MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmulnbnd Structured version   Visualization version   GIF version

Theorem expmulnbnd 13036
Description: Exponentiation with a mantissa greater than 1 is not bounded by any linear function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
expmulnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘

Proof of Theorem expmulnbnd
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2re 11128 . . . . 5 2 ∈ ℝ
2 simp1 1081 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
3 remulcl 10059 . . . . 5 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
41, 2, 3sylancr 696 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (2 · 𝐴) ∈ ℝ)
5 simp3 1083 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
6 1re 10077 . . . . . 6 1 ∈ ℝ
7 simp2 1082 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
8 difrp 11906 . . . . . 6 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ (𝐵 − 1) ∈ ℝ+))
96, 7, 8sylancr 696 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ (𝐵 − 1) ∈ ℝ+))
105, 9mpbid 222 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ+)
114, 10rerpdivcld 11941 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((2 · 𝐴) / (𝐵 − 1)) ∈ ℝ)
12 expnbnd 13033 . . 3 ((((2 · 𝐴) / (𝐵 − 1)) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑛 ∈ ℕ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
1311, 7, 5, 12syl3anc 1366 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑛 ∈ ℕ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
14 2nn0 11347 . . . 4 2 ∈ ℕ0
15 nnnn0 11337 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615ad2antrl 764 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → 𝑛 ∈ ℕ0)
17 nn0mulcl 11367 . . . 4 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
1814, 16, 17sylancr 696 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → (2 · 𝑛) ∈ ℕ0)
192ad2antrr 762 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ∈ ℝ)
20 2nn 11223 . . . . . . . . 9 2 ∈ ℕ
21 simprl 809 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → 𝑛 ∈ ℕ)
22 nnmulcl 11081 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2320, 21, 22sylancr 696 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → (2 · 𝑛) ∈ ℕ)
24 eluznn 11796 . . . . . . . 8 (((2 · 𝑛) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ)
2523, 24sylan 487 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ)
2625nnred 11073 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℝ)
2719, 26remulcld 10108 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) ∈ ℝ)
28 0re 10078 . . . . . . . 8 0 ∈ ℝ
29 ifcl 4163 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ)
3019, 28, 29sylancl 695 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ)
31 remulcl 10059 . . . . . . 7 ((2 ∈ ℝ ∧ if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ)
321, 30, 31sylancr 696 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ)
33 simplrl 817 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℕ)
3433nnred 11073 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℝ)
3526, 34resubcld 10496 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℝ)
3632, 35remulcld 10108 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) ∈ ℝ)
377ad2antrr 762 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ∈ ℝ)
3825nnnn0d 11389 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ0)
39 reexpcl 12917 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
4037, 38, 39syl2anc 694 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑘) ∈ ℝ)
41 remulcl 10059 . . . . . . . 8 ((2 ∈ ℝ ∧ (𝑘𝑛) ∈ ℝ) → (2 · (𝑘𝑛)) ∈ ℝ)
421, 35, 41sylancr 696 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · (𝑘𝑛)) ∈ ℝ)
4338nn0ge0d 11392 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ 𝑘)
44 max1 12054 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐴, 𝐴, 0))
4528, 19, 44sylancr 696 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ if(0 ≤ 𝐴, 𝐴, 0))
46 remulcl 10059 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (2 · 𝑛) ∈ ℝ)
471, 34, 46sylancr 696 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) ∈ ℝ)
48 eluzle 11738 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(2 · 𝑛)) → (2 · 𝑛) ≤ 𝑘)
4948adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) ≤ 𝑘)
5047, 26, 26, 49leadd2dd 10680 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 + (2 · 𝑛)) ≤ (𝑘 + 𝑘))
5126recnd 10106 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℂ)
52512timesd 11313 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑘) = (𝑘 + 𝑘))
5350, 52breqtrrd 4713 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘))
54 remulcl 10059 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (2 · 𝑘) ∈ ℝ)
551, 26, 54sylancr 696 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑘) ∈ ℝ)
56 leaddsub 10542 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ (2 · 𝑛) ∈ ℝ ∧ (2 · 𝑘) ∈ ℝ) → ((𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘) ↔ 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛))))
5726, 47, 55, 56syl3anc 1366 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘) ↔ 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛))))
5853, 57mpbid 222 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛)))
59 2cnd 11131 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 2 ∈ ℂ)
6034recnd 10106 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℂ)
6159, 51, 60subdid 10524 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
6258, 61breqtrrd 4713 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ≤ (2 · (𝑘𝑛)))
63 max2 12056 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(0 ≤ 𝐴, 𝐴, 0))
6428, 19, 63sylancr 696 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ≤ if(0 ≤ 𝐴, 𝐴, 0))
6526, 42, 19, 30, 43, 45, 62, 64lemul12bd 11005 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 · 𝐴) ≤ ((2 · (𝑘𝑛)) · if(0 ≤ 𝐴, 𝐴, 0)))
6619recnd 10106 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ∈ ℂ)
6766, 51mulcomd 10099 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) = (𝑘 · 𝐴))
6830recnd 10106 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℂ)
6935recnd 10106 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℂ)
7059, 68, 69mul32d 10284 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) = ((2 · (𝑘𝑛)) · if(0 ≤ 𝐴, 𝐴, 0)))
7165, 67, 703brtr4d 4717 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) ≤ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)))
7210ad2antrr 762 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℝ+)
7372rpred 11910 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℝ)
7473, 35remulcld 10108 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ)
7533nnnn0d 11389 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℕ0)
76 reexpcl 12917 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (𝐵𝑛) ∈ ℝ)
7737, 75, 76syl2anc 694 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑛) ∈ ℝ)
7874, 77remulcld 10108 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) ∈ ℝ)
79 simplrr 818 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
801, 19, 3sylancr 696 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝐴) ∈ ℝ)
8180, 77, 72ltdivmuld 11961 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛) ↔ (2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛))))
8279, 81mpbid 222 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)))
835ad2antrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 1 < 𝐵)
84 posdif 10559 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
856, 37, 84sylancr 696 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
8683, 85mpbid 222 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝐵 − 1))
8733nnzd 11519 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℤ)
8828a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ∈ ℝ)
896a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 1 ∈ ℝ)
90 0lt1 10588 . . . . . . . . . . . . 13 0 < 1
9190a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < 1)
9288, 89, 37, 91, 83lttrd 10236 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < 𝐵)
93 expgt0 12933 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑛))
9437, 87, 92, 93syl3anc 1366 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝐵𝑛))
9573, 77, 86, 94mulgt0d 10230 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < ((𝐵 − 1) · (𝐵𝑛)))
96 oveq2 6698 . . . . . . . . . . 11 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → (2 · 𝐴) = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
9796breq1d 4695 . . . . . . . . . 10 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → ((2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)) ↔ (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛))))
98 2t0e0 11221 . . . . . . . . . . . 12 (2 · 0) = 0
99 oveq2 6698 . . . . . . . . . . . 12 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (2 · 0) = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
10098, 99syl5eqr 2699 . . . . . . . . . . 11 (0 = if(0 ≤ 𝐴, 𝐴, 0) → 0 = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
101100breq1d 4695 . . . . . . . . . 10 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (0 < ((𝐵 − 1) · (𝐵𝑛)) ↔ (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛))))
10297, 101ifboth 4157 . . . . . . . . 9 (((2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)) ∧ 0 < ((𝐵 − 1) · (𝐵𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)))
10382, 95, 102syl2anc 694 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)))
10473, 77remulcld 10108 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝐵𝑛)) ∈ ℝ)
105 simpr 476 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ (ℤ‘(2 · 𝑛)))
106602timesd 11313 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) = (𝑛 + 𝑛))
107106fveq2d 6233 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (ℤ‘(2 · 𝑛)) = (ℤ‘(𝑛 + 𝑛)))
108105, 107eleqtrd 2732 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ (ℤ‘(𝑛 + 𝑛)))
109 eluzsub 11755 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 𝑛))) → (𝑘𝑛) ∈ (ℤ𝑛))
11087, 87, 108, 109syl3anc 1366 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ (ℤ𝑛))
111 eluznn 11796 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑘𝑛) ∈ (ℤ𝑛)) → (𝑘𝑛) ∈ ℕ)
11233, 110, 111syl2anc 694 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℕ)
113112nngt0d 11102 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝑘𝑛))
114 ltmul1 10911 . . . . . . . . 9 (((2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ ∧ ((𝐵 − 1) · (𝐵𝑛)) ∈ ℝ ∧ ((𝑘𝑛) ∈ ℝ ∧ 0 < (𝑘𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)) ↔ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛))))
11532, 104, 35, 113, 114syl112anc 1370 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)) ↔ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛))))
116103, 115mpbid 222 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛)))
11773recnd 10106 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℂ)
11877recnd 10106 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑛) ∈ ℂ)
119117, 118, 69mul32d 10284 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛)) = (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)))
120116, 119breqtrd 4711 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)))
121 peano2re 10247 . . . . . . . . . 10 (((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ → (((𝐵 − 1) · (𝑘𝑛)) + 1) ∈ ℝ)
12274, 121syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ∈ ℝ)
123112nnnn0d 11389 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℕ0)
124 reexpcl 12917 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝑘𝑛) ∈ ℕ0) → (𝐵↑(𝑘𝑛)) ∈ ℝ)
12537, 123, 124syl2anc 694 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵↑(𝑘𝑛)) ∈ ℝ)
12674ltp1d 10992 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < (((𝐵 − 1) · (𝑘𝑛)) + 1))
12788, 37, 92ltled 10223 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ 𝐵)
128 bernneq2 13031 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝑘𝑛) ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ≤ (𝐵↑(𝑘𝑛)))
12937, 123, 127, 128syl3anc 1366 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ≤ (𝐵↑(𝑘𝑛)))
13074, 122, 125, 126, 129ltletrd 10235 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < (𝐵↑(𝑘𝑛)))
13137recnd 10106 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ∈ ℂ)
13292gt0ne0d 10630 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ≠ 0)
133 eluzelz 11735 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘(2 · 𝑛)) → 𝑘 ∈ ℤ)
134133adantl 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℤ)
135 expsub 12948 . . . . . . . . 9 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐵↑(𝑘𝑛)) = ((𝐵𝑘) / (𝐵𝑛)))
136131, 132, 134, 87, 135syl22anc 1367 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵↑(𝑘𝑛)) = ((𝐵𝑘) / (𝐵𝑛)))
137130, 136breqtrd 4711 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛)))
138 ltmuldiv 10934 . . . . . . . 8 ((((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ ∧ ((𝐵𝑛) ∈ ℝ ∧ 0 < (𝐵𝑛))) → ((((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘) ↔ ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛))))
13974, 40, 77, 94, 138syl112anc 1370 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘) ↔ ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛))))
140137, 139mpbird 247 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘))
14136, 78, 40, 120, 140lttrd 10236 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (𝐵𝑘))
14227, 36, 40, 71, 141lelttrd 10233 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) < (𝐵𝑘))
143142ralrimiva 2995 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘))
144 fveq2 6229 . . . . 5 (𝑗 = (2 · 𝑛) → (ℤ𝑗) = (ℤ‘(2 · 𝑛)))
145144raleqdv 3174 . . . 4 (𝑗 = (2 · 𝑛) → (∀𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘) ↔ ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘)))
146145rspcev 3340 . . 3 (((2 · 𝑛) ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘)) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
14718, 143, 146syl2anc 694 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
14813, 147rexlimddv 3064 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  ifcif 4119   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  +crp 11870  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633  df-seq 12842  df-exp 12901
This theorem is referenced by:  geomulcvg  14651
  Copyright terms: Public domain W3C validator