MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgambdd Structured version   Visualization version   GIF version

Theorem lgambdd 24663
Description: The log-Gamma function is bounded on the region 𝑈. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
Assertion
Ref Expression
lgambdd (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
Distinct variable groups:   𝐺,𝑟   𝑘,𝑚,𝑟,𝑥,𝑧,𝑅   𝑈,𝑚,𝑟,𝑧   𝜑,𝑚,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgambdd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lgamgulm.r . . . . 5 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
3 lgamgulm.g . . . . 5 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
41, 2, 3lgamgulm2 24662 . . . 4 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
54simprd 479 . . 3 (𝜑 → seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
6 eqid 2621 . . . . 5 (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
71, 2, 3, 6lgamgulmlem6 24660 . . . 4 (𝜑 → (seq1( ∘𝑓 + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)))
87simprd 479 . . 3 (𝜑 → (seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦))
95, 8mpd 15 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)
101nnrpd 11814 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
1110adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ∈ ℝ+)
1211relogcld 24273 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (log‘𝑅) ∈ ℝ)
13 pire 24114 . . . . . . 7 π ∈ ℝ
1413a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → π ∈ ℝ)
1512, 14readdcld 10013 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((log‘𝑅) + π) ∈ ℝ)
16 simpr 477 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1715, 16readdcld 10013 . . . 4 ((𝜑𝑦 ∈ ℝ) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
1817adantrr 752 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
194simpld 475 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
2019adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
2120r19.21bi 2927 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log Γ‘𝑧) ∈ ℂ)
2221abscld 14109 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ∈ ℝ)
2322adantr 481 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ∈ ℝ)
2411adantr 481 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑅 ∈ ℝ+)
2524relogcld 24273 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘𝑅) ∈ ℝ)
2613a1i 11 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → π ∈ ℝ)
2725, 26readdcld 10013 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log‘𝑅) + π) ∈ ℝ)
281, 2lgamgulmlem1 24655 . . . . . . . . . . . . . . 15 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
2928adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
3029sselda 3583 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3130eldifad 3567 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ∈ ℂ)
3230dmgmn0 24652 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → 𝑧 ≠ 0)
3331, 32logcld 24221 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘𝑧) ∈ ℂ)
3421, 33addcld 10003 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log Γ‘𝑧) + (log‘𝑧)) ∈ ℂ)
3534abscld 14109 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ∈ ℝ)
3627, 35readdcld 10013 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
3736adantr 481 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
3817ad2antrr 761 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + 𝑦) ∈ ℝ)
3933abscld 14109 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ∈ ℝ)
4039, 35readdcld 10013 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ∈ ℝ)
4133negcld 10323 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑧) ∈ ℂ)
4221, 41abs2difd 14130 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘-(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) − -(log‘𝑧))))
4333absnegd 14122 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘-(log‘𝑧)) = (abs‘(log‘𝑧)))
4443oveq2d 6620 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘-(log‘𝑧))) = ((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))))
4521, 33subnegd 10343 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((log Γ‘𝑧) − -(log‘𝑧)) = ((log Γ‘𝑧) + (log‘𝑧)))
4645fveq2d 6152 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘((log Γ‘𝑧) − -(log‘𝑧))) = (abs‘((log Γ‘𝑧) + (log‘𝑧))))
4742, 44, 463brtr3d 4644 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) + (log‘𝑧))))
4822, 39, 35lesubadd2d 10570 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (((abs‘(log Γ‘𝑧)) − (abs‘(log‘𝑧))) ≤ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ↔ (abs‘(log Γ‘𝑧)) ≤ ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧))))))
4947, 48mpbid 222 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ≤ ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
5031, 32absrpcld 14121 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘𝑧) ∈ ℝ+)
5150relogcld 24273 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ∈ ℝ)
5251recnd 10012 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ∈ ℂ)
5352abscld 14109 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘(abs‘𝑧))) ∈ ℝ)
5453, 26readdcld 10013 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) + π) ∈ ℝ)
55 abslogle 24268 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) → (abs‘(log‘𝑧)) ≤ ((abs‘(log‘(abs‘𝑧))) + π))
5631, 32, 55syl2anc 692 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ≤ ((abs‘(log‘(abs‘𝑧))) + π))
57 1rp 11780 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
58 relogdiv 24243 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (log‘(1 / 𝑅)) = ((log‘1) − (log‘𝑅)))
5957, 24, 58sylancr 694 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(1 / 𝑅)) = ((log‘1) − (log‘𝑅)))
60 df-neg 10213 . . . . . . . . . . . . . . . 16 -(log‘𝑅) = (0 − (log‘𝑅))
61 log1 24236 . . . . . . . . . . . . . . . . 17 (log‘1) = 0
6261oveq1i 6614 . . . . . . . . . . . . . . . 16 ((log‘1) − (log‘𝑅)) = (0 − (log‘𝑅))
6360, 62eqtr4i 2646 . . . . . . . . . . . . . . 15 -(log‘𝑅) = ((log‘1) − (log‘𝑅))
6459, 63syl6reqr 2674 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑅) = (log‘(1 / 𝑅)))
65 0nn0 11251 . . . . . . . . . . . . . . . . 17 0 ∈ ℕ0
66 fveq2 6148 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (abs‘𝑥) = (abs‘𝑧))
6766breq1d 4623 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝑧) ≤ 𝑅))
68 oveq1 6611 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑧 → (𝑥 + 𝑘) = (𝑧 + 𝑘))
6968fveq2d 6152 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑧 + 𝑘)))
7069breq2d 4625 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7170ralbidv 2980 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7267, 71anbi12d 746 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))))
7372, 2elrab2 3348 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑈 ↔ (𝑧 ∈ ℂ ∧ ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))))
7473simprbi 480 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑈 → ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7574adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘𝑧) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘))))
7675simprd 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)))
77 oveq2 6612 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 0 → (𝑧 + 𝑘) = (𝑧 + 0))
7877fveq2d 6152 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 0 → (abs‘(𝑧 + 𝑘)) = (abs‘(𝑧 + 0)))
7978breq2d 4625 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → ((1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑧 + 0))))
8079rspcv 3291 . . . . . . . . . . . . . . . . 17 (0 ∈ ℕ0 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑧 + 𝑘)) → (1 / 𝑅) ≤ (abs‘(𝑧 + 0))))
8165, 76, 80mpsyl 68 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ≤ (abs‘(𝑧 + 0)))
8231addid1d 10180 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (𝑧 + 0) = 𝑧)
8382fveq2d 6152 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(𝑧 + 0)) = (abs‘𝑧))
8481, 83breqtrd 4639 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ≤ (abs‘𝑧))
8524rpreccld 11826 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (1 / 𝑅) ∈ ℝ+)
8685, 50logled 24277 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((1 / 𝑅) ≤ (abs‘𝑧) ↔ (log‘(1 / 𝑅)) ≤ (log‘(abs‘𝑧))))
8784, 86mpbid 222 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(1 / 𝑅)) ≤ (log‘(abs‘𝑧)))
8864, 87eqbrtrd 4635 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → -(log‘𝑅) ≤ (log‘(abs‘𝑧)))
8975simpld 475 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘𝑧) ≤ 𝑅)
9050, 24logled 24277 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘𝑧) ≤ 𝑅 ↔ (log‘(abs‘𝑧)) ≤ (log‘𝑅)))
9189, 90mpbid 222 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (log‘(abs‘𝑧)) ≤ (log‘𝑅))
9251, 25absled 14103 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) ≤ (log‘𝑅) ↔ (-(log‘𝑅) ≤ (log‘(abs‘𝑧)) ∧ (log‘(abs‘𝑧)) ≤ (log‘𝑅))))
9388, 91, 92mpbir2and 956 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘(abs‘𝑧))) ≤ (log‘𝑅))
9453, 25, 26, 93leadd1dd 10585 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘(abs‘𝑧))) + π) ≤ ((log‘𝑅) + π))
9539, 54, 27, 56, 94letrd 10138 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log‘𝑧)) ≤ ((log‘𝑅) + π))
9639, 27, 35, 95leadd1dd 10585 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘(log‘𝑧)) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9722, 40, 36, 49, 96letrd 10138 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9897adantr 481 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))))
9935adantr 481 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ∈ ℝ)
100 simpllr 798 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → 𝑦 ∈ ℝ)
10127adantr 481 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → ((log‘𝑅) + π) ∈ ℝ)
102 simpr 477 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)
10399, 100, 101, 102leadd2dd 10586 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (((log‘𝑅) + π) + (abs‘((log Γ‘𝑧) + (log‘𝑧)))) ≤ (((log‘𝑅) + π) + 𝑦))
10423, 37, 38, 98, 103letrd 10138 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) ∧ (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦) → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦))
105104ex 450 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧𝑈) → ((abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦 → (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
106105ralimdva 2956 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦 → ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
107106impr 648 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦))
108 breq2 4617 . . . . 5 (𝑟 = (((log‘𝑅) + π) + 𝑦) → ((abs‘(log Γ‘𝑧)) ≤ 𝑟 ↔ (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
109108ralbidv 2980 . . . 4 (𝑟 = (((log‘𝑅) + π) + 𝑦) → (∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)))
110109rspcev 3295 . . 3 (((((log‘𝑅) + π) + 𝑦) ∈ ℝ ∧ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ (((log‘𝑅) + π) + 𝑦)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
11118, 107, 110syl2anc 692 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑧𝑈 (abs‘((log Γ‘𝑧) + (log‘𝑧))) ≤ 𝑦)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
1129, 111rexlimddv 3028 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  cdif 3552  wss 3555  ifcif 4058   class class class wbr 4613  cmpt 4673  dom cdm 5074  cfv 5847  (class class class)co 6604  𝑓 cof 6848  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  cle 10019  cmin 10210  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  +crp 11776  seqcseq 12741  cexp 12800  abscabs 13908  πcpi 14722  𝑢culm 24034  logclog 24205  log Γclgam 24642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-tan 14727  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-ulm 24035  df-log 24207  df-cxp 24208  df-lgam 24645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator