| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1strbas | GIF version | ||
| Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| 1str.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} |
| Ref | Expression |
|---|---|
| 1strbas | ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 13076 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 2 | 1str.g | . . 3 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} | |
| 3 | basendxnn 13074 | . . . . 5 ⊢ (Base‘ndx) ∈ ℕ | |
| 4 | opexg 4313 | . . . . 5 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ 𝑉) → 〈(Base‘ndx), 𝐵〉 ∈ V) | |
| 5 | 3, 4 | mpan 424 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ V) |
| 6 | snexg 4267 | . . . 4 ⊢ (〈(Base‘ndx), 𝐵〉 ∈ V → {〈(Base‘ndx), 𝐵〉} ∈ V) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐵 ∈ 𝑉 → {〈(Base‘ndx), 𝐵〉} ∈ V) |
| 8 | 2, 7 | eqeltrid 2316 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐺 ∈ V) |
| 9 | funsng 5363 | . . . 4 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ 𝑉) → Fun {〈(Base‘ndx), 𝐵〉}) | |
| 10 | 3, 9 | mpan 424 | . . 3 ⊢ (𝐵 ∈ 𝑉 → Fun {〈(Base‘ndx), 𝐵〉}) |
| 11 | 2 | funeqi 5335 | . . 3 ⊢ (Fun 𝐺 ↔ Fun {〈(Base‘ndx), 𝐵〉}) |
| 12 | 10, 11 | sylibr 134 | . 2 ⊢ (𝐵 ∈ 𝑉 → Fun 𝐺) |
| 13 | snidg 3695 | . . . 4 ⊢ (〈(Base‘ndx), 𝐵〉 ∈ V → 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉}) | |
| 14 | 5, 13 | syl 14 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉}) |
| 15 | 14, 2 | eleqtrrdi 2323 | . 2 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ 𝐺) |
| 16 | 1, 8, 12, 15 | strslfvd 13060 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 〈cop 3669 Fun wfun 5308 ‘cfv 5314 ℕcn 9098 ndxcnx 13015 Basecbs 13018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fv 5322 df-inn 9099 df-ndx 13021 df-slot 13022 df-base 13024 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |