MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnbnd Structured version   Visualization version   GIF version

Theorem expnbnd 13033
Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnbnd
StepHypRef Expression
1 1nn 11069 . . 3 1 ∈ ℕ
2 1re 10077 . . . . . . . 8 1 ∈ ℝ
3 lttr 10152 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 1 ∧ 1 < 𝐵) → 𝐴 < 𝐵))
42, 3mp3an2 1452 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 1 ∧ 1 < 𝐵) → 𝐴 < 𝐵))
54exp4b 631 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 < 1 → (1 < 𝐵𝐴 < 𝐵))))
65com34 91 . . . . 5 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → (𝐴 < 1 → 𝐴 < 𝐵))))
763imp1 1302 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → 𝐴 < 𝐵)
8 recn 10064 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
9 exp1 12906 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
108, 9syl 17 . . . . . 6 (𝐵 ∈ ℝ → (𝐵↑1) = 𝐵)
11103ad2ant2 1103 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵↑1) = 𝐵)
1211adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → (𝐵↑1) = 𝐵)
137, 12breqtrrd 4713 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → 𝐴 < (𝐵↑1))
14 oveq2 6698 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
1514breq2d 4697 . . . 4 (𝑘 = 1 → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑1)))
1615rspcev 3340 . . 3 ((1 ∈ ℕ ∧ 𝐴 < (𝐵↑1)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
171, 13, 16sylancr 696 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
18 peano2rem 10386 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
1918adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) ∈ ℝ)
20 peano2rem 10386 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
2120adantr 480 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ)
2221adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ∈ ℝ)
23 posdif 10559 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
242, 23mpan 706 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
2524biimpa 500 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < (𝐵 − 1))
2625gt0ne0d 10630 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ≠ 0)
2726adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ≠ 0)
2819, 22, 27redivcld 10891 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
2928adantll 750 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
3018adantl 481 . . . . . . . . . 10 ((1 ≤ 𝐴𝐴 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
31 subge0 10579 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝐴 − 1) ↔ 1 ≤ 𝐴))
322, 31mpan2 707 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ (𝐴 − 1) ↔ 1 ≤ 𝐴))
3332biimparc 503 . . . . . . . . . 10 ((1 ≤ 𝐴𝐴 ∈ ℝ) → 0 ≤ (𝐴 − 1))
3430, 33jca 553 . . . . . . . . 9 ((1 ≤ 𝐴𝐴 ∈ ℝ) → ((𝐴 − 1) ∈ ℝ ∧ 0 ≤ (𝐴 − 1)))
3521, 25jca 553 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1)))
36 divge0 10930 . . . . . . . . 9 ((((𝐴 − 1) ∈ ℝ ∧ 0 ≤ (𝐴 − 1)) ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → 0 ≤ ((𝐴 − 1) / (𝐵 − 1)))
3734, 35, 36syl2an 493 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 ≤ ((𝐴 − 1) / (𝐵 − 1)))
38 flge0nn0 12661 . . . . . . . 8 ((((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ ∧ 0 ≤ ((𝐴 − 1) / (𝐵 − 1))) → (⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0)
3929, 37, 38syl2anc 694 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0)
40 nn0p1nn 11370 . . . . . . 7 ((⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0 → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ)
4139, 40syl 17 . . . . . 6 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ)
42 simplr 807 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 ∈ ℝ)
4321adantl 481 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ∈ ℝ)
44 peano2nn0 11371 . . . . . . . . . . 11 ((⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0 → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0)
4539, 44syl 17 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0)
4645nn0red 11390 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℝ)
4743, 46remulcld 10108 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
48 peano2re 10247 . . . . . . . 8 (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ∈ ℝ)
4947, 48syl 17 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ∈ ℝ)
50 simprl 809 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐵 ∈ ℝ)
51 reexpcl 12917 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0) → (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
5250, 45, 51syl2anc 694 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
53 flltp1 12641 . . . . . . . . . 10 (((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ → ((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))
5429, 53syl 17 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))
5530adantr 480 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) ∈ ℝ)
5625adantl 481 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 < (𝐵 − 1))
57 ltdivmul 10936 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℝ ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → (((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ↔ (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
5855, 46, 43, 56, 57syl112anc 1370 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ↔ (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
5954, 58mpbid 222 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
60 ltsubadd 10536 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
612, 60mp3an2 1452 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
6242, 47, 61syl2anc 694 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
6359, 62mpbid 222 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1))
64 0lt1 10588 . . . . . . . . . . . 12 0 < 1
65 0re 10078 . . . . . . . . . . . . 13 0 ∈ ℝ
66 lttr 10152 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
6765, 2, 66mp3an12 1454 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
6864, 67mpani 712 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
69 ltle 10164 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 → 0 ≤ 𝐵))
7065, 69mpan 706 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ 𝐵))
7168, 70syld 47 . . . . . . . . . 10 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 ≤ 𝐵))
7271imp 444 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 𝐵)
7372adantl 481 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 ≤ 𝐵)
74 bernneq2 13031 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ≤ (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7550, 45, 73, 74syl3anc 1366 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ≤ (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7642, 49, 52, 63, 75ltletrd 10235 . . . . . 6 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
77 oveq2 6698 . . . . . . . 8 (𝑘 = ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) → (𝐵𝑘) = (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7877breq2d 4697 . . . . . . 7 (𝑘 = ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
7978rspcev 3340 . . . . . 6 ((((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ ∧ 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
8041, 76, 79syl2anc 694 . . . . 5 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
8180exp43 639 . . . 4 (1 ≤ 𝐴 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))))
8281com4l 92 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → (1 ≤ 𝐴 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))))
83823imp1 1302 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 ≤ 𝐴) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
84 simp1 1081 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
85 1red 10093 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
8617, 83, 84, 85ltlecasei 10183 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  0cn0 11330  cfl 12631  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fl 12633  df-seq 12842  df-exp 12901
This theorem is referenced by:  expnlbnd  13034  expmulnbnd  13036  bitsfzolem  15203  bitsfi  15206  pclem  15590  aaliou3lem8  24145  ostth2lem1  25352  ostth3  25372  knoppndvlem18  32645
  Copyright terms: Public domain W3C validator