ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1strbas GIF version

Theorem 1strbas 13136
Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
Hypothesis
Ref Expression
1str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
Assertion
Ref Expression
1strbas (𝐵𝑉𝐵 = (Base‘𝐺))

Proof of Theorem 1strbas
StepHypRef Expression
1 baseslid 13076 . 2 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
2 1str.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
3 basendxnn 13074 . . . . 5 (Base‘ndx) ∈ ℕ
4 opexg 4313 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
53, 4mpan 424 . . . 4 (𝐵𝑉 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
6 snexg 4267 . . . 4 (⟨(Base‘ndx), 𝐵⟩ ∈ V → {⟨(Base‘ndx), 𝐵⟩} ∈ V)
75, 6syl 14 . . 3 (𝐵𝑉 → {⟨(Base‘ndx), 𝐵⟩} ∈ V)
82, 7eqeltrid 2316 . 2 (𝐵𝑉𝐺 ∈ V)
9 funsng 5363 . . . 4 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → Fun {⟨(Base‘ndx), 𝐵⟩})
103, 9mpan 424 . . 3 (𝐵𝑉 → Fun {⟨(Base‘ndx), 𝐵⟩})
112funeqi 5335 . . 3 (Fun 𝐺 ↔ Fun {⟨(Base‘ndx), 𝐵⟩})
1210, 11sylibr 134 . 2 (𝐵𝑉 → Fun 𝐺)
13 snidg 3695 . . . 4 (⟨(Base‘ndx), 𝐵⟩ ∈ V → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩})
145, 13syl 14 . . 3 (𝐵𝑉 → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩})
1514, 2eleqtrrdi 2323 . 2 (𝐵𝑉 → ⟨(Base‘ndx), 𝐵⟩ ∈ 𝐺)
161, 8, 12, 15strslfvd 13060 1 (𝐵𝑉𝐵 = (Base‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cop 3669  Fun wfun 5308  cfv 5314  cn 9098  ndxcnx 13015  Basecbs 13018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fv 5322  df-inn 9099  df-ndx 13021  df-slot 13022  df-base 13024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator