MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem1 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem1 25229
Description: An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.a (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
dchrvmasumlem1 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
Distinct variable groups:   𝑚,𝑛, 1   𝑚,𝑑,𝑛,𝐴   𝑚,𝑁,𝑛   𝜑,𝑑,𝑚,𝑛   𝑚,𝑍,𝑛   𝐷,𝑚,𝑛   𝐿,𝑑,𝑚,𝑛   𝑋,𝑑,𝑚,𝑛   𝐴,𝑛
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐺(𝑚,𝑛,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem1
Dummy variables 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6229 . . . . 5 (𝑛 = (𝑑 · 𝑚) → (𝐿𝑛) = (𝐿‘(𝑑 · 𝑚)))
21fveq2d 6233 . . . 4 (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚))))
3 oveq2 6698 . . . . 5 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) / 𝑛) = ((μ‘𝑑) / (𝑑 · 𝑚)))
4 oveq1 6697 . . . . . 6 (𝑛 = (𝑑 · 𝑚) → (𝑛 / 𝑑) = ((𝑑 · 𝑚) / 𝑑))
54fveq2d 6233 . . . . 5 (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑)))
63, 5oveq12d 6708 . . . 4 (𝑛 = (𝑑 · 𝑚) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))))
72, 6oveq12d 6708 . . 3 (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
8 dchrvmasum.a . . . 4 (𝜑𝐴 ∈ ℝ+)
98rpred 11910 . . 3 (𝜑𝐴 ∈ ℝ)
10 rpvmasum.g . . . . . 6 𝐺 = (DChr‘𝑁)
11 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
12 rpvmasum.d . . . . . 6 𝐷 = (Base‘𝐺)
13 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
14 dchrisum.b . . . . . . 7 (𝜑𝑋𝐷)
1514adantr 480 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
16 elfzelz 12380 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℤ)
1716adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ)
1810, 11, 12, 13, 15, 17dchrzrhcl 25015 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
1918adantrr 753 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
20 elrabi 3391 . . . . . . . . . 10 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} → 𝑑 ∈ ℕ)
2120ad2antll 765 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑑 ∈ ℕ)
22 mucl 24912 . . . . . . . . 9 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
2321, 22syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℤ)
2423zred 11520 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℝ)
25 elfznn 12408 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
2625ad2antrl 764 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑛 ∈ ℕ)
2724, 26nndivred 11107 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((μ‘𝑑) / 𝑛) ∈ ℝ)
2827recnd 10106 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((μ‘𝑑) / 𝑛) ∈ ℂ)
2926nnrpd 11908 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑛 ∈ ℝ+)
3021nnrpd 11908 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → 𝑑 ∈ ℝ+)
3129, 30rpdivcld 11927 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (𝑛 / 𝑑) ∈ ℝ+)
3231relogcld 24414 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℝ)
3332recnd 10106 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
3428, 33mulcld 10098 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) ∈ ℂ)
3519, 34mulcld 10098 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) ∈ ℂ)
367, 9, 35dvdsflsumcom 24959 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
37 vmaf 24890 . . . . . . . . . . . . 13 Λ:ℕ⟶ℝ
3837a1i 11 . . . . . . . . . . . 12 (𝜑 → Λ:ℕ⟶ℝ)
39 ax-resscn 10031 . . . . . . . . . . . 12 ℝ ⊆ ℂ
40 fss 6094 . . . . . . . . . . . 12 ((Λ:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → Λ:ℕ⟶ℂ)
4138, 39, 40sylancl 695 . . . . . . . . . . 11 (𝜑 → Λ:ℕ⟶ℂ)
42 vmasum 24986 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖) = (log‘𝑚))
4342adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖) = (log‘𝑚))
4443eqcomd 2657 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (log‘𝑚) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖))
4544mpteq2dva 4777 . . . . . . . . . . 11 (𝜑 → (𝑚 ∈ ℕ ↦ (log‘𝑚)) = (𝑚 ∈ ℕ ↦ Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} (Λ‘𝑖)))
4641, 45muinv 24964 . . . . . . . . . 10 (𝜑 → Λ = (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))))
4746fveq1d 6231 . . . . . . . . 9 (𝜑 → (Λ‘𝑛) = ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛))
48 sumex 14462 . . . . . . . . . 10 Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) ∈ V
49 eqid 2651 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)))) = (𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
5049fvmpt2 6330 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) ∈ V) → ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
5125, 48, 50sylancl 695 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → ((𝑛 ∈ ℕ ↦ Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
5247, 51sylan9eq 2705 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))))
53 breq1 4688 . . . . . . . . . . . . . . 15 (𝑥 = 𝑑 → (𝑥𝑛𝑑𝑛))
5453elrab 3396 . . . . . . . . . . . . . 14 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑛))
5554simprbi 479 . . . . . . . . . . . . 13 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} → 𝑑𝑛)
5655adantl 481 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑑𝑛)
5725adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
58 nndivdvds 15036 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑑𝑛 ↔ (𝑛 / 𝑑) ∈ ℕ))
5957, 20, 58syl2an 493 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (𝑑𝑛 ↔ (𝑛 / 𝑑) ∈ ℕ))
6056, 59mpbid 222 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (𝑛 / 𝑑) ∈ ℕ)
61 fveq2 6229 . . . . . . . . . . . 12 (𝑚 = (𝑛 / 𝑑) → (log‘𝑚) = (log‘(𝑛 / 𝑑)))
62 eqid 2651 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (log‘𝑚)) = (𝑚 ∈ ℕ ↦ (log‘𝑚))
63 fvex 6239 . . . . . . . . . . . 12 (log‘(𝑛 / 𝑑)) ∈ V
6461, 62, 63fvmpt 6321 . . . . . . . . . . 11 ((𝑛 / 𝑑) ∈ ℕ → ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)) = (log‘(𝑛 / 𝑑)))
6560, 64syl 17 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑)) = (log‘(𝑛 / 𝑑)))
6665oveq2d 6706 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) = ((μ‘𝑑) · (log‘(𝑛 / 𝑑))))
6766sumeq2dv 14477 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · ((𝑚 ∈ ℕ ↦ (log‘𝑚))‘(𝑛 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))))
6852, 67eqtrd 2685 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))))
6968oveq1d 6705 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛))
70 fzfid 12812 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
71 dvdsssfz1 15087 . . . . . . . . 9 (𝑛 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
7257, 71syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛))
73 ssfi 8221 . . . . . . . 8 (((1...𝑛) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ (1...𝑛)) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ∈ Fin)
7470, 72, 73syl2anc 694 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ ℕ ∣ 𝑥𝑛} ∈ Fin)
7557nncnd 11074 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℂ)
7623zcnd 11521 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})) → (μ‘𝑑) ∈ ℂ)
7776anassrs 681 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (μ‘𝑑) ∈ ℂ)
7833anassrs 681 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
7977, 78mulcld 10098 . . . . . . 7 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) ∈ ℂ)
8057nnne0d 11103 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ≠ 0)
8174, 75, 79, 80fsumdivc 14562 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛))
8220adantl 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑑 ∈ ℕ)
8382, 22syl 17 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (μ‘𝑑) ∈ ℤ)
8483zcnd 11521 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (μ‘𝑑) ∈ ℂ)
8575adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑛 ∈ ℂ)
8680adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑛 ≠ 0)
8784, 78, 85, 86div23d 10876 . . . . . . 7 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))
8887sumeq2dv 14477 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) · (log‘(𝑛 / 𝑑))) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))
8969, 81, 883eqtrd 2689 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))))
9089oveq2d 6706 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = ((𝑋‘(𝐿𝑛)) · Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
9134anassrs 681 . . . . 5 (((𝜑𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑))) ∈ ℂ)
9274, 18, 91fsummulc2 14560 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
9390, 92eqtrd 2685 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
9493sumeq2dv 14477 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑋‘(𝐿𝑛)) · (((μ‘𝑑) / 𝑛) · (log‘(𝑛 / 𝑑)))))
95 fzfid 12812 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
9614adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
97 elfzelz 12380 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℤ)
9897adantl 481 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ)
9910, 11, 12, 13, 96, 98dchrzrhcl 25015 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
100 fznnfl 12701 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
1019, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝐴)))
102101simprbda 652 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
103102, 22syl 17 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℤ)
104103zred 11520 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (μ‘𝑑) ∈ ℝ)
105104, 102nndivred 11107 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
106105recnd 10106 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
10799, 106mulcld 10098 . . . . 5 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
10814ad2antrr 762 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋𝐷)
109 elfzelz 12380 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℤ)
110109adantl 481 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ)
11110, 11, 12, 13, 108, 110dchrzrhcl 25015 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
112 elfznn 12408 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℕ)
113112adantl 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ)
114113nnrpd 11908 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+)
115114relogcld 24414 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℝ)
116115, 113nndivred 11107 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℝ)
117116recnd 10106 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℂ)
118111, 117mulcld 10098 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ)
11995, 107, 118fsummulc2 14560 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
12099adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
121106adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
122120, 121, 111, 117mul4d 10286 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) · (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚))))
12397ad2antlr 763 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℤ)
12410, 11, 12, 13, 108, 123, 110dchrzrhmul 25016 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))))
125104adantr 480 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℝ)
126125recnd 10106 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (μ‘𝑑) ∈ ℂ)
127115recnd 10106 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℂ)
128102nnrpd 11908 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+)
129128adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℝ+)
130129, 114rpmulcld 11926 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 · 𝑚) ∈ ℝ+)
131130rpcnne0d 11919 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑑 · 𝑚) ∈ ℂ ∧ (𝑑 · 𝑚) ≠ 0))
132 div23 10742 . . . . . . . . 9 (((μ‘𝑑) ∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ ((𝑑 · 𝑚) ∈ ℂ ∧ (𝑑 · 𝑚) ≠ 0)) → (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚)))
133126, 127, 131, 132syl3anc 1366 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚)))
134129rpcnne0d 11919 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
135114rpcnne0d 11919 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
136 divmuldiv 10763 . . . . . . . . 9 ((((μ‘𝑑) ∈ ℂ ∧ (log‘𝑚) ∈ ℂ) ∧ ((𝑑 ∈ ℂ ∧ 𝑑 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))) → (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)) = (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)))
137126, 127, 134, 135, 136syl22anc 1367 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)) = (((μ‘𝑑) · (log‘𝑚)) / (𝑑 · 𝑚)))
138113nncnd 11074 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ)
139129rpcnd 11912 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ∈ ℂ)
140129rpne0d 11915 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑑 ≠ 0)
141138, 139, 140divcan3d 10844 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚)
142141fveq2d 6233 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚))
143142oveq2d 6706 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))) = (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘𝑚)))
144133, 137, 1433eqtr4rd 2696 . . . . . . 7 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑))) = (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚)))
145124, 144oveq12d 6708 . . . . . 6 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) · (((μ‘𝑑) / 𝑑) · ((log‘𝑚) / 𝑚))))
146122, 145eqtr4d 2688 . . . . 5 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
147146sumeq2dv 14477 . . . 4 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
148119, 147eqtrd 2685 . . 3 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
149148sumeq2dv 14477 . 2 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘(𝑑 · 𝑚))) · (((μ‘𝑑) / (𝑑 · 𝑚)) · (log‘((𝑑 · 𝑚) / 𝑑)))))
15036, 94, 1493eqtr4d 2695 1 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  {crab 2945  Vcvv 3231  wss 3607   class class class wbr 4685  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979  cle 10113   / cdiv 10722  cn 11058  cz 11415  +crp 11870  ...cfz 12364  cfl 12631  Σcsu 14460  cdvds 15027  Basecbs 15904  0gc0g 16147  ℤRHomczrh 19896  ℤ/nczn 19899  logclog 24346  Λcvma 24863  μcmu 24866  DChrcdchr 25002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-qus 16216  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-rnghom 18763  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-zn 19903  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-vma 24869  df-mu 24872  df-dchr 25003
This theorem is referenced by:  dchrvmasum2if  25231
  Copyright terms: Public domain W3C validator