^𝑚) = (1..^𝑛))
5958iuneq1d 4516 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 𝑙 ∈ (1..^𝑚)(𝑔𝑙) = 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
6057, 59difeq12d 3712 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
61 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))
62 fvex 6163 . . . . . . . . . . . . . . . . . . . . 21 (𝑔𝑛) ∈ V
63 difexg 4773 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔𝑛) ∈ V → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ V)
6462, 63ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ V
6560, 61, 64fvmpt 6244 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
6665eleq1d 2683 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ↔ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol))
6765fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
6867eleq1d 2683 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ ↔ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ))
6966, 68anbi12d 746 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ)))
7069ralbiia 2974 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ ∀𝑛 ∈ ℕ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ))
71 fveq2 6153 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
72 oveq2 6618 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
7372iuneq1d 4516 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 𝑙 ∈ (1..^𝑛)(𝑔𝑙) = 𝑙 ∈ (1..^𝑚)(𝑔𝑙))
7471, 73difeq12d 3712 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))
7574eleq1d 2683 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ↔ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol))
7674fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))))
7776eleq1d 2683 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → ((vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ ↔ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
7875, 77anbi12d 746 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ) ↔ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
7978cbvralv 3162 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ) ↔ ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
8070, 79bitri 264 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
8156, 80sylibr 224 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ))
82 fveq2 6153 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑙 → (𝑔𝑛) = (𝑔𝑙))
8382iundisj2 23240 . . . . . . . . . . . . . . 15 Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
84 disjeq2 4592 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) → (Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
8584, 65mprg 2921 . . . . . . . . . . . . . . 15 (Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
8683, 85mpbir 221 . . . . . . . . . . . . . 14 Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)
87 nnex 10978 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
8887mptex 6446 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ V
89 fveq1 6152 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (𝑓𝑛) = ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
9089eleq1d 2683 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((𝑓𝑛) ∈ dom vol ↔ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol))
9189fveq2d 6157 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (vol‘(𝑓𝑛)) = (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
9291eleq1d 2683 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((vol‘(𝑓𝑛)) ∈ ℝ ↔ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ))
9390, 92anbi12d 746 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ↔ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ)))
9493ralbidv 2981 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ↔ ∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ)))
9589adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) = ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
9695disjeq2dv 4593 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (Disj 𝑛 ∈ ℕ (𝑓𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
9794, 96anbi12d 746 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) ↔ (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))))
9889iuneq2d 4518 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
9998fveq2d 6157 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
100 voliunnfl.1 . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = seq1( + , 𝐺)
101 voliunnfl.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))
102 seqeq3 12754 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))))
103101, 102ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
104100, 103eqtri 2643 . . . . . . . . . . . . . . . . . . . . 21 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
105104rneqi 5317 . . . . . . . . . . . . . . . . . . . 20 ran 𝑆 = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
106105supeq1i 8305 . . . . . . . . . . . . . . . . . . 19 sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))), ℝ*, < )
10791mpteq2dv 4710 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))))
108107seqeq3d 12757 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))))
109108rneqd 5318 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))) = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))))
110109supeq1d 8304 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
111106, 110syl5eq 2667 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
11299, 111eqeq12d 2636 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ) ↔ (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < )))
11397, 112imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < )) ↔ ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))))
114 voliunnfl.3 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ))
11588, 113, 114vtocl 3248 . . . . . . . . . . . . . . 15 ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
11665iuneq2i 4510 . . . . . . . . . . . . . . . 16 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
117116fveq2i 6156 . . . . . . . . . . . . . . 15 (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
11867mpteq2ia 4705 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
119 seqeq3 12754 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))))
120118, 119ax-mp 5 . . . . . . . . . . . . . . . . 17 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))))
121120rneqi 5317 . . . . . . . . . . . . . . . 16 ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))))
122121supeq1i 8305 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < )
123115, 117, 1223eqtr3g 2678 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
12481, 86, 123sylancl 693 . . . . . . . . . . . . 13 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
125124adantl 482 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
12682iundisj 23239 . . . . . . . . . . . . . . . 16 𝑛 ∈ ℕ (𝑔𝑛) = 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
127 fofun 6078 . . . . . . . . . . . . . . . . 17 (𝑔:ℕ–onto𝐴 → Fun 𝑔)
128 funiunfv 6466 . . . . . . . . . . . . . . . . 17 (Fun 𝑔 𝑛 ∈ ℕ (𝑔𝑛) = (𝑔 “ ℕ))
129127, 128syl 17 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑔𝑛) = (𝑔 “ ℕ))
130126, 129syl5eqr 2669 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = (𝑔 “ ℕ))
13129unieqd 4417 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 (𝑔 “ ℕ) = 𝐴)
132130, 131eqtrd 2655 . . . . . . . . . . . . . 14 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = 𝐴)
133132fveq2d 6157 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝐴 → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘ 𝐴))
134133adantr 481 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘ 𝐴))
13557sseq1d 3616 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((𝑔𝑚) ⊆ ℝ ↔ (𝑔𝑛) ⊆ ℝ))
13657fveq2d 6157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (vol*‘(𝑔𝑚)) = (vol*‘(𝑔𝑛)))
137136eqeq1d 2623 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((vol*‘(𝑔𝑚)) = 0 ↔ (vol*‘(𝑔𝑛)) = 0))
138135, 137anbi12d 746 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ↔ ((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0)))
139138rspccva 3297 . . . . . . . . . . . . . . . . . . 19 ((∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ∧ 𝑛 ∈ ℕ) → ((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0))
140 ssdifss 3724 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑛) ⊆ ℝ → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ)
141140adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ)
142 difss 3720 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ (𝑔𝑛)
143 ovolssnul 23178 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ (𝑔𝑛) ∧ (𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
144142, 143mp3an1 1408 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
145141, 144jca 554 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0))
146 nulmbl 23226 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0) → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol)
147 mblvol 23221 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
148145, 146, 1473syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
149148, 144eqtrd 2655 . . . . . . . . . . . . . . . . . . 19 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
150139, 149syl 17 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ∧ 𝑛 ∈ ℕ) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
151150mpteq2dva 4709 . . . . . . . . . . . . . . . . 17 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))) = (𝑛 ∈ ℕ ↦ 0))
152151seqeq3d 12757 . . . . . . . . . . . . . . . 16 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))) = seq1( + , (𝑛 ∈ ℕ ↦ 0)))
153152rneqd 5318 . . . . . . . . . . . . . . 15 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))) = ran seq1( + , (𝑛 ∈ ℕ ↦ 0)))
154153supeq1d 8304 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ))
155 0cn 9984 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
156 ser1const 12805 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℂ ∧ 𝑚 ∈ ℕ) → (seq1( + , (ℕ × {0}))‘𝑚) = (𝑚 · 0))
157155, 156mpan 705 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑚) = (𝑚 · 0))
158 nncn 10980 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
159158mul01d 10187 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → (𝑚 · 0) = 0)
160157, 159eqtrd 2655 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑚) = 0)
161160mpteq2ia 4705 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)) = (𝑚 ∈ ℕ ↦ 0)
162 fconstmpt 5128 . . . . . . . . . . . . . . . . . . . . 21 (ℕ × {0}) = (𝑛 ∈ ℕ ↦ 0)
163 seqeq3 12754 . . . . . . . . . . . . . . . . . . . . 21 ((ℕ × {0}) = (𝑛 ∈ ℕ ↦ 0) → seq1( + , (ℕ × {0})) = seq1( + , (𝑛 ∈ ℕ ↦ 0)))
164162, 163ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (ℕ × {0})) = seq1( + , (𝑛 ∈ ℕ ↦ 0))
165 1z 11359 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℤ
166 seqfn 12761 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ ℤ → seq1( + , (ℕ × {0})) Fn (ℤ‘1))
167165, 166ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) Fn (ℤ‘1)
168 nnuz 11675 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ = (ℤ‘1)
169168fneq2i 5949 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) Fn (ℤ‘1))
170 dffn5 6203 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)))
171169, 170bitr3i 266 . . . . . . . . . . . . . . . . . . . . 21 (seq1( + , (ℕ × {0})) Fn (ℤ‘1) ↔ seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)))
172167, 171mpbi 220 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚))
173164, 172eqtr3i 2645 . . . . . . . . . . . . . . . . . . 19 seq1( + , (𝑛 ∈ ℕ ↦ 0)) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚))
174 fconstmpt 5128 . . . . . . . . . . . . . . . . . . 19 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
175161, 173, 1743eqtr4i 2653 . . . . . . . . . . . . . . . . . 18 seq1( + , (𝑛 ∈ ℕ ↦ 0)) = (ℕ × {0})
176175rneqi 5317 . . . . . . . . . . . . . . . . 17 ran seq1( + , (𝑛 ∈ ℕ ↦ 0)) = ran (ℕ × {0})
177 1nn 10983 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
178 ne0i 3902 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℕ → ℕ ≠ ∅)
179 rnxp 5528 . . . . . . . . . . . . . . . . . 18 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
180177, 178, 179mp2b 10 . . . . . . . . . . . . . . . . 17 ran (ℕ × {0}) = {0}
181176, 180eqtri 2643 . . . . . . . . . . . . . . . 16 ran seq1( + , (𝑛 ∈ ℕ ↦ 0)) = {0}
182181supeq1i 8305 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ) = sup({0}, ℝ*, < )
183 xrltso 11926 . . . . . . . . . . . . . . . 16 < Or ℝ*
184 0xr 10038 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
185 supsn 8330 . . . . . . . . . . . . . . . 16 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
186183, 184, 185mp2an 707 . . . . . . . . . . . . . . 15 sup({0}, ℝ*, < ) = 0
187182, 186eqtri 2643 . . . . . . . . . . . . . 14 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ) = 0
188154, 187syl6eq 2671 . . . . . . . . . . . . 13 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = 0)
189188adantl 482 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = 0)
190125, 134, 1893eqtr3rd 2664 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → 0 = (vol‘ 𝐴))
191190ex 450 . . . . . . . . . 10 (𝑔:ℕ–onto𝐴 → (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → 0 = (vol‘ 𝐴)))
19239, 191sylbid 230 . . . . . . . . 9 (𝑔:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → 0 = (vol‘ 𝐴)))
19328, 192syl5 34 . . . . . . . 8 (𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
194193exlimiv 1855 . . . . . . 7 (∃𝑔 𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
19518, 194syl 17 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
196195expimpd 628 . . . . 5 (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
19711, 196pm2.61ine 2873 . . . 4 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴))
198 renepnf 10039 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
19948, 198mp1i 13 . . . . . 6 ( 𝐴 = ℝ → 0 ≠ +∞)
200 fveq2 6153 . . . . . . 7 ( 𝐴 = ℝ → (vol‘ 𝐴) = (vol‘ℝ))
201 rembl 23231 . . . . . . . . 9 ℝ ∈ dom vol
202 mblvol 23221 . . . . . . . . 9 (ℝ ∈ dom vol → (vol‘ℝ) = (vol*‘ℝ))
203201, 202ax-mp 5 . . . . . . . 8 (vol‘ℝ) = (vol*‘ℝ)
204 ovolre 23216 . . . . . . . 8 (vol*‘ℝ) = +∞
205203, 204eqtri 2643 . . . . . . 7 (vol‘ℝ) = +∞
206200, 205syl6eq 2671 . . . . . 6 ( 𝐴 = ℝ → (vol‘ 𝐴) = +∞)
207199, 206neeqtrrd 2864 . . . . 5 ( 𝐴 = ℝ → 0 ≠ (vol‘ 𝐴))
208207necon2i 2824 . . . 4 (0 = (vol‘ 𝐴) → 𝐴 ≠ ℝ)
209197, 208syl 17 . . 3 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 𝐴 ≠ ℝ)
210209expr 642 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ))
211 eqimss 3641 . . 3 ( 𝐴 = ℝ → 𝐴 ⊆ ℝ)
212211necon3bi 2816 . 2 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ)
213210, 212pm2.61d1 171 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  Vcvv 3189  cdif 3556  wss 3559  c0 3896  {csn 4153   cuni 4407   ciun 4490  Disj wdisj 4588   class class class wbr 4618  cmpt 4678   Or wor 4999   × cxp 5077  dom cdm 5079  ran crn 5080  cima 5082  Fun wfun 5846   Fn wfn 5847  ontowfo 5850  cfv 5852  (class class class)co 6610  cdom 7905  csdm 7906  supcsup 8298  cc 9886  cr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893  +∞cpnf 10023  *cxr 10025   < clt 10026  cn 10972  cz 11329  cuz 11639  ..^cfzo 12414  seqcseq 12749  vol*covol 23154  volcvol 23155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-rest 16015  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-top 20631  df-topon 20648  df-bases 20674  df-cmp 21113  df-ovol 23156  df-vol 23157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator