Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem1 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem1 25229
 Description: An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.a (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
dchrvmasumlem1 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
Distinct variable groups:   𝑚,𝑛, 1   𝑚,𝑑,𝑛,𝐴   𝑚,𝑁,𝑛   𝜑,𝑑,𝑚,𝑛   𝑚,𝑍,𝑛   𝐷,𝑚,𝑛   𝐿,𝑑,𝑚,𝑛   𝑋,𝑑,𝑚,𝑛   𝐴,𝑛
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐺(𝑚,𝑛,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem1
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6229 . . . . 5 (𝑛 = (𝑑 · 𝑚) → (𝐿𝑛) = (𝐿‘(𝑑 · 𝑚)))
21fveq2d 6233 . . . 4 (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚))))
3 oveq2 6698 . . . . 5 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) / 𝑛) = ((μ‘𝑑) / (𝑑 · 𝑚)))
4 oveq1 6697 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → (𝑛 / 𝑑) = ((𝑑 · 𝑚) / 𝑑))
54fveq2d 6233 . . . . 5 (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑)))
63, 5oveq12d 6708 . . . 4 (𝑛 = (𝑑 · 𝑚) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))
72, 6oveq12d 6708 . . 3 (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
8 dchrvmasum.a . . . 4 (𝜑𝐴 ∈ ℝ+)
98rpred 11910 . . 3 (𝜑𝐴 ∈ ℝ)
10 rpvmasum.g . . . . . 6 𝐺 = (DChr‘𝑁)
11 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
12 rpvmasum.d . . . . . 6 𝐷 = (Base‘𝐺)
13 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
14 dchrisum.b . . . . . . 7 (𝜑𝑋𝐷)
1514adantr 480 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
16 elfzelz 12380 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℤ)
1716adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ)
1810, 11, 12, 13, 15, 17dchrzrhcl 25015 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
1918adantrr 753 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
20 elrabi 3391 . . . . . . . . . 10 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} → 𝑑 ∈ ℕ)
2120ad2antll 765 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑑 ∈ ℕ)
22 mucl 24912 . . . . . . . . 9 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
2321, 22syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℤ)
2423zred 11520 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℝ)
25 elfznn 12408 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
2625ad2antrl 764 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑛 ∈ ℕ)
2724, 26nndivred 11107 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((μ‘𝑑) / 𝑛) ∈ ℝ)
2827recnd 10106 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((μ‘𝑑) / 𝑛) ∈ ℂ)
2926nnrpd 11908 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑛 ∈ ℝ+)
3021nnrpd 11908 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑑 ∈ ℝ+)
3129, 30rpdivcld 11927 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (𝑛 / 𝑑) ∈ ℝ+)
3231relogcld 24414 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℝ)
3332recnd 10106 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
3428, 33mulcld 10098 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) ∈ ℂ)
3519, 34mulcld 10098 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) ∈ ℂ)
367, 9, 35dvdsflsumcom 24959 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
37 vmaf 24890 . . . . . . . . . . . . 13 Λ:ℕ⟶ℝ
3837a1i 11 . . . . . . . . . . . 12 (𝜑 → Λ:ℕ⟶ℝ)
39 ax-resscn 10031 . . . . . . . . . . . 12 ℝ ⊆ ℂ
40 fss 6094 . . . . . . . . . . . 12 ((Λ:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → Λ:ℕ⟶ℂ)
4138, 39, 40sylancl 695 . . . . . . . . . . 11 (𝜑 → Λ:ℕ⟶ℂ)
42 vmasum 24986 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖) = (log‘𝑚))
4342adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖) = (log‘𝑚))
4443eqcomd 2657 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (log‘𝑚) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖))
4544mpteq2dva 4777 . . . . . . . . . . 11 (𝜑 → (𝑚 ∈ ℕ ↦ (log‘𝑚)) = (𝑚 ∈ ℕ ↦ Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖)))
4641, 45muinv 24964 . . . . . . . . . 10 (𝜑 → Λ = (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))))
4746fveq1d 6231 . . . . . . . . 9 (𝜑 → (Λ‘𝑛) = ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛))
48 sumex 14462 . . . . . . . . . 10 Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) ∈ V
49 eqid 2651 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) = (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
5049fvmpt2 6330 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) ∈ V) → ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
5125, 48, 50sylancl 695 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
5247, 51sylan9eq 2705 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
53 breq1 4688 . . . . . . . . . . . . . . 15 (𝑥 = 𝑑 → (𝑥𝑛𝑑𝑛))
5453elrab 3396 . . . . . . . . . . . . . 14 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑛))
5554simprbi 479 . . . . . . . . . . . . 13 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} → 𝑑𝑛)
5655adantl 481 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑑𝑛)
5725adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
58 nndivdvds 15036 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑑𝑛 ↔ (𝑛 / 𝑑) ∈ ℕ))
5957, 20, 58syl2an 493 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (𝑑𝑛 ↔ (𝑛 / 𝑑) ∈ ℕ))
6056, 59mpbid 222 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (𝑛 / 𝑑) ∈ ℕ)
61 fveq2 6229 . . . . . . . . . . . 12 (𝑚 = (𝑛 / 𝑑) → (log‘𝑚) = (log‘(𝑛 / 𝑑)))
62 eqid 2651 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (log‘𝑚)) = (𝑚 ∈ ℕ ↦ (log‘𝑚))
63 fvex 6239 . . . . . . . . . . . 12 (log‘(𝑛 / 𝑑)) ∈ V
6461, 62, 63fvmpt 6321 . . . . . . . . . . 11 ((𝑛 / 𝑑) ∈ ℕ → ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)) = (log‘(𝑛 / 𝑑)))
6560, 64syl 17 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)) = (log‘(𝑛 / 𝑑)))
6665oveq2d 6706 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) = ((μ‘𝑑) · (log‘(𝑛 / 𝑑))))
6766sumeq2dv 14477 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))))
6852, 67eqtrd 2685 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))))
6968oveq1d 6705 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛))
70 fzfid 12812 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
71 dvdsssfz1 15087 . . . . . . . . 9 (𝑛 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
7257, 71syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
73 ssfi 8221 . . . . . . . 8 (((1...𝑛) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛)) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ∈ Fin)
7470, 72, 73syl2anc 694 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ∈ Fin)
7557nncnd 11074 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ)
7623zcnd 11521 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℂ)
7776anassrs 681 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (μ‘𝑑) ∈ ℂ)
7833anassrs 681 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
7977, 78mulcld 10098 . . . . . . 7 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) ∈ ℂ)
8057nnne0d 11103 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0)
8174, 75, 79, 80fsumdivc 14562 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛))
8220adantl 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑑 ∈ ℕ)
8382, 22syl 17 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (μ‘𝑑) ∈ ℤ)
8483zcnd 11521 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (μ‘𝑑) ∈ ℂ)
8575adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑛 ∈ ℂ)
8680adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑛 ≠ 0)
8784, 78, 85, 86div23d 10876 . . . . . . 7 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))
8887sumeq2dv 14477 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))
8969, 81, 883eqtrd 2689 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))
9089oveq2d 6706 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = ((𝑋‘(𝐿𝑛)) · Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
9134anassrs 681 . . . . 5 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) ∈ ℂ)
9274, 18, 91fsummulc2 14560 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
9390, 92eqtrd 2685 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
9493sumeq2dv 14477 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
95 fzfid 12812 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
9614adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
97 elfzelz 12380 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℤ)
9897adantl 481 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ)
9910, 11, 12, 13, 96, 98dchrzrhcl 25015 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
100 fznnfl 12701 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
1019, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
102101simprbda 652 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
103102, 22syl 17 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℤ)
104103zred 11520 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℝ)
105104, 102nndivred 11107 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
106105recnd 10106 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
10799, 106mulcld 10098 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
10814ad2antrr 762 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋𝐷)
109 elfzelz 12380 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℤ)
110109adantl 481 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ)
11110, 11, 12, 13, 108, 110dchrzrhcl 25015 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
112 elfznn 12408 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℕ)
113112adantl 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ)
114113nnrpd 11908 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+)
115114relogcld 24414 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℝ)
116115, 113nndivred 11107 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℝ)
117116recnd 10106 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℂ)
118111, 117mulcld 10098 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ)
11995, 107, 118fsummulc2 14560 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
12099adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
121106adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
122120, 121, 111, 117mul4d 10286 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) · (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚))))
12397ad2antlr 763 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℤ)
12410, 11, 12, 13, 108, 123, 110dchrzrhmul 25016 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))))
125104adantr 480 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℝ)
126125recnd 10106 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℂ)
127115recnd 10106 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℂ)
128102nnrpd 11908 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+)
129128adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℝ+)
130129, 114rpmulcld 11926 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 · 𝑚) ∈ ℝ+)
131130rpcnne0d 11919 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑑 · 𝑚) ∈ ℂ ∧ (𝑑 · 𝑚) ≠ 0))
132 div23 10742 . . . . . . . . 9 (((μ‘𝑑) ∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ ((𝑑 · 𝑚) ∈ ℂ ∧ (𝑑 · 𝑚) ≠ 0)) → (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚)))
133126, 127, 131, 132syl3anc 1366 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚)))
134129rpcnne0d 11919 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
135114rpcnne0d 11919 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
136 divmuldiv 10763 . . . . . . . . 9 ((((μ‘𝑑) ∈ ℂ ∧ (log‘𝑚) ∈ ℂ) ∧ ((𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))) → (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)) = (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)))
137126, 127, 134, 135, 136syl22anc 1367 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)) = (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)))
138113nncnd 11074 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ)
139129rpcnd 11912 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℂ)
140129rpne0d 11915 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ≠ 0)
141138, 139, 140divcan3d 10844 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚)
142141fveq2d 6233 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚))
143142oveq2d 6706 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚)))
144133, 137, 1433eqtr4rd 2696 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))) = (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)))
145124, 144oveq12d 6708 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) · (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚))))
146122, 145eqtr4d 2688 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
147146sumeq2dv 14477 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
148119, 147eqtrd 2685 . . 3 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
149148sumeq2dv 14477 . 2 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
15036, 94, 1493eqtr4d 2695 1 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  {crab 2945  Vcvv 3231   ⊆ wss 3607   class class class wbr 4685   ↦ cmpt 4762  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  Fincfn 7997  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   · cmul 9979   ≤ cle 10113   / cdiv 10722  ℕcn 11058  ℤcz 11415  ℝ+crp 11870  ...cfz 12364  ⌊cfl 12631  Σcsu 14460   ∥ cdvds 15027  Basecbs 15904  0gc0g 16147  ℤRHomczrh 19896  ℤ/nℤczn 19899  logclog 24346  Λcvma 24863  μcmu 24866  DChrcdchr 25002 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-qus 16216  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-rnghom 18763  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-zn 19903  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-vma 24869  df-mu 24872  df-dchr 25003 This theorem is referenced by:  dchrvmasum2if  25231
 Copyright terms: Public domain W3C validator