ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1strbas GIF version

Theorem 1strbas 12820
Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
Hypothesis
Ref Expression
1str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
Assertion
Ref Expression
1strbas (𝐵𝑉𝐵 = (Base‘𝐺))

Proof of Theorem 1strbas
StepHypRef Expression
1 baseslid 12760 . 2 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
2 1str.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
3 basendxnn 12759 . . . . 5 (Base‘ndx) ∈ ℕ
4 opexg 4262 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
53, 4mpan 424 . . . 4 (𝐵𝑉 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
6 snexg 4218 . . . 4 (⟨(Base‘ndx), 𝐵⟩ ∈ V → {⟨(Base‘ndx), 𝐵⟩} ∈ V)
75, 6syl 14 . . 3 (𝐵𝑉 → {⟨(Base‘ndx), 𝐵⟩} ∈ V)
82, 7eqeltrid 2283 . 2 (𝐵𝑉𝐺 ∈ V)
9 funsng 5305 . . . 4 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → Fun {⟨(Base‘ndx), 𝐵⟩})
103, 9mpan 424 . . 3 (𝐵𝑉 → Fun {⟨(Base‘ndx), 𝐵⟩})
112funeqi 5280 . . 3 (Fun 𝐺 ↔ Fun {⟨(Base‘ndx), 𝐵⟩})
1210, 11sylibr 134 . 2 (𝐵𝑉 → Fun 𝐺)
13 snidg 3652 . . . 4 (⟨(Base‘ndx), 𝐵⟩ ∈ V → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩})
145, 13syl 14 . . 3 (𝐵𝑉 → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩})
1514, 2eleqtrrdi 2290 . 2 (𝐵𝑉 → ⟨(Base‘ndx), 𝐵⟩ ∈ 𝐺)
161, 8, 12, 15strslfvd 12745 1 (𝐵𝑉𝐵 = (Base‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  {csn 3623  cop 3626  Fun wfun 5253  cfv 5259  cn 9007  ndxcnx 12700  Basecbs 12703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator