![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1strbas | GIF version |
Description: The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
1str.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} |
Ref | Expression |
---|---|
1strbas | ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseslid 11699 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
2 | 1str.g | . . 3 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} | |
3 | basendxnn 11698 | . . . . 5 ⊢ (Base‘ndx) ∈ ℕ | |
4 | opexg 4079 | . . . . 5 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ 𝑉) → 〈(Base‘ndx), 𝐵〉 ∈ V) | |
5 | 3, 4 | mpan 416 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ V) |
6 | snexg 4040 | . . . 4 ⊢ (〈(Base‘ndx), 𝐵〉 ∈ V → {〈(Base‘ndx), 𝐵〉} ∈ V) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐵 ∈ 𝑉 → {〈(Base‘ndx), 𝐵〉} ∈ V) |
8 | 2, 7 | syl5eqel 2181 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐺 ∈ V) |
9 | funsng 5094 | . . . 4 ⊢ (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ 𝑉) → Fun {〈(Base‘ndx), 𝐵〉}) | |
10 | 3, 9 | mpan 416 | . . 3 ⊢ (𝐵 ∈ 𝑉 → Fun {〈(Base‘ndx), 𝐵〉}) |
11 | 2 | funeqi 5070 | . . 3 ⊢ (Fun 𝐺 ↔ Fun {〈(Base‘ndx), 𝐵〉}) |
12 | 10, 11 | sylibr 133 | . 2 ⊢ (𝐵 ∈ 𝑉 → Fun 𝐺) |
13 | snidg 3493 | . . . 4 ⊢ (〈(Base‘ndx), 𝐵〉 ∈ V → 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉}) | |
14 | 5, 13 | syl 14 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉}) |
15 | 14, 2 | syl6eleqr 2188 | . 2 ⊢ (𝐵 ∈ 𝑉 → 〈(Base‘ndx), 𝐵〉 ∈ 𝐺) |
16 | 1, 8, 12, 15 | strslfvd 11684 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 Vcvv 2633 {csn 3466 〈cop 3469 Fun wfun 5043 ‘cfv 5049 ℕcn 8520 ndxcnx 11640 Basecbs 11643 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-cnex 7533 ax-resscn 7534 ax-1re 7536 ax-addrcl 7539 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-iota 5014 df-fun 5051 df-fv 5057 df-inn 8521 df-ndx 11646 df-slot 11647 df-base 11649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |