ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1strbas GIF version

Theorem 1strbas 12517
Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
Hypothesis
Ref Expression
1str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
Assertion
Ref Expression
1strbas (𝐵𝑉𝐵 = (Base‘𝐺))

Proof of Theorem 1strbas
StepHypRef Expression
1 baseslid 12472 . 2 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
2 1str.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
3 basendxnn 12471 . . . . 5 (Base‘ndx) ∈ ℕ
4 opexg 4213 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
53, 4mpan 422 . . . 4 (𝐵𝑉 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
6 snexg 4170 . . . 4 (⟨(Base‘ndx), 𝐵⟩ ∈ V → {⟨(Base‘ndx), 𝐵⟩} ∈ V)
75, 6syl 14 . . 3 (𝐵𝑉 → {⟨(Base‘ndx), 𝐵⟩} ∈ V)
82, 7eqeltrid 2257 . 2 (𝐵𝑉𝐺 ∈ V)
9 funsng 5244 . . . 4 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → Fun {⟨(Base‘ndx), 𝐵⟩})
103, 9mpan 422 . . 3 (𝐵𝑉 → Fun {⟨(Base‘ndx), 𝐵⟩})
112funeqi 5219 . . 3 (Fun 𝐺 ↔ Fun {⟨(Base‘ndx), 𝐵⟩})
1210, 11sylibr 133 . 2 (𝐵𝑉 → Fun 𝐺)
13 snidg 3612 . . . 4 (⟨(Base‘ndx), 𝐵⟩ ∈ V → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩})
145, 13syl 14 . . 3 (𝐵𝑉 → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩})
1514, 2eleqtrrdi 2264 . 2 (𝐵𝑉 → ⟨(Base‘ndx), 𝐵⟩ ∈ 𝐺)
161, 8, 12, 15strslfvd 12457 1 (𝐵𝑉𝐵 = (Base‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Vcvv 2730  {csn 3583  cop 3586  Fun wfun 5192  cfv 5198  cn 8878  ndxcnx 12413  Basecbs 12416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator