ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basendxnn Unicode version

Theorem basendxnn 12449
Description: The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.)
Assertion
Ref Expression
basendxnn  |-  ( Base `  ndx )  e.  NN

Proof of Theorem basendxnn
StepHypRef Expression
1 df-base 12400 . . 3  |-  Base  = Slot  1
2 1nn 8868 . . 3  |-  1  e.  NN
31, 2ndxarg 12417 . 2  |-  ( Base `  ndx )  =  1
43, 2eqeltri 2239 1  |-  ( Base `  ndx )  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   ` cfv 5188   1c1 7754   NNcn 8857   ndxcnx 12391   Basecbs 12394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-inn 8858  df-ndx 12397  df-slot 12398  df-base 12400
This theorem is referenced by:  baseslid  12450  ressval2  12455  ressid  12456  1strbas  12494  2strbasg  12496  2stropg  12497  2strbas1g  12499  rngbaseg  12511  srngbased  12518  lmodbased  12529  ipsbased  12537  topgrpbasd  12547
  Copyright terms: Public domain W3C validator