MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muinv Structured version   Visualization version   GIF version

Theorem muinv 25770
Description: The Möbius inversion formula. If 𝐺(𝑛) = Σ𝑘𝑛𝐹(𝑘) for every 𝑛 ∈ ℕ, then 𝐹(𝑛) = Σ𝑘𝑛 μ(𝑘)𝐺(𝑛 / 𝑘) = Σ𝑘𝑛μ(𝑛 / 𝑘)𝐺(𝑘), i.e. the Möbius function is the Dirichlet convolution inverse of the constant function 1. Theorem 2.9 in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
muinv.1 (𝜑𝐹:ℕ⟶ℂ)
muinv.2 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)))
Assertion
Ref Expression
muinv (𝜑𝐹 = (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))))
Distinct variable groups:   𝑘,𝑚,𝑗,𝑛,𝐹   𝑥,𝑗,𝑘,𝑚,𝑛   𝜑,𝑗,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐹(𝑥)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛)

Proof of Theorem muinv
StepHypRef Expression
1 muinv.1 . . 3 (𝜑𝐹:ℕ⟶ℂ)
21feqmptd 6733 . 2 (𝜑𝐹 = (𝑚 ∈ ℕ ↦ (𝐹𝑚)))
3 muinv.2 . . . . . . . . . 10 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)))
43ad2antrr 724 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝐺 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)))
54fveq1d 6672 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝐺‘(𝑚 / 𝑗)) = ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))‘(𝑚 / 𝑗)))
6 breq1 5069 . . . . . . . . . . . . . 14 (𝑥 = 𝑗 → (𝑥𝑚𝑗𝑚))
76elrab 3680 . . . . . . . . . . . . 13 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ↔ (𝑗 ∈ ℕ ∧ 𝑗𝑚))
87simprbi 499 . . . . . . . . . . . 12 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} → 𝑗𝑚)
98adantl 484 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗𝑚)
10 elrabi 3675 . . . . . . . . . . . . . 14 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} → 𝑗 ∈ ℕ)
1110adantl 484 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗 ∈ ℕ)
1211nnzd 12087 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗 ∈ ℤ)
1311nnne0d 11688 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑗 ≠ 0)
14 nnz 12005 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
1514ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑚 ∈ ℤ)
16 dvdsval2 15610 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ 𝑗 ≠ 0 ∧ 𝑚 ∈ ℤ) → (𝑗𝑚 ↔ (𝑚 / 𝑗) ∈ ℤ))
1712, 13, 15, 16syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑗𝑚 ↔ (𝑚 / 𝑗) ∈ ℤ))
189, 17mpbid 234 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑗) ∈ ℤ)
19 nnre 11645 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
20 nngt0 11669 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 0 < 𝑚)
2119, 20jca 514 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
2221ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
23 nnre 11645 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
24 nngt0 11669 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 0 < 𝑗)
2523, 24jca 514 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 ∈ ℝ ∧ 0 < 𝑗))
2611, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑗 ∈ ℝ ∧ 0 < 𝑗))
27 divgt0 11508 . . . . . . . . . . 11 (((𝑚 ∈ ℝ ∧ 0 < 𝑚) ∧ (𝑗 ∈ ℝ ∧ 0 < 𝑗)) → 0 < (𝑚 / 𝑗))
2822, 26, 27syl2anc 586 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 0 < (𝑚 / 𝑗))
29 elnnz 11992 . . . . . . . . . 10 ((𝑚 / 𝑗) ∈ ℕ ↔ ((𝑚 / 𝑗) ∈ ℤ ∧ 0 < (𝑚 / 𝑗)))
3018, 28, 29sylanbrc 585 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑗) ∈ ℕ)
31 breq2 5070 . . . . . . . . . . . 12 (𝑛 = (𝑚 / 𝑗) → (𝑥𝑛𝑥 ∥ (𝑚 / 𝑗)))
3231rabbidv 3480 . . . . . . . . . . 11 (𝑛 = (𝑚 / 𝑗) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})
3332sumeq1d 15058 . . . . . . . . . 10 (𝑛 = (𝑚 / 𝑗) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
34 eqid 2821 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))
35 sumex 15044 . . . . . . . . . 10 Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘) ∈ V
3633, 34, 35fvmpt 6768 . . . . . . . . 9 ((𝑚 / 𝑗) ∈ ℕ → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
3730, 36syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (𝐹𝑘))‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
385, 37eqtrd 2856 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝐺‘(𝑚 / 𝑗)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘))
3938oveq2d 7172 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = ((μ‘𝑗) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘)))
40 fzfid 13342 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (1...(𝑚 / 𝑗)) ∈ Fin)
41 dvdsssfz1 15668 . . . . . . . . 9 ((𝑚 / 𝑗) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ⊆ (1...(𝑚 / 𝑗)))
4230, 41syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ⊆ (1...(𝑚 / 𝑗)))
4340, 42ssfid 8741 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ∈ Fin)
44 mucl 25718 . . . . . . . . 9 (𝑗 ∈ ℕ → (μ‘𝑗) ∈ ℤ)
4511, 44syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (μ‘𝑗) ∈ ℤ)
4645zcnd 12089 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (μ‘𝑗) ∈ ℂ)
471ad2antrr 724 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝐹:ℕ⟶ℂ)
48 elrabi 3675 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} → 𝑘 ∈ ℕ)
49 ffvelrn 6849 . . . . . . . 8 ((𝐹:ℕ⟶ℂ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
5047, 48, 49syl2an 597 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)}) → (𝐹𝑘) ∈ ℂ)
5143, 46, 50fsummulc2 15139 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((μ‘𝑗) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} (𝐹𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)))
5239, 51eqtrd 2856 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)))
5352sumeq2dv 15060 . . . 4 ((𝜑𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)))
54 simpr 487 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
5546adantrr 715 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → (μ‘𝑗) ∈ ℂ)
5650anasss 469 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → (𝐹𝑘) ∈ ℂ)
5755, 56mulcld 10661 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)})) → ((μ‘𝑗) · (𝐹𝑘)) ∈ ℂ)
5854, 57fsumdvdsdiag 25761 . . . 4 ((𝜑𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑗)} ((μ‘𝑗) · (𝐹𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)))
59 ssrab2 4056 . . . . . . . . . 10 {𝑥 ∈ ℕ ∣ 𝑥𝑚} ⊆ ℕ
60 dvdsdivcl 15666 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
6160adantll 712 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
6259, 61sseldi 3965 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑚 / 𝑘) ∈ ℕ)
63 musum 25768 . . . . . . . . 9 ((𝑚 / 𝑘) ∈ ℕ → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) = if((𝑚 / 𝑘) = 1, 1, 0))
6462, 63syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) = if((𝑚 / 𝑘) = 1, 1, 0))
6564oveq1d 7171 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) · (𝐹𝑘)) = (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹𝑘)))
66 fzfid 13342 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (1...(𝑚 / 𝑘)) ∈ Fin)
67 dvdsssfz1 15668 . . . . . . . . . 10 ((𝑚 / 𝑘) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ (1...(𝑚 / 𝑘)))
6862, 67syl 17 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ (1...(𝑚 / 𝑘)))
6966, 68ssfid 8741 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ∈ Fin)
701adantr 483 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐹:ℕ⟶ℂ)
71 elrabi 3675 . . . . . . . . 9 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} → 𝑘 ∈ ℕ)
7270, 71, 49syl2an 597 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝐹𝑘) ∈ ℂ)
73 ssrab2 4056 . . . . . . . . . . 11 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ⊆ ℕ
74 simpr 487 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)})
7573, 74sseldi 3965 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → 𝑗 ∈ ℕ)
7675, 44syl 17 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → (μ‘𝑗) ∈ ℤ)
7776zcnd 12089 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)}) → (μ‘𝑗) ∈ ℂ)
7869, 72, 77fsummulc1 15140 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} (μ‘𝑗) · (𝐹𝑘)) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)))
79 ovif 7251 . . . . . . . 8 (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹𝑘)) = if((𝑚 / 𝑘) = 1, (1 · (𝐹𝑘)), (0 · (𝐹𝑘)))
80 nncn 11646 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
8180ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑚 ∈ ℂ)
8271adantl 484 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑘 ∈ ℕ)
8382nncnd 11654 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑘 ∈ ℂ)
84 1cnd 10636 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 1 ∈ ℂ)
8582nnne0d 11688 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → 𝑘 ≠ 0)
8681, 83, 84, 85divmuld 11438 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑚 / 𝑘) = 1 ↔ (𝑘 · 1) = 𝑚))
8783mulid1d 10658 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (𝑘 · 1) = 𝑘)
8887eqeq1d 2823 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑘 · 1) = 𝑚𝑘 = 𝑚))
8986, 88bitrd 281 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → ((𝑚 / 𝑘) = 1 ↔ 𝑘 = 𝑚))
9072mulid2d 10659 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (1 · (𝐹𝑘)) = (𝐹𝑘))
9172mul02d 10838 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (0 · (𝐹𝑘)) = 0)
9289, 90, 91ifbieq12d 4494 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → if((𝑚 / 𝑘) = 1, (1 · (𝐹𝑘)), (0 · (𝐹𝑘))) = if(𝑘 = 𝑚, (𝐹𝑘), 0))
9379, 92syl5eq 2868 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → (if((𝑚 / 𝑘) = 1, 1, 0) · (𝐹𝑘)) = if(𝑘 = 𝑚, (𝐹𝑘), 0))
9465, 78, 933eqtr3d 2864 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)) = if(𝑘 = 𝑚, (𝐹𝑘), 0))
9594sumeq2dv 15060 . . . . 5 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0))
96 breq1 5069 . . . . . . . 8 (𝑥 = 𝑚 → (𝑥𝑚𝑚𝑚))
9754nnzd 12087 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
98 iddvds 15623 . . . . . . . . 9 (𝑚 ∈ ℤ → 𝑚𝑚)
9997, 98syl 17 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑚𝑚)
10096, 54, 99elrabd 3682 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
101100snssd 4742 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → {𝑚} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
102101sselda 3967 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚})
103102, 72syldan 593 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → (𝐹𝑘) ∈ ℂ)
104 0cn 10633 . . . . . . 7 0 ∈ ℂ
105 ifcl 4511 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 = 𝑚, (𝐹𝑘), 0) ∈ ℂ)
106103, 104, 105sylancl 588 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ {𝑚}) → if(𝑘 = 𝑚, (𝐹𝑘), 0) ∈ ℂ)
107 eldifsni 4722 . . . . . . . . 9 (𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚}) → 𝑘𝑚)
108107adantl 484 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚})) → 𝑘𝑚)
109108neneqd 3021 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚})) → ¬ 𝑘 = 𝑚)
110109iffalsed 4478 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ({𝑥 ∈ ℕ ∣ 𝑥𝑚} ∖ {𝑚})) → if(𝑘 = 𝑚, (𝐹𝑘), 0) = 0)
111 fzfid 13342 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (1...𝑚) ∈ Fin)
112 dvdsssfz1 15668 . . . . . . . 8 (𝑚 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑚} ⊆ (1...𝑚))
113112adantl 484 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → {𝑥 ∈ ℕ ∣ 𝑥𝑚} ⊆ (1...𝑚))
114111, 113ssfid 8741 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → {𝑥 ∈ ℕ ∣ 𝑥𝑚} ∈ Fin)
115101, 106, 110, 114fsumss 15082 . . . . 5 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0))
1161ffvelrnda 6851 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
117 iftrue 4473 . . . . . . . 8 (𝑘 = 𝑚 → if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑘))
118 fveq2 6670 . . . . . . . 8 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
119117, 118eqtrd 2856 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑚))
120119sumsn 15101 . . . . . 6 ((𝑚 ∈ ℕ ∧ (𝐹𝑚) ∈ ℂ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑚))
12154, 116, 120syl2anc 586 . . . . 5 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑚}if(𝑘 = 𝑚, (𝐹𝑘), 0) = (𝐹𝑚))
12295, 115, 1213eqtr2d 2862 . . . 4 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑚 / 𝑘)} ((μ‘𝑗) · (𝐹𝑘)) = (𝐹𝑚))
12353, 58, 1223eqtrd 2860 . . 3 ((𝜑𝑚 ∈ ℕ) → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗))) = (𝐹𝑚))
124123mpteq2dva 5161 . 2 (𝜑 → (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))) = (𝑚 ∈ ℕ ↦ (𝐹𝑚)))
1252, 124eqtr4d 2859 1 (𝜑𝐹 = (𝑚 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((μ‘𝑗) · (𝐺‘(𝑚 / 𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  {crab 3142  cdif 3933  wss 3936  ifcif 4467  {csn 4567   class class class wbr 5066  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542   < clt 10675   / cdiv 11297  cn 11638  cz 11982  ...cfz 12893  Σcsu 15042  cdvds 15607  μcmu 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174  df-mu 25678
This theorem is referenced by:  dchrvmasumlem1  26071  logsqvma2  26119
  Copyright terms: Public domain W3C validator