ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basendxnn Unicode version

Theorem basendxnn 11796
Description: The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.)
Assertion
Ref Expression
basendxnn  |-  ( Base `  ndx )  e.  NN

Proof of Theorem basendxnn
StepHypRef Expression
1 df-base 11747 . . 3  |-  Base  = Slot  1
2 1nn 8589 . . 3  |-  1  e.  NN
31, 2ndxarg 11764 . 2  |-  ( Base `  ndx )  =  1
43, 2eqeltri 2172 1  |-  ( Base `  ndx )  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 1448   ` cfv 5059   1c1 7501   NNcn 8578   ndxcnx 11738   Basecbs 11741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-cnex 7586  ax-resscn 7587  ax-1re 7589  ax-addrcl 7592
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-iota 5024  df-fun 5061  df-fv 5067  df-inn 8579  df-ndx 11744  df-slot 11745  df-base 11747
This theorem is referenced by:  baseslid  11797  ressval2  11801  ressid  11802  1strbas  11840  2strbasg  11842  2stropg  11843  2strbas1g  11845  rngbaseg  11857  srngbased  11864  lmodbased  11875  ipsbased  11883  topgrpbasd  11893
  Copyright terms: Public domain W3C validator