ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basendxnn Unicode version

Theorem basendxnn 12520
Description: The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.)
Assertion
Ref Expression
basendxnn  |-  ( Base `  ndx )  e.  NN

Proof of Theorem basendxnn
StepHypRef Expression
1 df-base 12470 . . 3  |-  Base  = Slot  1
2 1nn 8932 . . 3  |-  1  e.  NN
31, 2ndxarg 12487 . 2  |-  ( Base `  ndx )  =  1
43, 2eqeltri 2250 1  |-  ( Base `  ndx )  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   ` cfv 5218   1c1 7814   NNcn 8921   ndxcnx 12461   Basecbs 12464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470
This theorem is referenced by:  baseslid  12521  ressvalsets  12526  ressex  12527  resseqnbasd  12534  ressressg  12536  1strbas  12578  2strbasg  12580  2stropg  12581  2strbas1g  12583  rngbaseg  12596  srngbased  12607  lmodbased  12625  ipsbased  12637  tsetndxnbasendx  12651  topgrpbasd  12657  plendxnbasendx  12665  dsndxnbasendx  12676  unifndxnbasendx  12686  prdsex  12723  imasex  12731  imasival  12732  imasbas  12733  imasplusg  12734  mgpress  13146  ring1  13241
  Copyright terms: Public domain W3C validator