Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xaddlem1 Structured version   Visualization version   GIF version

Theorem sge0xaddlem1 39957
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xaddlem1.a (𝜑𝐴𝑉)
sge0xaddlem1.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0xaddlem1.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
sge0xaddlem1.rp (𝜑𝐸 ∈ ℝ+)
sge0xaddlem1.u (𝜑𝑈𝐴)
sge0xaddlem1.ufi (𝜑𝑈 ∈ Fin)
sge0xaddlem1.7 (𝜑𝑊𝐴)
sge0xaddlem1.wfi (𝜑𝑊 ∈ Fin)
sge0xaddlem1.ltb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑈 𝐵 + (𝐸 / 2)))
sge0xaddlem1.ltc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑊 𝐶 + (𝐸 / 2)))
sge0xaddlem1.xr (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
sge0xaddlem1.sb (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
sge0xaddlem1.sc (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
Assertion
Ref Expression
sge0xaddlem1 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘,𝑥   𝑥,𝐵   𝑥,𝐶   𝑈,𝑘,𝑥   𝑘,𝑊,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐸(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem sge0xaddlem1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1840 . . . . 5 𝑘𝜑
2 sge0xaddlem1.a . . . . 5 (𝜑𝐴𝑉)
3 sge0xaddlem1.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
41, 2, 3sge0revalmpt 39902 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
5 sge0xaddlem1.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
61, 2, 5sge0revalmpt 39902 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ))
74, 6oveq12d 6622 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) = (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )))
84eqcomd 2627 . . . . . 6 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) = (Σ^‘(𝑘𝐴𝐵)))
9 sge0xaddlem1.sb . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
108, 9eqeltrd 2698 . . . . 5 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) ∈ ℝ)
11 sge0xaddlem1.sc . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
126, 11eqeltrrd 2699 . . . . 5 (𝜑 → sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < ) ∈ ℝ)
1310, 12readdcld 10013 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ)
1413rexrd 10033 . . 3 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) + sup(ran (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑧 𝐶), ℝ*, < )) ∈ ℝ*)
157, 14eqeltrd 2698 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ∈ ℝ*)
16 elinel2 3778 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1716adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
18 simpll 789 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
19 elpwinss 38701 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
2019adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑥𝐴)
21 simpr 477 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝑥)
2220, 21sseldd 3584 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑥) → 𝑘𝐴)
2322adantll 749 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
24 rge0ssre 12222 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
2524, 3sseldi 3581 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
2618, 23, 25syl2anc 692 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
2724, 5sseldi 3581 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
2818, 23, 27syl2anc 692 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐶 ∈ ℝ)
2926, 28readdcld 10013 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → (𝐵 + 𝐶) ∈ ℝ)
3017, 29fsumrecl 14398 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ)
3130rexrd 10033 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
3231ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ*)
33 eqid 2621 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))
3433rnmptss 6347 . . . . 5 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑘𝑥 (𝐵 + 𝐶) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
3532, 34syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
36 supxrcl 12088 . . . 4 (ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
3735, 36syl 17 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ*)
38 sge0xaddlem1.rp . . . 4 (𝜑𝐸 ∈ ℝ+)
3938rpxrd 11817 . . 3 (𝜑𝐸 ∈ ℝ*)
4037, 39xaddcld 12074 . 2 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) ∈ ℝ*)
41 sge0xaddlem1.ufi . . . . . . 7 (𝜑𝑈 ∈ Fin)
42 simpl 473 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝜑)
43 sge0xaddlem1.u . . . . . . . . . 10 (𝜑𝑈𝐴)
4443sselda 3583 . . . . . . . . 9 ((𝜑𝑘𝑈) → 𝑘𝐴)
4542, 44, 3syl2anc 692 . . . . . . . 8 ((𝜑𝑘𝑈) → 𝐵 ∈ (0[,)+∞))
4624, 45sseldi 3581 . . . . . . 7 ((𝜑𝑘𝑈) → 𝐵 ∈ ℝ)
4741, 46fsumrecl 14398 . . . . . 6 (𝜑 → Σ𝑘𝑈 𝐵 ∈ ℝ)
4838rpred 11816 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
4948rehalfcld 11223 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℝ)
5047, 49readdcld 10013 . . . . 5 (𝜑 → (Σ𝑘𝑈 𝐵 + (𝐸 / 2)) ∈ ℝ)
51 sge0xaddlem1.wfi . . . . . . 7 (𝜑𝑊 ∈ Fin)
5224a1i 11 . . . . . . . 8 ((𝜑𝑘𝑊) → (0[,)+∞) ⊆ ℝ)
53 simpl 473 . . . . . . . . 9 ((𝜑𝑘𝑊) → 𝜑)
54 sge0xaddlem1.7 . . . . . . . . . . 11 (𝜑𝑊𝐴)
5554adantr 481 . . . . . . . . . 10 ((𝜑𝑘𝑊) → 𝑊𝐴)
56 simpr 477 . . . . . . . . . 10 ((𝜑𝑘𝑊) → 𝑘𝑊)
5755, 56sseldd 3584 . . . . . . . . 9 ((𝜑𝑘𝑊) → 𝑘𝐴)
5853, 57, 5syl2anc 692 . . . . . . . 8 ((𝜑𝑘𝑊) → 𝐶 ∈ (0[,)+∞))
5952, 58sseldd 3584 . . . . . . 7 ((𝜑𝑘𝑊) → 𝐶 ∈ ℝ)
6051, 59fsumrecl 14398 . . . . . 6 (𝜑 → Σ𝑘𝑊 𝐶 ∈ ℝ)
6160, 49readdcld 10013 . . . . 5 (𝜑 → (Σ𝑘𝑊 𝐶 + (𝐸 / 2)) ∈ ℝ)
6250, 61readdcld 10013 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ∈ ℝ)
6362rexrd 10033 . . 3 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ∈ ℝ*)
64 sge0xaddlem1.ltb . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑈 𝐵 + (𝐸 / 2)))
65 sge0xaddlem1.ltc . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) < (Σ𝑘𝑊 𝐶 + (𝐸 / 2)))
669, 11, 50, 61, 64, 65ltadd12dd 39023 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) < ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))))
6747recnd 10012 . . . . . 6 (𝜑 → Σ𝑘𝑈 𝐵 ∈ ℂ)
6849recnd 10012 . . . . . 6 (𝜑 → (𝐸 / 2) ∈ ℂ)
6960recnd 10012 . . . . . 6 (𝜑 → Σ𝑘𝑊 𝐶 ∈ ℂ)
7067, 68, 69, 68add4d 10208 . . . . 5 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + ((𝐸 / 2) + (𝐸 / 2))))
7148recnd 10012 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
72712halvesd 11222 . . . . . 6 (𝜑 → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
7372oveq2d 6620 . . . . 5 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + ((𝐸 / 2) + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸))
7470, 73eqtrd 2655 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) = ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸))
7574, 63eqeltrrd 2699 . . . . . . . 8 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ*)
76 pnfxr 10036 . . . . . . . . 9 +∞ ∈ ℝ*
7776a1i 11 . . . . . . . 8 (𝜑 → +∞ ∈ ℝ*)
7874, 62eqeltrrd 2699 . . . . . . . . 9 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ)
79 ltpnf 11898 . . . . . . . . 9 (((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ∈ ℝ → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) < +∞)
8078, 79syl 17 . . . . . . . 8 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) < +∞)
8175, 77, 80xrltled 38950 . . . . . . 7 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ +∞)
8281adantr 481 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ +∞)
83 oveq1 6611 . . . . . . . 8 (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞ → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (+∞ +𝑒 𝐸))
8483adantl 482 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (+∞ +𝑒 𝐸))
8548renemnfd 10035 . . . . . . . . 9 (𝜑𝐸 ≠ -∞)
86 xaddpnf2 12001 . . . . . . . . 9 ((𝐸 ∈ ℝ*𝐸 ≠ -∞) → (+∞ +𝑒 𝐸) = +∞)
8739, 85, 86syl2anc 692 . . . . . . . 8 (𝜑 → (+∞ +𝑒 𝐸) = +∞)
8887adantr 481 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → (+∞ +𝑒 𝐸) = +∞)
8984, 88eqtr2d 2656 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → +∞ = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
9082, 89breqtrd 4639 . . . . 5 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
91 simpl 473 . . . . . 6 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → 𝜑)
92 sge0xaddlem1.xr . . . . . . . 8 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
9391, 92syl 17 . . . . . . 7 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞))
94 neqne 2798 . . . . . . . 8 (¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞ → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞)
9594adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞)
96 ge0xrre 39169 . . . . . . 7 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞) ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ≠ +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
9793, 95, 96syl2anc 692 . . . . . 6 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
9847, 60readdcld 10013 . . . . . . . . 9 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ∈ ℝ)
9998adantr 481 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ∈ ℝ)
100 simpr 477 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ)
10148adantr 481 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → 𝐸 ∈ ℝ)
10241, 51jca 554 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∈ Fin ∧ 𝑊 ∈ Fin))
103 unfi 8171 . . . . . . . . . . . 12 ((𝑈 ∈ Fin ∧ 𝑊 ∈ Fin) → (𝑈𝑊) ∈ Fin)
104102, 103syl 17 . . . . . . . . . . 11 (𝜑 → (𝑈𝑊) ∈ Fin)
105 simpl 473 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝜑)
10643, 54unssd 3767 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈𝑊) ⊆ 𝐴)
107106adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑈𝑊)) → (𝑈𝑊) ⊆ 𝐴)
108 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝑘 ∈ (𝑈𝑊))
109107, 108sseldd 3584 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝑘𝐴)
110105, 109, 25syl2anc 692 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐵 ∈ ℝ)
111109, 27syldan 487 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐶 ∈ ℝ)
112110, 111readdcld 10013 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑈𝑊)) → (𝐵 + 𝐶) ∈ ℝ)
113104, 112fsumrecl 14398 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ℝ)
114113adantr 481 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ℝ)
115104, 110fsumrecl 14398 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)𝐵 ∈ ℝ)
116104, 111fsumrecl 14398 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)𝐶 ∈ ℝ)
117 icossicc 12202 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ (0[,]+∞)
118117, 3sseldi 3581 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
119 xrge0ge0 39027 . . . . . . . . . . . . . . 15 (𝐵 ∈ (0[,]+∞) → 0 ≤ 𝐵)
120118, 119syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
121109, 120syldan 487 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 0 ≤ 𝐵)
122 ssun1 3754 . . . . . . . . . . . . . 14 𝑈 ⊆ (𝑈𝑊)
123122a1i 11 . . . . . . . . . . . . 13 (𝜑𝑈 ⊆ (𝑈𝑊))
124104, 110, 121, 123fsumless 14455 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝑈 𝐵 ≤ Σ𝑘 ∈ (𝑈𝑊)𝐵)
125117, 5sseldi 3581 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
126 xrge0ge0 39027 . . . . . . . . . . . . . . 15 (𝐶 ∈ (0[,]+∞) → 0 ≤ 𝐶)
127125, 126syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
128109, 127syldan 487 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 0 ≤ 𝐶)
129 ssun2 3755 . . . . . . . . . . . . . 14 𝑊 ⊆ (𝑈𝑊)
130129a1i 11 . . . . . . . . . . . . 13 (𝜑𝑊 ⊆ (𝑈𝑊))
131104, 111, 128, 130fsumless 14455 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝑊 𝐶 ≤ Σ𝑘 ∈ (𝑈𝑊)𝐶)
13247, 60, 115, 116, 124, 131leadd12dd 38996 . . . . . . . . . . 11 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶))
133110recnd 10012 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐵 ∈ ℂ)
134111recnd 10012 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑈𝑊)) → 𝐶 ∈ ℂ)
135104, 133, 134fsumadd 14403 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) = (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶))
136135eqcomd 2627 . . . . . . . . . . 11 (𝜑 → (Σ𝑘 ∈ (𝑈𝑊)𝐵 + Σ𝑘 ∈ (𝑈𝑊)𝐶) = Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
137132, 136breqtrd 4639 . . . . . . . . . 10 (𝜑 → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
138137adantr 481 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
13935adantr 481 . . . . . . . . . 10 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ*)
140104, 106elpwd 4139 . . . . . . . . . . . . 13 (𝜑 → (𝑈𝑊) ∈ 𝒫 𝐴)
141140, 104elind 3776 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑊) ∈ (𝒫 𝐴 ∩ Fin))
142113elexd 3200 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ V)
143 sumeq1 14353 . . . . . . . . . . . . 13 (𝑥 = (𝑈𝑊) → Σ𝑘𝑥 (𝐵 + 𝐶) = Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶))
14433, 143elrnmpt1s 5333 . . . . . . . . . . . 12 (((𝑈𝑊) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ V) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
145141, 142, 144syl2anc 692 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
146145adantr 481 . . . . . . . . . 10 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)))
147 supxrub 12097 . . . . . . . . . 10 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)) ⊆ ℝ* ∧ Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶))) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
148139, 146, 147syl2anc 692 . . . . . . . . 9 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → Σ𝑘 ∈ (𝑈𝑊)(𝐵 + 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
14999, 114, 100, 138, 148letrd 10138 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) ≤ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ))
15099, 100, 101, 149leadd1dd 10585 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
151 rexadd 12006 . . . . . . . . 9 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
152100, 101, 151syl2anc 692 . . . . . . . 8 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸))
153152eqcomd 2627 . . . . . . 7 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) + 𝐸) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
154150, 153breqtrd 4639 . . . . . 6 ((𝜑 ∧ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ ℝ) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15591, 97, 154syl2anc 692 . . . . 5 ((𝜑 ∧ ¬ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) = +∞) → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15690, 155pm2.61dan 831 . . . 4 (𝜑 → ((Σ𝑘𝑈 𝐵 + Σ𝑘𝑊 𝐶) + 𝐸) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15774, 156eqbrtrd 4635 . . 3 (𝜑 → ((Σ𝑘𝑈 𝐵 + (𝐸 / 2)) + (Σ𝑘𝑊 𝐶 + (𝐸 / 2))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15815, 63, 40, 66, 157xrltletrd 11936 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) < (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
15915, 40, 158xrltled 38950 1 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) + (Σ^‘(𝑘𝐴𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cun 3553  cin 3554  wss 3555  𝒫 cpw 4130   class class class wbr 4613  cmpt 4673  ran crn 5075  cfv 5847  (class class class)co 6604  Fincfn 7899  supcsup 8290  cr 9879  0cc0 9880   + caddc 9883  +∞cpnf 10015  -∞cmnf 10016  *cxr 10017   < clt 10018  cle 10019   / cdiv 10628  2c2 11014  +crp 11776   +𝑒 cxad 11888  [,)cico 12119  [,]cicc 12120  Σcsu 14350  Σ^csumge0 39886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-xadd 11891  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-sumge0 39887
This theorem is referenced by:  sge0xaddlem2  39958
  Copyright terms: Public domain W3C validator