Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1strbas | GIF version |
Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
1str.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} |
Ref | Expression |
---|---|
1strbas | ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseslid 12450 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
2 | 1str.g | . . 3 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} | |
3 | basendxnn 12449 | . . . . 5 ⊢ (Base‘ndx) ∈ ℕ | |
4 | opexg 4206 | . . . . 5 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ 𝑉) → 〈(Base‘ndx), 𝐵〉 ∈ V) | |
5 | 3, 4 | mpan 421 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ V) |
6 | snexg 4163 | . . . 4 ⊢ (〈(Base‘ndx), 𝐵〉 ∈ V → {〈(Base‘ndx), 𝐵〉} ∈ V) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐵 ∈ 𝑉 → {〈(Base‘ndx), 𝐵〉} ∈ V) |
8 | 2, 7 | eqeltrid 2253 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐺 ∈ V) |
9 | funsng 5234 | . . . 4 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ 𝑉) → Fun {〈(Base‘ndx), 𝐵〉}) | |
10 | 3, 9 | mpan 421 | . . 3 ⊢ (𝐵 ∈ 𝑉 → Fun {〈(Base‘ndx), 𝐵〉}) |
11 | 2 | funeqi 5209 | . . 3 ⊢ (Fun 𝐺 ↔ Fun {〈(Base‘ndx), 𝐵〉}) |
12 | 10, 11 | sylibr 133 | . 2 ⊢ (𝐵 ∈ 𝑉 → Fun 𝐺) |
13 | snidg 3605 | . . . 4 ⊢ (〈(Base‘ndx), 𝐵〉 ∈ V → 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉}) | |
14 | 5, 13 | syl 14 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉}) |
15 | 14, 2 | eleqtrrdi 2260 | . 2 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ 𝐺) |
16 | 1, 8, 12, 15 | strslfvd 12435 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 {csn 3576 〈cop 3579 Fun wfun 5182 ‘cfv 5188 ℕcn 8857 ndxcnx 12391 Basecbs 12394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-inn 8858 df-ndx 12397 df-slot 12398 df-base 12400 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |