| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1strbas | GIF version | ||
| Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| 1str.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} |
| Ref | Expression |
|---|---|
| 1strbas | ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 12760 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 2 | 1str.g | . . 3 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} | |
| 3 | basendxnn 12759 | . . . . 5 ⊢ (Base‘ndx) ∈ ℕ | |
| 4 | opexg 4262 | . . . . 5 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ 𝑉) → 〈(Base‘ndx), 𝐵〉 ∈ V) | |
| 5 | 3, 4 | mpan 424 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ V) |
| 6 | snexg 4218 | . . . 4 ⊢ (〈(Base‘ndx), 𝐵〉 ∈ V → {〈(Base‘ndx), 𝐵〉} ∈ V) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐵 ∈ 𝑉 → {〈(Base‘ndx), 𝐵〉} ∈ V) |
| 8 | 2, 7 | eqeltrid 2283 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐺 ∈ V) |
| 9 | funsng 5305 | . . . 4 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ 𝑉) → Fun {〈(Base‘ndx), 𝐵〉}) | |
| 10 | 3, 9 | mpan 424 | . . 3 ⊢ (𝐵 ∈ 𝑉 → Fun {〈(Base‘ndx), 𝐵〉}) |
| 11 | 2 | funeqi 5280 | . . 3 ⊢ (Fun 𝐺 ↔ Fun {〈(Base‘ndx), 𝐵〉}) |
| 12 | 10, 11 | sylibr 134 | . 2 ⊢ (𝐵 ∈ 𝑉 → Fun 𝐺) |
| 13 | snidg 3652 | . . . 4 ⊢ (〈(Base‘ndx), 𝐵〉 ∈ V → 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉}) | |
| 14 | 5, 13 | syl 14 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉}) |
| 15 | 14, 2 | eleqtrrdi 2290 | . 2 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ 𝐺) |
| 16 | 1, 8, 12, 15 | strslfvd 12745 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 〈cop 3626 Fun wfun 5253 ‘cfv 5259 ℕcn 9007 ndxcnx 12700 Basecbs 12703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |