Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1ex Structured version   Visualization version   GIF version

Theorem proot1ex 37257
Description: The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1ex.g 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
proot1ex.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
proot1ex (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))

Proof of Theorem proot1ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neg1cn 11068 . . . 4 -1 ∈ ℂ
2 2rp 11781 . . . . . 6 2 ∈ ℝ+
3 nnrp 11786 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
4 rpdivcl 11800 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 / 𝑁) ∈ ℝ+)
52, 3, 4sylancr 694 . . . . 5 (𝑁 ∈ ℕ → (2 / 𝑁) ∈ ℝ+)
65rpcnd 11818 . . . 4 (𝑁 ∈ ℕ → (2 / 𝑁) ∈ ℂ)
7 cxpcl 24320 . . . 4 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
81, 6, 7sylancr 694 . . 3 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
91a1i 11 . . . 4 (𝑁 ∈ ℕ → -1 ∈ ℂ)
10 neg1ne0 11070 . . . . 5 -1 ≠ 0
1110a1i 11 . . . 4 (𝑁 ∈ ℕ → -1 ≠ 0)
129, 11, 6cxpne0d 24359 . . 3 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ≠ 0)
13 eldifsn 4287 . . 3 ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0))
148, 12, 13sylanbrc 697 . 2 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}))
151a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → -1 ∈ ℂ)
1610a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → -1 ≠ 0)
17 nn0cn 11246 . . . . . . . . . 10 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
18 mulcl 9964 . . . . . . . . . 10 (((2 / 𝑁) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((2 / 𝑁) · 𝑥) ∈ ℂ)
196, 17, 18syl2an 494 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((2 / 𝑁) · 𝑥) ∈ ℂ)
2015, 16, 19cxpefd 24358 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐((2 / 𝑁) · 𝑥)) = (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))))
2120eqeq1d 2623 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1))
22 logcl 24219 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ -1 ≠ 0) → (log‘-1) ∈ ℂ)
231, 10, 22mp2an 707 . . . . . . . . 9 (log‘-1) ∈ ℂ
24 mulcl 9964 . . . . . . . . 9 ((((2 / 𝑁) · 𝑥) ∈ ℂ ∧ (log‘-1) ∈ ℂ) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ)
2519, 23, 24sylancl 693 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ)
26 efeq1 24179 . . . . . . . 8 ((((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ))
2725, 26syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ))
28 2cn 11035 . . . . . . . . . . . . . 14 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 2 ∈ ℂ)
30 nncn 10972 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3130adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℂ)
3217adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℂ)
33 nnne0 10997 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3433adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ≠ 0)
3529, 31, 32, 34div13d 10769 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((2 / 𝑁) · 𝑥) = ((𝑥 / 𝑁) · 2))
36 logm1 24239 . . . . . . . . . . . . 13 (log‘-1) = (i · π)
3736a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (log‘-1) = (i · π))
3835, 37oveq12d 6622 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) = (((𝑥 / 𝑁) · 2) · (i · π)))
3932, 31, 34divcld 10745 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥 / 𝑁) ∈ ℂ)
40 ax-icn 9939 . . . . . . . . . . . . . 14 i ∈ ℂ
41 picn 24115 . . . . . . . . . . . . . 14 π ∈ ℂ
4240, 41mulcli 9989 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
4342a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · π) ∈ ℂ)
4439, 29, 43mulassd 10007 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((𝑥 / 𝑁) · 2) · (i · π)) = ((𝑥 / 𝑁) · (2 · (i · π))))
4540a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → i ∈ ℂ)
4641a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → π ∈ ℂ)
4729, 45, 46mul12d 10189 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (2 · (i · π)) = (i · (2 · π)))
4847oveq2d 6620 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((𝑥 / 𝑁) · (2 · (i · π))) = ((𝑥 / 𝑁) · (i · (2 · π))))
4938, 44, 483eqtrd 2659 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) = ((𝑥 / 𝑁) · (i · (2 · π))))
5049oveq1d 6619 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) = (((𝑥 / 𝑁) · (i · (2 · π))) / (i · (2 · π))))
5128, 41mulcli 9989 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
5240, 51mulcli 9989 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
5352a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · (2 · π)) ∈ ℂ)
54 ine0 10409 . . . . . . . . . . . 12 i ≠ 0
55 2ne0 11057 . . . . . . . . . . . . 13 2 ≠ 0
56 pire 24114 . . . . . . . . . . . . . 14 π ∈ ℝ
57 pipos 24116 . . . . . . . . . . . . . 14 0 < π
5856, 57gt0ne0ii 10508 . . . . . . . . . . . . 13 π ≠ 0
5928, 41, 55, 58mulne0i 10614 . . . . . . . . . . . 12 (2 · π) ≠ 0
6040, 51, 54, 59mulne0i 10614 . . . . . . . . . . 11 (i · (2 · π)) ≠ 0
6160a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · (2 · π)) ≠ 0)
6239, 53, 61divcan4d 10751 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((𝑥 / 𝑁) · (i · (2 · π))) / (i · (2 · π))) = (𝑥 / 𝑁))
6350, 62eqtrd 2655 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) = (𝑥 / 𝑁))
6463eleq1d 2683 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ ↔ (𝑥 / 𝑁) ∈ ℤ))
6521, 27, 643bitrd 294 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (𝑥 / 𝑁) ∈ ℤ))
666adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (2 / 𝑁) ∈ ℂ)
67 simpr 477 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
6815, 66, 67cxpmul2d 24355 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐((2 / 𝑁) · 𝑥)) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
69 cnfldexp 19698 . . . . . . . . 9 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
708, 69sylan 488 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
71 cnring 19687 . . . . . . . . . 10 fld ∈ Ring
72 cnfldbas 19669 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
73 cnfld0 19689 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
74 cndrng 19694 . . . . . . . . . . . 12 fld ∈ DivRing
7572, 73, 74drngui 18674 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
76 eqid 2621 . . . . . . . . . . 11 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
7775, 76unitsubm 18591 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
7871, 77mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
7914adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}))
80 eqid 2621 . . . . . . . . . 10 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
81 proot1ex.g . . . . . . . . . 10 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
82 eqid 2621 . . . . . . . . . 10 (.g𝐺) = (.g𝐺)
8380, 81, 82submmulg 17507 . . . . . . . . 9 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑥 ∈ ℕ0 ∧ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0})) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))))
8478, 67, 79, 83syl3anc 1323 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))))
8568, 70, 843eqtr2rd 2662 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = (-1↑𝑐((2 / 𝑁) · 𝑥)))
8685eqeq1d 2623 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1 ↔ (-1↑𝑐((2 / 𝑁) · 𝑥)) = 1))
87 nnz 11343 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
8887adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ)
89 nn0z 11344 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
9089adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
91 dvdsval2 14910 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝑁𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ))
9288, 34, 90, 91syl3anc 1323 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑁𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ))
9365, 86, 923bitr4rd 301 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1))
9493ralrimiva 2960 . . . 4 (𝑁 ∈ ℕ → ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1))
9575, 81unitgrp 18588 . . . . . 6 (ℂfld ∈ Ring → 𝐺 ∈ Grp)
9671, 95mp1i 13 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Grp)
97 nnnn0 11243 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
9875, 81unitgrpbas 18587 . . . . . 6 (ℂ ∖ {0}) = (Base‘𝐺)
99 proot1ex.o . . . . . 6 𝑂 = (od‘𝐺)
100 cnfld1 19690 . . . . . . . 8 1 = (1r‘ℂfld)
10175, 81, 100unitgrpid 18590 . . . . . . 7 (ℂfld ∈ Ring → 1 = (0g𝐺))
10271, 101ax-mp 5 . . . . . 6 1 = (0g𝐺)
10398, 99, 82, 102odeq 17890 . . . . 5 ((𝐺 ∈ Grp ∧ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ 𝑁 ∈ ℕ0) → (𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))) ↔ ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1)))
10496, 14, 97, 103syl3anc 1323 . . . 4 (𝑁 ∈ ℕ → (𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))) ↔ ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1)))
10594, 104mpbird 247 . . 3 (𝑁 ∈ ℕ → 𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))))
106105eqcomd 2627 . 2 (𝑁 ∈ ℕ → (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)
10798, 99odf 17877 . . . 4 𝑂:(ℂ ∖ {0})⟶ℕ0
108 ffn 6002 . . . 4 (𝑂:(ℂ ∖ {0})⟶ℕ0𝑂 Fn (ℂ ∖ {0}))
109107, 108ax-mp 5 . . 3 𝑂 Fn (ℂ ∖ {0})
110 fniniseg 6294 . . 3 (𝑂 Fn (ℂ ∖ {0}) → ((-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)))
111109, 110mp1i 13 . 2 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)))
11214, 106, 111mpbir2and 956 1 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  cdif 3552  {csn 4148   class class class wbr 4613  ccnv 5073  cima 5077   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881  ici 9882   · cmul 9885  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  +crp 11776  cexp 12800  expce 14717  πcpi 14722  cdvds 14907  s cress 15782  0gc0g 16021  SubMndcsubmnd 17255  Grpcgrp 17343  .gcmg 17461  odcod 17865  mulGrpcmgp 18410  Ringcrg 18468  fldccnfld 19665  logclog 24205  𝑐ccxp 24206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-dvds 14908  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-cntz 17671  df-od 17869  df-cmn 18116  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-drng 18670  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207  df-cxp 24208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator