MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efeq1 Structured version   Visualization version   GIF version

Theorem efeq1 24196
Description: A complex number whose exponential is one is an integer multiple of 2πi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
efeq1 (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))

Proof of Theorem efeq1
StepHypRef Expression
1 halfcl 11209 . . . 4 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
2 ax-icn 9947 . . . . 5 i ∈ ℂ
3 ine0 10417 . . . . 5 i ≠ 0
4 divcl 10643 . . . . 5 (((𝐴 / 2) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐴 / 2) / i) ∈ ℂ)
52, 3, 4mp3an23 1413 . . . 4 ((𝐴 / 2) ∈ ℂ → ((𝐴 / 2) / i) ∈ ℂ)
61, 5syl 17 . . 3 (𝐴 ∈ ℂ → ((𝐴 / 2) / i) ∈ ℂ)
7 sineq0 24194 . . 3 (((𝐴 / 2) / i) ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((𝐴 / 2) / i) / π) ∈ ℤ))
86, 7syl 17 . 2 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((𝐴 / 2) / i) / π) ∈ ℤ))
9 sinval 14788 . . . . . 6 (((𝐴 / 2) / i) ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)))
106, 9syl 17 . . . . 5 (𝐴 ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)))
11 divcan2 10645 . . . . . . . . . 10 (((𝐴 / 2) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
122, 3, 11mp3an23 1413 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
131, 12syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
1413fveq2d 6157 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(i · ((𝐴 / 2) / i))) = (exp‘(𝐴 / 2)))
15 mulneg1 10418 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((𝐴 / 2) / i) ∈ ℂ) → (-i · ((𝐴 / 2) / i)) = -(i · ((𝐴 / 2) / i)))
162, 6, 15sylancr 694 . . . . . . . . 9 (𝐴 ∈ ℂ → (-i · ((𝐴 / 2) / i)) = -(i · ((𝐴 / 2) / i)))
1713negeqd 10227 . . . . . . . . 9 (𝐴 ∈ ℂ → -(i · ((𝐴 / 2) / i)) = -(𝐴 / 2))
1816, 17eqtrd 2655 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · ((𝐴 / 2) / i)) = -(𝐴 / 2))
1918fveq2d 6157 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(-i · ((𝐴 / 2) / i))) = (exp‘-(𝐴 / 2)))
2014, 19oveq12d 6628 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) = ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))))
2120oveq1d 6625 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)) = (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)))
2210, 21eqtrd 2655 . . . 4 (𝐴 ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)))
2322eqeq1d 2623 . . 3 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0))
24 efcl 14749 . . . . . 6 ((𝐴 / 2) ∈ ℂ → (exp‘(𝐴 / 2)) ∈ ℂ)
251, 24syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘(𝐴 / 2)) ∈ ℂ)
261negcld 10331 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 2) ∈ ℂ)
27 efcl 14749 . . . . . 6 (-(𝐴 / 2) ∈ ℂ → (exp‘-(𝐴 / 2)) ∈ ℂ)
2826, 27syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘-(𝐴 / 2)) ∈ ℂ)
2925, 28subcld 10344 . . . 4 (𝐴 ∈ ℂ → ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ)
30 2cn 11043 . . . . . 6 2 ∈ ℂ
3130, 2mulcli 9997 . . . . 5 (2 · i) ∈ ℂ
32 2ne0 11065 . . . . . 6 2 ≠ 0
3330, 2, 32, 3mulne0i 10622 . . . . 5 (2 · i) ≠ 0
34 diveq0 10647 . . . . 5 ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
3531, 33, 34mp3an23 1413 . . . 4 (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
3629, 35syl 17 . . 3 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
37 efne0 14763 . . . . . . . 8 (-(𝐴 / 2) ∈ ℂ → (exp‘-(𝐴 / 2)) ≠ 0)
3826, 37syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘-(𝐴 / 2)) ≠ 0)
3925, 28, 28, 38divsubdird 10792 . . . . . 6 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = (((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) − ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2)))))
40 efsub 14766 . . . . . . . . 9 (((𝐴 / 2) ∈ ℂ ∧ -(𝐴 / 2) ∈ ℂ) → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))))
411, 26, 40syl2anc 692 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))))
421, 1subnegd 10351 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴 / 2) − -(𝐴 / 2)) = ((𝐴 / 2) + (𝐴 / 2)))
43 2halves 11212 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
4442, 43eqtrd 2655 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴 / 2) − -(𝐴 / 2)) = 𝐴)
4544fveq2d 6157 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = (exp‘𝐴))
4641, 45eqtr3d 2657 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) = (exp‘𝐴))
4728, 38dividd 10751 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2))) = 1)
4846, 47oveq12d 6628 . . . . . 6 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) − ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2)))) = ((exp‘𝐴) − 1))
4939, 48eqtrd 2655 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = ((exp‘𝐴) − 1))
5049eqeq1d 2623 . . . 4 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = 0 ↔ ((exp‘𝐴) − 1) = 0))
5129, 28, 38diveq0ad 10763 . . . 4 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
52 efcl 14749 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
53 ax-1cn 9946 . . . . 5 1 ∈ ℂ
54 subeq0 10259 . . . . 5 (((exp‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((exp‘𝐴) − 1) = 0 ↔ (exp‘𝐴) = 1))
5552, 53, 54sylancl 693 . . . 4 (𝐴 ∈ ℂ → (((exp‘𝐴) − 1) = 0 ↔ (exp‘𝐴) = 1))
5650, 51, 553bitr3d 298 . . 3 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0 ↔ (exp‘𝐴) = 1))
5723, 36, 563bitrd 294 . 2 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (exp‘𝐴) = 1))
58 2cnne0 11194 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
592, 3pm3.2i 471 . . . . . 6 (i ∈ ℂ ∧ i ≠ 0)
60 divdiv32 10685 . . . . . 6 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 / 2) / i) = ((𝐴 / i) / 2))
6158, 59, 60mp3an23 1413 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / 2) / i) = ((𝐴 / i) / 2))
6261oveq1d 6625 . . . 4 (𝐴 ∈ ℂ → (((𝐴 / 2) / i) / π) = (((𝐴 / i) / 2) / π))
63 divcl 10643 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) ∈ ℂ)
642, 3, 63mp3an23 1413 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / i) ∈ ℂ)
65 picn 24132 . . . . . . . 8 π ∈ ℂ
66 pire 24131 . . . . . . . . 9 π ∈ ℝ
67 pipos 24133 . . . . . . . . 9 0 < π
6866, 67gt0ne0ii 10516 . . . . . . . 8 π ≠ 0
6965, 68pm3.2i 471 . . . . . . 7 (π ∈ ℂ ∧ π ≠ 0)
70 divdiv1 10688 . . . . . . 7 (((𝐴 / i) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7158, 69, 70mp3an23 1413 . . . . . 6 ((𝐴 / i) ∈ ℂ → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7264, 71syl 17 . . . . 5 (𝐴 ∈ ℂ → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7330, 65mulcli 9997 . . . . . . 7 (2 · π) ∈ ℂ
7430, 65, 32, 68mulne0i 10622 . . . . . . 7 (2 · π) ≠ 0
7573, 74pm3.2i 471 . . . . . 6 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
76 divdiv1 10688 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0) ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)) → ((𝐴 / i) / (2 · π)) = (𝐴 / (i · (2 · π))))
7759, 75, 76mp3an23 1413 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / i) / (2 · π)) = (𝐴 / (i · (2 · π))))
7872, 77eqtrd 2655 . . . 4 (𝐴 ∈ ℂ → (((𝐴 / i) / 2) / π) = (𝐴 / (i · (2 · π))))
7962, 78eqtrd 2655 . . 3 (𝐴 ∈ ℂ → (((𝐴 / 2) / i) / π) = (𝐴 / (i · (2 · π))))
8079eleq1d 2683 . 2 (𝐴 ∈ ℂ → ((((𝐴 / 2) / i) / π) ∈ ℤ ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))
818, 57, 803bitr3d 298 1 (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  cfv 5852  (class class class)co 6610  cc 9886  0cc0 9888  1c1 9889  ici 9890   + caddc 9891   · cmul 9893  cmin 10218  -cneg 10219   / cdiv 10636  2c2 11022  cz 11329  expce 14728  sincsin 14730  πcpi 14733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-sin 14736  df-cos 14737  df-pi 14739  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554
This theorem is referenced by:  efif1olem4  24212  eflogeq  24269  root1eq1  24413  ang180lem1  24456  proot1ex  37295
  Copyright terms: Public domain W3C validator